全等三角形解题技巧
做全等三角形做题5技巧

做全等三角形做题5技巧《全等三角形做题的五大技巧,盘它就对啦!》嘿,各位小伙伴们!今天咱就来唠唠全等三角形做题的那五大技巧,这可是我在题海里摸爬滚打出来的经验之谈呀!第一个技巧,那就是瞪大眼睛找全等条件。
咱可别像没头苍蝇似的乱撞,得学会从题目里扒拉那些隐藏的全等线索。
边边角角都别放过,有时候一个小角度或者一条小线段就是全等的关键钥匙呢!就像侦探找线索一样,把那些