人教版第七章平面直角坐标系全章教案
人教版七年级下册第七章 平面直角坐标系7.1.2平面直角坐标系教案

y轴或纵轴,取向上方向为正方向。两坐标轴的交点
为平面直角坐标系的原点。平面内的点可以用有序数
对来表示,即坐标,举例说明点A坐标,及读法。
2.如右图,写出并读出A、B、C、D、E、F、G点的
坐标,(多媒体2)
3.如图写出点A、B、C、D的坐标,后同桌讨论x轴y轴及原点坐标有什么特点.
D(3,0),E(0,-4)
练习P67例题填在书,教师抽查2位同学后讲评,
后小结坐标平面内的点与有序实数对是一一对应的,
6.p68探究,每位同学先3分钟独立完成探究内容后后四人为一小组合作探究,引导学生合作探究,再展示2位同学的答案,再用几何画板拓展,
师生小结,在同一平面内建立不同的平面直角坐标系各点会出现不同的坐标,
(平面直角坐标系,它是法国数学家笛卡儿最先引入坐标系,用代数方法研究几何,教师用手中的“数轴”简析平面直角坐标系,初识在同一平面内,两条互相垂直、原点重合的数轴)
2.用4分钟再次预习课本66-67并填该页下面的三空,
(二):再识及运用平面直角坐标系,
1.结合图形解析平面坐标系的组成,水平的数轴称为x
4.数轴上的点与实数有怎样的关系?
(师生小结一一对应的关系,即数轴上每一个点都可以用一个实数来表示,任何一个实数都可以在数轴上找到唯一确定的点):
二、新授:
(一)初识平面直角坐标系
1利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内点的位置呢?哪位同学来试说,又是谁最先引入平面直角坐标系呢?它是怎样组成的呢?
(师生小结数轴上x轴上的纵坐标为0,y轴上的横坐标为0,原点上横纵坐标都为0)
4.介绍坐标平面被两条坐标轴分为四个象限,分别是
人教版七年级下册第七章平面直角坐标系教学设计方案:《712平面直角坐标系》.docx

人教版七年级下册7.1.2《平面直角坐标系》(第1课时)教学设计方案一、教学目标理解平面直角坐标系的相关概念.2. 掌握平面直角坐标系中点与其坐标的对应关系.3. 体验数和符号的广泛应用.二、教学重点1. 会画平面盲角坐标系.2. 在平面直角系中,能根据点的位置写出点坐标;根据坐标找到对应的点. 三、 教学难点找出其中有一个坐标为0的点. 四、 教具与媒体准备1. 自制的平面直角坐标系教具(如图1)・2. 白己录制的《平面直角坐标系》微课.3. 写有“-4,-2,0,1,3”等数字的纸片(如图2)・五、教学过程教师活动 环节一:基于《前置学习》的先学 1 •复习旧知、感悟新知(1) 在下面的教室座位图中,标出班长和自己(桌子)的位置. (2) 面对讲台,以班长的位置为观察点,自己的位置是:(左或右侧) 列,(前或后面)排;讲台2.自主阅读教材P65〜67,你认为哪句话最重要?说说理由. 环节二:基于《前置学习》的导学画出以班长为观察点翻学生活动学生课前完成卬发《前 置学习》,感悟平而直角坐 标系,进行“先学”的课堂 改革.基于对“前后”与“左右”的夹角为90°的认识,引出课题的“前”与“后”、“左”与“右”分界线环节三:直角坐标系长什么样1•教师第一次故意“出错”,画出的水平数轴为:1 1 1 11 1 1 1 11一1 一2 -3 -40 1 2 3 4 52.教师故意“示弱” 一一 “怕画错”而不画y 轴.1. 让学生来修改兀轴 的错误.2. 让学生来画y 轴.环节四:直角坐标系有什么用怎样用 1. 介绍横坐标、纵坐标和点的坐标的概念. 方法:教师边讲解边示范.2. 已知点找出其坐标.3. 已知点坐标找对应的点.让一个学生随意描取 一个点,再请另一个学生找 出它的坐标.让两个学生抽取两张 纸片,用上面的数字作为点 的坐标,再请另外两个学生 找岀与Z 对应的点(增加趣 味性和随机性).环节五:思考——由已知点找出其坐标、已知点的坐标找对 应的点时,这什么要作垂线?让学生辨析概念.环节六:练习与归纳以教材P67上的例题作为课 个坐标进行了描点,其他四个没有 2 •归纳、总结“坐标平面内的点 3.教师第二次故意“出错”如 性和序号标注的合理性.4 笫四象限;1 堂练习(例题屮,只对其中一 解答,要求学生完成).与有序实数对是一 •对应的”. 下图,再归纳象限划分的必要r笫一象限■归纳、总结列举生活中以逆时钟作为 “顺序”的例子,如打牌、 运动场上跑步等.-3 -2 -1 ■1 第三象限-2 1 2 3 4 x〕第二象限环节六:小结1. 问学生,本节课的“新知识”和相关的“旧知识”・2. 播放自己录制的《平面直角坐标系》微课,让学生更全面 地复习本节课的知识,并对本节课的内容进行拓展. 思考新旧知识之间的联系 观看微课视频,深化対本课 知识的理解,创新了数学教 学.环节七:带着思考下课以班长的位置为原点、面向黑板建立平面直角坐标系,让第 一象限的学生先下课…….思考、理解“坐标轴上 的不属于任何象限”——原 因是:分界线上的,不属于 “前面”也不属于“后面”、 不属于“左侧”与也不属于 “右侧”.六、作业P6&练习1, 2七、板书设计讲台m m □□ I m m m i □□□□□□ m m m m m m m m m i ―(左或右侧) 列,(前或后面)挂八、本课特色1・利用了微课进行概念教学,整合了信息技术和数学学科教学。
人教版七年级数学下册第七章《平面直角坐标系》同步教学设计

6.情感态度与价值观的培养:
-在教学过程中,注重引导学生体验数学的简洁美和严谨性,培养其数学审美观。
-通过解决实际问题,让学生体会数学在生活中的价值,增强其学习数学的信心。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入:向学生展示一幅地图,提出问题:“如何在地图上快速找到某一地点的位置?”引导学生思考并回答,从而引出坐标的概念。
3.结合数形结合的数学思想,让学生体会数学的内在联系,培养其逻辑思维和空间想象能力。
4.通过小组合作、讨论交流等形式,培养学生的合作精神和沟通能力。
(三)情感态度与价值观
1.增强对数学学科的兴趣和热情,形成积极的学习态度,树立正确的数学观念。
2.理解数学在生活中的广泛应用,体会数学的价值,增强解决问题的信心。
3.培养学生的空间观念,使其能够运用所学的平面直角坐标系知识,观察和认识周围的空间环境。
4.培养学生勇于探索、积极思考的良好品质,使其形成严谨、踏实的学术态度。
本章教学设计旨在使学生在掌握平面直角坐标系知识的基础上,提高数学思维能力,增强解决实际问题的能力,培养良好的情感态度和价值观。在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,注重启发式教学,提高教学质量。
2.坐标表示方法:讲解如何用数对表示坐标平面内的点,强调横坐标和纵坐标的顺序。通过实例分析,让学生掌握坐标的表示方法。
3.坐标平移性质:以图形的平移为例,引导学生发现坐标平移的性质,并通过实际操作,让学生感受平移前后图形之间的变化。
4.解决线性方程:介绍如何利用坐标方法解决线性方程问题,通过具体实例,让学生掌握线性方程在坐标平面上的解法。
人教版初中数学七年级下册教学教案第七章 平面直角坐标系

第七章平面直角坐标系1.认识有序数对,感受它在确定点的位置中的作用.2.认识平面直角坐标系,能根据点的位置写出点的坐标,根据点的坐标描出点的位置.3.掌握点的坐标变化与点的左右或上下平移间的关系,并能解决与平移有关的问题.4.能够建立适当的坐标系表示地理位置.1.要正确理解有序实数对的含义,熟悉平面直角坐标系的组成.对于平面内点的表示和直线上的点的表示要正确区别,在用有序实数对表示点时,要注意数的先后顺序.2.用坐标表示地理位置,注重平面直角坐标系与生产、生活的联系,确定坐标原点是解决此类问题的关键.体验和领悟数学与生活的密切联系.本章是研究函数及其图象的入门篇,介绍了平面直角坐标系以及相关知识.直角坐标系是由两个互相垂直的数轴组成的,它不但是联系有序实数对和平面内点的对应关系的桥梁,也是解决数学问题经常运用的工具.在本章将学到用坐标的方法表示地理位置和平移,通过用有序实数对确定位置,从中体会位置的确定与坐标变换之间的关系,探索在平移、轴对称、旋转等变换过程中,相应的点的坐标的变化规律.【重点】1.掌握平面内点的坐标的表示方法及求法.2.能够建立适当的坐标系来描述点所处的位置.【难点】用坐标表示平面内的点的位置及判断坐标平面上点的坐标.1.复习数轴的有关知识,加深对实数与数轴上的点一一对应的认识,要注意弄清有序实数对的概念.2.突出识记各象限内点的坐标和坐标轴上点的坐标的特征.增强空间意识,掌握图形的基本规律.3.有关平面直角坐标系的概念比较多,指导学生学习时,要注意运用数形结合的思想,紧密结合图形帮助学生理解这些概念,不要死记硬背定义.7.1平面直角坐标系2课时7.1.1有序数对(1课时)7.1.2平面直角坐标系(1课时)7.2坐标方法的简单应用7.2.1用坐标表示地理位置(1课时)2课时7.2.2用坐标表示平移(1课时)单元概括整合1课时7.1平面直角坐标系1.了解有序实数对的含义及其在确定点的位置中的作用.2.了解平面直角坐标系,感受点和坐标一一对应的关系.通过生活实例领会有序实数在生活中的作用.认识数学与生活的密切联系,培养学生用数学知识解决生活问题的意识.【重点】1.有序实数对对确定点的位置的作用.2.借助于直角坐标系描述点的位置.3.根据位置关系建立适当的直角坐标系描述事物位置.【难点】1.理解有序实数对和点的一一对应.2.根据事物的位置建立直角坐标系.7.1.1有序数对了解有序数对,感受它在确定点的位置中的作用.通过对实际问题的分析,经历建立数学模型解决实际问题的过程.体验有序数对在现实生活中应用的广泛性.逐步建立数学的应用意识.【重点】理解有序数对的意义和作用.【难点】有序数对表示点的位置的唯一性.【教师准备】课堂教学所用的教学图片.【学生准备】复习小学数学学过的有关数对的知识.导入一:出示围棋棋盘图片,提出问题:怎么说明各个棋子的位置呢?[设计意图]帮助学生领会引入“有序数对”的必要,初步领会怎样用实数去描述事物的位置.导入二:出示飞行员方队图片,提出问题:方队内的每位队员,怎样准确找到自己的位置呢?[设计意图]学生在想各种办法的时候,会联想到小学学过的“数对”,再次感受“数对”对于说明位置的准确性.1.有序数对.生活体验问题1:如果你持有这张电影票,怎样找到自己的位置呢?处理方式:学生观察后可以随意说出,肯定学生根据座位号找到位置的回答.问题2:出示教材图7.1-1,根据要求做活动.活动一假如这是班级的座位图,请你任意选择一个位置当做自己的座位,怎样向同学说明你的位置?处理方式:学生在“选定”自己的位置后,根据学习经验会用“横排”“竖排”的概念描述自己的位置,可是这种描述还是文字性的,不是用数字的抽象描述,需要提示学生用“数字”的方式描述自己的位置.活动二教材第65页思考中的问题提示:可以利用排、列的方式确定教室里座位的位置;排数和列数的先后顺序对位置是有影响的;图略.(1,5)表示的位置是第1列第5排,(2,4)表示的位置是第2列第4排,(4,2)表示的位置是第4列第2排,(3,3)表示的位置是第3列第3排,(5,6)表示的位置是第5列第6排.总结:上面的问题都是通过像“9排7号”“第1列第5排”这样含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,例如前边的表示“排数”,后边的表示“号数”.我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).2.例题讲解.(补充)如图所示,在A处观察B物体,横着相距3格,竖着相距2格,B点表示为(4,3),在A处观察C物体,横着相距格,竖着相距格,C点表示为.〔解析〕从A点看C点,横着相距6格,竖着相距1格,要确定C点的表示方法,应以B为标准,从B点数,向右数3个格,向下数1个格,故C点可表示为(7,2).〔答案〕61(7,2)[知识拓展]对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.当a=b时,它们表示同一有序数对,当a≠b时,它们表示不同的有序数对.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).1.如图所示,已知某城市A在地图上的位置如图所示,则城市A的位置在()A.东经120°,北纬30°B.东经30°,北纬120°C.东经110°,北纬30°D.东经20°,北纬120°解析:地图上是通过用经度和纬度来表示城市的位置的,由图可知城市A所在的位置是东经120°,北纬30°.故选A.2.如图所示,观察小岛A相对于灯塔O的位置,描述准确的是()A.北偏东60°B.距灯塔20 km处C.北偏东30°且距灯塔20 km处D.北偏东60°且距灯塔20 km处解析:由题意可知,观察小岛A相对于灯塔O的位置,需要方位角大小和小岛与O点的距离两个量.所以小岛A可以表示为北偏东60°且距灯塔20 km处.故选D.3.如图所示,进行“找宝”游戏,如果宝藏藏在(3,2)字母牌的下面,那么应该在字母L的下面寻找,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母的下面寻找.解析:先理解(4,5)表示4排5列,然后在图中找出对应的字母即可.因为(4,5)表示4排5列,而图中4排5列的字母为J,所以宝藏藏在J字母牌的下面.故填J.4.在电影票上,将“7排6号”简记作(7,6).(1)6排7号可表示为.(2)(8,6)表示的意义是.解析:本题考查如何用有序数对表示位置.将“7排6号”表示为(7,6),对比看出前数表示排号,后数表示位号,用小括号括起来,中间用“,”隔开.所以6排7号可表示为(6,7).(8,6)表示的意义是8排6号.答案:(6,7)8排6号7.1.1有序数对1.有序数对2.例题讲解例题一、教材作业【选做题】教材第65页练习.【选做题】教材68页习题7.1第1题.二、课后作业【基础巩固】1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°2.如图所示的为一方队的示意图,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)3.如果电影票上的“3排4号”记作(3,4),那么(4,3)表示排号.4.用有序数对(2,9)表示某住户住2单元9号房,那么(3,11)表示住户住几单元几号房?5.如图所示,小海龟位于图中点A(2,1)处,按下述路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).用粗线将小海龟经过的路线描出来,看一看像什么图形.【能力提升】6.下列关于有序数对的说法正确的是 ()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置不同C.(3,2)与(2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置7.如图所示,将正整数按下图所示的规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46B.47C.48D.498.如图所示,A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,如果用(3,1)⇒(3,2)⇒(3,3)⇒(2,3)⇒(1,3)表示由A到B的一条路径,用同样的方式写出一条由A到B的路径:(3,1)⇒()⇒()⇒()⇒(1,3).9.小明和小亮同去市科技馆参加科技报告会,小明的入场券写着5排6号,而小亮的入场券写着6排5号,若小明的座位记作(5,6),那么小亮的座位记作.10.如图所示,点M表示王昊的座位,点N表示李乐的座位,点F表示赵明的座位.(1)王昊的座位是第5组第3个,表示为M(5,3);(2)点C表示班上年龄最小的同学的座位,表示为C(,);(3)把李乐的座位向左平移3个座位后,表示为(,);(4)赵明西面相邻同学的座位表示为(,);赵明南面相邻同学的座位表示为(,).【拓展探究】11.如图所示,从2街4巷到4街2巷,走最短的路线的走法共有多少种?请写出来.利用方格图和有序实数对表示出所有最短的路线的走法.12.如图所示的为某城市的街道平面图,图中的线段表示道路.(1)若A点所在的2街5大道的十字路口的位置可用(2,5)表示,那么B点可用什么方式表示?(2)找出从A点到B点的一条最短线路,并用适当的方式表示这条最短线路.(3)想一想,从A到B的最短线路共有多少条?【答案与解析】1.B(解析:A.3楼5号,物体的位置明确,故本选项错误;B.北偏西40°,无法确定物体的具体位置,故本选项正确;C.解放路30号,物体的位置明确,故本选项错误;D.东经120°,北纬30°,物体的位置明确,故本选项错误.故选B.)2.A(解析:根据A 的位置为三列四行,表示为(3,4)可知列写在前面,行写在后面,据此可以得到B 的位置.由图形可以看出:B 点的位置为四列五行,故知B 点可以表示为(4,5).故选A .)3.4 3(解析:根据题意知前一个数表示排数,后一个数表示号数,所以(4,3)表示的座位是4排3号.)4.解:(3,11)表示住户住3单元11号房.5.解:如图所示,小海龟经过的路线图形像一面小旗.6.C(解析:本题考查了有序数对.由有序数对的定义知:A .(3,2)与(2,3)是表示不同位置的两个有序数对,故此项错误;B .(a ,b )与(b ,a )当a ≠b 时是表示不同位置的两个有序数对,故此项错误;C .(3,2)与(2,3)是表示不同位置的两个有序数对,故此项正确;D .(4,4)与(4,4)是表示相同位置的两个有序数对,故此项错误.故选C .)7.C(解析:从图中可以发现,第n 排的最后的数为12n (n +1),所以第9排最后的数为12×9×(9+1)=45,(10,3)表示第10排第3个数,则第10排第3个数为45+3=48.故选C .)8.(2,1) (2,2) (2,3)(解析:此题首先根据题意明确横坐标表示经路,纵坐标表示纬路.然后结合图形画出路线,写出对应的坐标即可.根据题意,答案不唯一,可依次填(2,1)⇒(2,2)⇒(2,3)等.)9.(6,5)(解析:因为小明的入场券写着5排6号用(5,6)表示,即排数在前,列数在后,所以小亮的入场券写着6排5号,就可以表示为(6,5).)10.(2)(2,1) (3)(2,4) (4)(2,6) (3,5)(解析:根据数对表示位置的方法观察图形可知王昊的座位是第5组第3个,表示为M (5,3),则(2)点C 表示班上年龄最小的同学的座位,表示为C (2,1),(3)把李乐的座位向左平移3个座位后,表示为(2,4),(4)赵明西面相邻同学的座位表示为(2,6);赵明南面相邻同学的座位表示为(3,5).) 11.解:从2街4巷到4街2巷,走最短的路线的走法有:①(2,4)→(4,4)→(4,2);②(2,4)→(3,4)→(3,2)→(4,2);③(2,4)→(3,4)→(3,3)→(4,3)→(4,2);④(2,4)→(2,3)→(4,3)→(4,2);⑤(2,4)→(2,2)→(4,2);⑥(2,4)→(2,3)→(3,3)→(3,2)→(4,2).12.解:(1)因为B 点所在的位置是5街3大道的十字路口,所以B 点可用(5,3)表示. (2)答案不唯一,如(2,5)→(5,5)→(5,3). (3)从A 到B 的最短线路共有10条.本课时通过生活实例帮助学生领会了“有序数对”对于描述事物位置的重要作用,使学生认识到仅靠语言描述事物位置还是不够的,并且初步学会了用“数对”描述事物的位置.对于有序实数对的作用的准确性和唯一性没有做出特别重点的强调,在交代了有序数对定义后,没有让学生进行举例,少了生活体验这个环节.有针对性地纠正本课时的不足之处,重点强调有序数对的准确性和唯一性,让学生从生活经验的角度体验有序数对的重要作用.可以再补充一个例题,强化学生对知识的掌握.练习(教材第65页)解:“(2,5)→(2,4)→(2,3)→(2,2)→(3,2)→(4,2)→(5,2)”,“(2,5)→(2,4)→(3,4)→(3,3)→(3,2)→(4,2)→(5,2)”,“(2,5)→(3,5)→(4,5)→(4,4)→(4,3)→(4,2)→(5,2)”等,答案不唯一.如图所示的是中国象棋一次对局时的部分示意图,若“帅”所在的位置用有序数对(5,1)表示,请你用有序数对表示其他棋子的位置.〔解析〕由示例可知,有序数对(a,b)中a代表棋子所处的纵列数,b表示棋子所处的横排数.解:兵(2,5),车(3,1),仕(5,2),马(6,4),炮(8,3),相(9,3).7.1.2平面直角坐标系认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位置.渗透对应关系,提高学生的数感.体验数、符号是对描述现实生活的重要手段.【重点】平面直角坐标系和点的坐标.【难点】根据点的位置写出点的坐标,根据点的坐标描出点的位置.【教师准备】教材图7.1-3,7.1-4,7.1-5,7.1-6的投影图片.【学生准备】复习有序数对的定义和表示方法.导入一:如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标为-4,点B在数轴上的坐标为2.反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如,数轴上坐标为5的点是点C.导入二:数学家笛卡儿潜心研究能否用代数中的计算来代替几何中的证明.有一天,在梦中他用金钥匙打开了数学宫殿的大门,遍地的珠子光彩夺目,他看见窗框角上有一只蜘蛛正忙着结网,顺着吐出的丝在空中飘动,一个念头闪过脑际:眼前这一条条的横线和竖线不正是自己全力研究的直线和曲线吗?由此笛卡儿发明了直角坐标系,你是不是很想知道什么是直角坐标系呢?就让我们一起进入本节课的学习吧!1.建立直角坐标系.出示教材图7.1-3,回答问题:(1)你如何表示A,B,C,D这四个点的位置?(2)用一条数轴能否表示这四个点的位置?(3)用两个原点互相重合、垂直的数轴,能表示这四个点的位置吗?活动方式:学生交流、讨论、动手操作.问题预设:第(1)问学生可能会想到用上个课时的“有序数对”的知识进行说明,采取横纵标上数字的办法.对于学生的这种做法要给予积极的肯定,鼓励学生再去尝试其他的方法.第(2)问,从A,B,C,D这四个点的位置看都不在同一条直线上,用一个数轴只能表示出两个点的位置.第(3)问首先介绍了利用两条数轴的方法,也就是原点重合、互相垂直,这也是直角坐标系建立的基本条件.两个这样的坐标轴放到图7.1-3上,注意相应的横线和竖线分别与坐标轴重合,这样就可以读出A,B,C,D四个点的坐标.2.平面直角坐标系的相关概念.(1)建立直角坐标系.在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系,如图所示.水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.(2)平面直角坐标系的点.把直角坐标系如下图建立起来,就可以读出A,B,C,D四个点的坐标.问题1:由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).类似地,请你写出点B,C,D的坐标:B(,),C(,),D(,).处理方式:学生交流讨论完成,老师巡视指导.问题2:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?提示:原点O的坐标为(0,0);x轴上的点的纵坐标为0,例如(1,0),(-1,0),…;y轴上的点的横坐标为0,例如(0,1),(0,-1),….(3)平面直角坐标系的象限.问题:什么是象限?坐标原点属于哪个象限?提示:建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分(图7.1-5),每个部分称为象限,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.3.例题讲解.(补充)如图所示,其中所画的平面直角坐标系符合要求的是()〔解析〕A选项中x轴与y轴不互相垂直,故此选项不正确,B选项中两数轴的交点不对,故B选项也不正确;D选项中没有标明坐标原点及x轴与y轴,故也排除.故选C.(教材例题)在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4).解:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.类似地,在图上描出点B,C,D,E.4.坐标平面内的点与有序实数对的一一对应.数轴上的点与实数是一一对应的.坐标平面内的点与一对有序实数是一一对应的吗?对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)(即点M的坐标)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内的点与有序实数对是一一对应的.[知识拓展](1)求点的坐标时,横坐标要写在前面,纵坐标写在后面,中间用逗号隔开,再把它们括起来.(2)坐标轴上点的坐标:x轴上到原点的距离为|a|的点的坐标为(±a,0),y轴上到原点的距离为|b|的点的坐标为(0,±b).可类比数轴上的点与实数的关系来研究.(3)建立直角坐标系的方法不同,同一个点在不同的直角坐标系中的坐标是不同的.1.平面直角坐标系的相关概念:横轴、纵轴、原点、象限.2.坐标平面内的点与有序实数对是一一对应的.1.点(-2,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:点(-2,1)的横坐标在x轴的负半轴上,纵坐标在y的正半轴上,所以点(-2,1)在第二象限.故选B.2.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-4解析:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.因为|4|=4,所以点P(-3,4)到x轴距离为4.故选C.3.如图所示,点A关于y轴的对称点的坐标是.解析:首先根据平面直角坐标系可知点A的坐标为(-5,3),再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,可得点A关于y轴的对称点的坐标是(5,3).故填(5,3).4.如图所示,根据坐标平面内点的位置,分别写出图中点A,B,E的坐标.解:点的坐标分别为:A(2,4),B(1,3),E(3,3).7.2.2平面直角坐标系1.建立直角坐标系2.平面直角坐标系的相关概念3.例题讲解例1例24.坐标平面内的点与有序实数对的一一对应一、教材作业【必做题】教材第68页练习第1,2题.【选做题】教材第68页习题7.1第14题.二、课后作业【基础巩固】1.有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限.其中错误的是()A.只有①B.只有②C.只有③D.①②③2.在平面直角坐标系中,位于第三象限的点是()A.(0,-1)B.(1,-2)C.(-1,-2)D.(-1,2)3.若点A(2,n)在x轴上,则点B(n-2,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.若点A(m+2,3)与点B(-4,n+5)关于y轴对称,则m+n=.5.如果点A的坐标为(-a2-3,b2+3),那么点A在第几象限?说说你的理由.【能力提升】6.若点P(x,y)满足xy=0,则点P在()A.原点处B.四个象限中的某一个C.y轴上D.x轴上或y轴上或原点处7.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.点A在y轴的左侧,到x轴,y轴的距离分别是2和3,则点A的坐标是()A.(-3,2)B.(-3,-2)C.(3,2)或(-3,2)D.(-3,2)或(-3,-2)9.已知点P在第四象限,它的横坐标与纵坐标的和为-3,则点P的坐标是.(写出符合条件的一个点即可)10.如图所示,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【拓展探究】11.如图所示,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2015次运动后,动点P的坐标是.12.如图所示.(1)写出五边形ABCDEF的顶点A,B,C,D,E,F的坐标;(2)C,E两点的坐标有什么特征?(3)直线CE与两条坐标轴有怎样的位置关系?【答案与解析】1.C(解析:说法①②正确,说法③错误,因为平面直角坐标系把坐标平面分成四个部分,即把坐标平面分为四个不同象限,而在坐标轴上的点是不属于任何象限的.故选C.)2.C(解析:因为第三象限点的坐标特点是横纵坐标均为负数,所以只有选项C符合条件.故选C.)3.B(解析:由于点A(2,n)在x轴上,则n=0,那么点B的坐标为(-2,1),所以点B在第二象限.故选B.)4.0(解析:因为点A(m+2,3)与点B(-4,n+5)关于y轴对称,所以m+2=4,3=n+5,解得m=2,n=-2,所以m+n=0,故答案为0.)5.解:因为-a2≤0,所以-a2-3≤-3,而b2≥0,所以b2+3≥3,即点A的横坐标一定小于零,而纵坐标一定大于零,所以点A一定在第二象限.6.D(解析:由xy=0可知x=0或y=0或x=y=0,所以该点位于x轴上或y轴上或原点处.)7.D(解析:因为点P(m,1-2m)的横坐标与纵坐标互为相反数,所以m=-(1-2m),解得m=1,即1-2m=-1,所以点P 的坐标是(1,-1),所以点P在第四象限.故选D.)8.D(解析:因为点A在y轴的左侧,所以该点位于第二或第四象限,又因为该点到x轴,y轴的距离分别是2和3,所以其坐标为(-3,2)或(-3,-2).)9.答案不唯一,如(1,-4)(解析:点P在第四象限,横坐标大于0,纵坐标小于0.先确定一个坐标的值,进而根据和为-3求解.设点P的坐标是(x,y),则x>0,y<0,又因为横坐标与纵坐标的和为-3,所以当x=1时,就可以求出y=-4,就得到满足条件的一个坐标.)10.解:AC=2-(-2)=4,过点B作AC边上的高BD,垂线段BD的长与点A到y轴的距离相等.因为点A的坐标×4×3=6.是(-3,-2),所以BD=|-3|=3,所以△ABC的面积S=1211.(2015,2)(解析:因为动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),所以第4次运动到点(4,0),第5次运动到点(5,1),…,所以横坐标为运动次数,经过第2015次运动后,动点P的横坐标为2015,纵坐标为1,0,2,0,每4次一循环,2015÷4=503……3,所以经过第2015次运动后,动点P的纵坐标为四个数中的第三个,即为2,所以经过第2015次运动后,动点P的坐标是(2015,2).)12.解:(1)A(-2,0),B(0,3),C(3,3),D(4,0),E(3,-3),F(0,-3).(2)横坐标相等,纵坐标互为相反数.(3)直线CE与x轴垂直,与y轴平行.本课时的知识容量大、描述性概念多,需要做到抓住重点知识,条理清晰地把知识呈现给学生.在教学设计的过程中,紧紧把握了有序数对这个核心,围绕建立坐标系而展开的.通过建立坐标系的活动,学生体验到了建立坐标系的好处和方法,为后续的知识进行做了扎实的准备.在课时的教学过程中,注重学生的动手操作,强化了学生对知识的理解.建立坐标系之后,如何读点的坐标和描出坐标所对应的点,只借助于例题对学生指导是不够的,没有做到更为具体和细化.对有序实数对与坐标平面内的点的一一对应关系,没有让学生动手操作来体验.部分概念的理解交给学生自读完成,如平面直角坐标系、横轴、纵轴、原点、象限等概念.总结坐标在各象限中的特点由学生课后列表完成.练习(教材第68页)1.解:A(-2,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).2.解:如图所示.习题7.1(教材第68页)1.A(3,3);C(7,3);D(10,3);E(10,5);F(7,7);G(5,7);H(3,6);I(4,8).2.从左往右,从上到下依次为:-+--+-3.解:横坐标纵坐标A(-5,4) -5 4B(-2,2) -2 2C(3,4) 3 4D(2,1) 2 1E(5,-3) 5 -3F(-1,-2) -1 -2G(-5,-3) -5 -3H(-4,-1) -4 -14.解:如图所示,得到“W”形.5.解:如图所示,A,B,C,D,E各点在它们所在象限(原点F除外)的角平分线上,它们到两个坐标轴的距离相等.类似的点有G(-4,4),H(-1,1),M(2,-2),N(5,-5)等.6.解:以B为原点,以直线BC为x轴,向右为正,以垂直于BC的直线为y轴,向上为正,建立坐标系(以一个方格的边长为单位长度),则A(-2,3),D(6,1),E(5,3),F(3,2),G(1,5).A点在第二象限,D,E,F,G点在第一象限.7.解:如图所示.(1)像“小山”,面积为6.(2)像粮仓,面积为17.8.解:如图所示.点C的纵坐标为4.(1)平行于x轴的直线上的点的纵坐标相等.(2)平行于y轴的直线上的点的横坐标相等.9.解:如图所示.10.解:如图所示.(1)A,B为第一、三象限内的点,坐标满足xy>0.(2)C,D为第二、四象限内的点,坐标满足xy<0.(3)E,F为坐标轴上的点,坐标满足xy=0.。
2024年人教版七年数学下册教案(全册)第7章 平面直角坐标系

一、单元学习主题本单元是“图形与几何”领域“图形与坐标”主题中的“平面直角坐标系”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.平面直角坐标系是数轴的拓展,是沟通几何与代数的桥梁,内容核心是平面上的点与用数对表示的坐标的一一对应.要强调数形结合,引导学生经历用坐标表达图形的轴对称、旋转、平移变化的过程,体会用代数方法表达图形变化的意义,发展几何直观;引导学生经历借助平面直角坐标系解决现实问题的过程,感悟数形结合的意义,发展推理能力和运算能力,增强应用意识和创新意识.感悟平面直角坐标系是沟通代数与几何的桥梁,理解平面上点与坐标之间的一一对应关系,能用坐标描述简单几何图形的位置;会用坐标表达图形的变化、简单图形的性质,感悟通过几何建立直观、通过代数得到数学表达的过程.在这样的过程中,感悟数形结合的思想,会用数形结合的方法分析和解决问题.在具体现实情境中,学会从几何的角度发现问题和提出问题,经历用几何直观和逻辑推理分析问题和解决问题的过程,培养应用意识和创新意识,提升几何直观、空间观念、抽象能力、推理能力等.2.本单元教学内容分析人教版教材七年级下册第七章“平面直角坐标系”,本章包括两个小节:7.1平面直角坐标系;7.2坐标方法的简单应用.本单元的主要内容包括平面直角坐标系有关的概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移的内容.三、单元学情分析本单元内容是人教版教材数学七年级下册第七章平面直角坐标系,学生在前面已学习了数轴的基础上,初步积累了一定的图形坐标的数学活动经验.学生可以结合数轴的知识经验,学习到平面直角坐标系是由两条相互垂直、原点重合的数轴构成的,坐标平面内点的坐标是根据数轴上点的坐标定义的,平面内点的坐标的对应关系类似于数轴上点与坐标的对应关系.类比数轴上点与实数是一一对应的,学生也就容易理解平面内点与坐标(有序数对)是一一对应的.通过数轴上点平移的规律,学生也就容易掌握平面内点的平移规律.因此,对于探究图形的坐标、多角度地理解图形坐标的特点以及应用,对学生来说并不太困难.四、单元学习目标1.结合实例进一步体会用有序数对可以表示物体的位置.2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标.3.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形.4.能建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决问题中的作用;在平面上,能用方向和距离刻画两个物体的相对位置.培养学生的模型观念、应用意识.5.在平面直角坐标系中,能用坐标表示平移.通过研究平移与坐标的关系,体会数形结合思想,初步形成空间观念和几何直观.五、单元学习内容及学习方法概览平面直角坐标系课时划分内容本质与研究方法7.1平面直角坐标系7.1.1有序数对借助实际问题,归纳有序数对的概念;提出利用有序数对可以确定物体的位置,由此联想是否可以用它表示平面内点的位置问题7.1.2平面直角坐标系由直线上的点到平面内的点,结合数轴上确定点的位置的方法,引出平面直角坐标系;学习平面直角坐标系的相关概念7.2坐标方法的简单应用7.2.1用坐标表示地理位置通过点与位置的对应关系,让学生思考地图上是怎样利用坐标表示一个地点的地理位置的,从中得到启发,再来学习建立平面直角坐标系7.2.2用坐标表示平移运用数形结合思想,观察并归纳平面直角坐标系中平移前后对应点的坐标之间的关系六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所收获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.例:请同学们利用所学的图形与坐标为班级文化建设献出一份力.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版第七章平面直角坐标系全章教案

人教版第七章平面直角坐标系全章教案-3B A0327.1.2平面直角坐标系(1)【教学目标】1、掌握平面直角坐标系的有关概念;了解点的坐标的意义2、根据点的位置写出点的坐标,能建立平面直角坐标系,并根据坐标找点;3、通过建立平面直角坐标系的过程,进一步渗透数形结合的思想【教学重点】平面直角坐标系和点的坐标【教学难点】在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点教学过程一、导入新知问题:(1)什么是数轴,画出数轴.(2)指出课本图6.1.2中A、B点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.(3)数轴上的点与是一一对应。
二、探究新知思考:类似于利用数轴确定直线上点的位置, 能不能找到一种办法来确定平面点的位置呢?(如下左图中的四个点A、B、C、D)我们可以在平面内画出两条互相垂直、原点重合的数轴来表示,如上右图.用平面内两条互相垂直、原点重合的数轴组成平面直角坐标系. 水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标的交点为平面直角坐标系的原点。
注意:在一般情况下,两条坐标轴所取的单位长度是一致的。
三、应用新知例1、请你在图中标出点A、B、C、D、E 、F在直角坐标系中的坐标。
解:由图可知,各点的坐标分别是:A(4,3)、B(-2,3)C(-4,-1)、D(2,-2)E(0,5)、F(3,0)分析讲解:(-2,3)就叫做点B的坐标,其中-2是点B的横坐标,3是点B的纵坐标。
课堂练习1、在平面内,两条的数轴组成平面直角坐标系。
2、请同学们在练习本上尝试建立一个平面直角坐标系,并描出点(1)A(3,7)B(2,-4)C(-5,-3)O(0,0)(2)D(0,5)E(0,-3)F(0,6)(3)G(3,0)H(-2,0)I(-4,0)思考:观察第(2)(3)组的点的坐标和坐标系中的位置,你能发现什么样的规律?结论:1、(2)组的点都在y轴上,他们的点的横坐标都是0,2、(3)组的点都在x轴上,他们的点的横坐标都是0,3、原点的坐标是(0,0),它位于两坐标轴的交点。
新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份).

7.1.1有序数对
设计
教学过程
例3:图中五角星五个顶点的位置如何表示?已知(2,1)
例4:“怪兽吃豆豆”是一种计算机游戏,图中的●标志表示“怪兽”先后经过的几个位置,如果用
位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
:右图:若黑马的位置用(3,7)表示,请你用有序数对表示黑马可以走到的哪几个位置。
:如右图,方块中有25个汉字,用
7.1.2 平面直角坐标系(第一课时)
教学过程设计
7.1.2 平面直角坐标系(第二课时)
教学过程设计
(1)如果以点A为原点,
那么y轴在什么位置?写出正方形的顶点
(2)另建立一个平面直角坐标系,此时正方形的顶点
(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联
7.2.1用坐标表示地理位置
教学过程设计
7.2.2用坐标表示平移
教学过程设计
第六章小结与复习
教学过程设计
4. 在如图所示的正方形网格中,每个小正方形的边长为
在直角坐标系
点、一边平行于
.。
新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份).

(总第二一课时 7.1.1有序数对教学过程设计1 234(总第二二课时 7.1.2 平面直角坐标系(第一课时教学过程设计5 678(总第二三课时 7.1.2 平面直角坐标系(第二课时教学过程设计9 101112(总第二四课时 7.2.1用坐标表示地理位置教学过程设计131415(总第二五课时 7.2.2用坐标表示平移教学过程设计16171819(总第二六课时第六章小结与复习教学过程设计201. 例 1:求(-4,2)(4,4)(4,2)每两点之间的距离。
,,简介勾股定理,让学生感受知识的系统性。
学生独立思考后讨论交流为后继学习埋下伏笔典例精析2. 已知点(0,0)(4,0)(3,-2),,,在平面直角坐标系内找学生讨论,领会分类讨论思想一点,使它与已知三点构成平行四边形。
找出所有可能情况3. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)(2,, 0)(2,1)(1,1),(1,2)(2,2),……,根据这个规律,第 2012 个点的横坐标为 . 学会估算观察、分析、探究规律4. 在如图所示的正方形网格中,每个小正方形的边长为 1,格点三角形(顶点是网格线的交点的三角形)的顶点 A, ABC C 的坐标分别为(,5)(,3),.⑴请在如图所示的网格平面内作出平面直角坐标系;(2)求出△ABC 的面积。
掌握求面积的常用方法:割补法,领会数形结合思想。
211.在平面直角坐标系中,点 P(-3,4)到 x 轴的距离基础为 ( A.3. B.4 C.5 D.-4变式求到 y 轴和原点的距离。
变式;关于 x 轴对称、关于原点对称。
2.若点A(a,-5), B (8,b关于 y 轴对称,巩固则a = , b= 。
3.课本第 85 页第 7、9 题。
1.课本第 86 页 11 题。
2.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于 x 轴的正方形:边长为领会从特殊到一般的思考问题的方法,培养观察、分析、归纳能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.1有序数对【教学目标】1、理解有序数对的意义。
2、能用有序数对表示实际生活中物体的位置3、经历用有序数对表示位置的过程,体验数、符号是描述世界的重要手段,体验数形结合思想【教学重点】利用有序数对准确地表示出一个点的位置 【教学难点】有序数对中有序的理解 教学过程 一、导入新知问题:如果老师要提问同学(下面为某教室平面图)1、只给一个数据“第3列”,你能确定回答问题的同学的位置吗?2、给两个数据“第3列第2排”,你能确定该同学的位置吗?3、你认为在平面中需要几个数据才能确定一个位置?二、探究新知通过找“列数”和“排数”的交叉点,我们就能找个具体的位置。
问题1、(约定“列数”在前,“排数”在后) (1) 请在教室内找到下表用数对表述的位置。
(2)观察上面四组数对以及他们所对应的位置,思考:1,3和3,1表示的是不是同一位置?归纳:有顺序的两个数a 与b 组成的数对,如果约定了前面的数表示“列数”,后面的数表示“排数”,那么a与b组成的数对就表示一个确定的位置。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
像表格中的数对可以记作(1,3)、(5,2)(3,6)。
问题2:利用有序数对可以准确表示一个位置,你能举出生活中用有序数对表示地理位置的例子吗?三、应用新知游戏情境:下面我们通过游戏来加强同学们对有序数对的了解。
约定“列数”在前,“排数”在后,请找出与以下有序数对相对用的同学(1,5)),(5,1),(2,4),(4,2),(3,3),(7,3),看看叫什么名字?练习1、根据左下图例子(3,2),口答其他圆点的有序数对?练习2、如右下图,红马的位置是(2,1),你能表示出红帅、红车、红炮的位置吗?练习3、如果将一张“12排10号”的电影票记为(12,10),那么(10,12)的电影票表示的位置是,“6排25号”简单记为练习4、下列数据不能确定物体位置的是()A、希望路25号B、北偏东30°C、东经118°,北纬40°D、西南方向50米处四、总结提升:本节课主要学习了有序数对1、什么叫做有序数对?2、注意的问题:(1)表示平面内的点的位置可以用有序数对;(2)有序数对用符号表示时,中间用逗号隔开,外边必须加小括号。
五、精留作业课本65页第1题课本68页第1题-3-11B A 03247.1.2平面直角坐标系(1)【教学目标】1、掌握平面直角坐标系的有关概念;了解点的坐标的意义2、根据点的位置写出点的坐标,能建立平面直角坐标系,并根据坐标找点;3、通过建立平面直角坐标系的过程,进一步渗透数形结合的思想 【教学重点】平面直角坐标系和点的坐标【教学难点】在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点 教学过程 一、导入新知问题:(1)什么是数轴,画出数轴.(2)指出课本图6.1.2中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.(3)数轴上的点与 是一一对应。
二、探究新知思考:类似于利用数轴确定直线上点的位置, 能不能找到一种办法来确定平面点的位置呢?(如下左图中的四个点A 、B 、C 、D )我们可以在平面内画出两条互相垂直、原点重合的数轴来表示,如上右图. 用平面内两条互相垂直、 原点重合的数轴组成平面直角坐标系. 水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标的交点为平面直角坐标系的原点。
注意:在一般情况下,两条坐标轴所取的单位长度是一致的。
三、应用新知例1、请你在图中标出点A 、B 、C 、D 、 E 、F 在直角坐标系中的坐标。
解:由图可知,各点的坐标分别是:A(4,3)、 B(-2,3)C(-4,-1)、D(2,-2)E(0,5)、 F(3,0)分析讲解:(-2,3)就叫做点B的坐标,其中-2是点B的横坐标,3是点B的纵坐标。
课堂练习1、在平面内,两条的数轴组成平面直角坐标系。
2、请同学们在练习本上尝试建立一个平面直角坐标系,并描出点(1)A(3,7)B(2,-4)C(-5,-3)O(0,0)(2)D(0,5)E(0,-3)F(0,6)(3)G(3,0)H(-2,0)I(-4,0)思考:观察第(2)(3)组的点的坐标和坐标系中的位置,你能发现什么样的规律?结论:1、(2)组的点都在y轴上,他们的点的横坐标都是0,2、(3)组的点都在x轴上,他们的点的横坐标都是0,3、原点的坐标是(0,0),它位于两坐标轴的交点。
强调:(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称。
(2)写坐标时要加小括号,括号内先横后纵,中间用逗号隔开,例如(2,5)。
3、(1)如果点P(1,a-1)在x轴上,那么a= ,P点坐标为________.(2)如果点P(a+2,a)在y轴上,那么a= ,P点坐标为________.(3)如果点P(a,a−2)在x轴上,那么a= ,P点坐标为________.(4)如果点P(a-1,b−2)在原点,那么a= ,b= ,P点坐标为________.4、如右图:下列说法正确的是()A、点A的横坐标是4B、点A的横坐标是-4C、点A的坐标是(4,-2)D、点A的坐标是(-2,4)四总结提升:(1)什么叫做平面直角坐标系?(2)画直角坐标系的时候要注意什么?五、精留作业:1、点A(2,-7)到x轴的距离为,到y轴的距离为2、点P位于y轴左方,距离y轴3个单位长度,位于x轴的上方,距离x轴4个单位长度,则点P的坐标是7.1.3平面直角坐标系(2)【教学目标】1、掌握各象限内点的坐标符号的特点。
2、了解关于坐标轴对称的点的坐标特点,及平行于坐标轴的直线上的点的坐标特点3、经历探索点的位置与坐标之间的关系的过程,发展学生有条理、清晰的阐述自己的观点的能力【教学重点】平面直角坐标系中的特殊点的特点与规律 【教学难点】探索特殊点与坐标之间的关系 教学过程 一、 导入新知问题1:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。
A (3,2)B (-3,-2)C (3,-2)D (-3,2)E (2,3)F (-2,-3)G (2,-3)H (-2,3)I (0,4)J (4,0)K (-4,0)L (0,-4) 问题2:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。
A (3,4)B (2,5)C (6,6)D (-3,2)E (-2,3)F (-4,1)G (-2,-3)H (-5,-3)I (-6,-4)J (4,-1)K (3,-2)L (2,-4) 二、探究新知1、定义:如图,建立平面直角坐标系后,坐标平面被两条坐标轴分成四个部分,分别叫做第一象限,第二象限,第三象限,第四象限。
坐标轴上的点不属于任何象限。
2、探索象限上的点的坐标特点问题3:观察上面问题1、2我们画出来的平面直角坐标系中的点,大家找一找哪些是第一象限上的点?组成他们的坐标的有序数对有什么特点?第二、第三、第四象限呢? 讨论结果:(1)各象限内点的坐标符号若点P (a ,b )在第一象限,那么0>a ,0>b ,简记为(+,+) 若点P (a ,b )在第二象限,那么0<a ,0>b ,简记为(—,+) 若点P (a ,b )在第三象限,那么0<a ,0<b ,简记为(—,—) 若点P (a ,b )在第四象限,那么0>a ,0<b ,简记为(+,—) (2)坐标轴上的点x 轴上的点纵坐标为0,y 轴上的点横坐标为0,原点坐标为(0,0) 以上结论用表格填写如下:问题4:(1)观察问题1中点A与C、B与D位置上有什么关系?坐标有什么异同?(2)观察问题1中点A与D、B与C、F与G位置上有什么关系?坐标有什么异同?讨论结果:点A与C、B与D分别关于x轴对称,它们的横坐标相同,纵坐标互为相反数;点A与D、B与C、F与G分别关于y轴对称,它们的纵坐标相同,横坐标互为相反数。
即点P(a,b)关于x轴对称的点的坐标是(a,b-);点P(a,b)关于y轴对称的点的坐标是(a-,b)。
三、应用新知1、若点P(a,b)在第二象限内,则a,b的取值范围是()A、0>b D、0a,0<b<<a,0 >a,0b C、0b B、0><a,0>2、若0+b,则点(a,2b)应在()a,2>-<A、第一象限B、第二象限C、第三象限D、第四象限3、若点N(5a)在y轴上,则点N的坐标是-a,2+4、若点P(a,b)在第三象限内,则点Q(a,ba-)应在()A、第一象限B、第二象限C、第三象限D、第四象限5、建立一个平面直角坐标系,描出点A(-2,4)、B(3,4),画出直线AB,若点E为直线AB上的点,则点E的纵坐标是什么?如果有一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?讨论结果:纵坐标相同的点所在直线平行于x轴;平行于y轴的直线上的点横坐标相同。
四、总结提升:本节课主要学习了平面直角坐标系中点的坐标特点。
五、精留作业课本69页2,3,4题7.2.1用坐标表示地理位置【教学目标】1、通过学生的动手探究得出实际问题中建立平面直角坐标系的基本方法,并能结合具体情境运用坐标描述地理位置。
2、通过体会平面直角坐标系在解决实际问题中的作用,加深学生对数学重要性的认识,激发学生学习数学的热情。
3、通过生生交流合作,师生交流探讨,培养学生与他人合作的良好品质。
【教学重点】根据具体情境建立平面直角坐标系,用坐标描述地理位置【教学难点】根据具体情境建立适当的平面直角坐标系教学过程一、导入新知情境一、学习组织同学们到广州香江动物园玩,到了动物园的入口,站在动物园的平面示意图前,你将如何辨别位置和方向?讨论:首先我们要找到地图中我们目前所处的位置,然后根据方向,辨别出我们将要去的具体位置。
我们甚至可以以自己为原点,建立平面直角坐标系,然后根据地图的比例,计算出距离要去的景点的路程。
二、探究新知探究:根据以下条件画出一幅示意图,标出学校和小刚家、小强家、小敏家的位置。
小刚家:出校门向东走150米,再向北走200米。
小强家:出校门向西走200米,再向北走350米,最后向东走50米小敏家:出校门向南走100米,再向东走300米,最后向南走75米。
提示:同学们,在建立平面直角坐标系之前,想一想我们应该把原点建立在什么位置上?为什么要这样做?同学们自己动手实践,亲身体验建立坐标系的过程。
最后展示最优的方案。
(如图2)归纳:利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:(1)选原点:建立坐标系,要选择一个适当的参照点为原点,(2)规定X轴、y轴的正方向;(3)确定单位长度:根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(4)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。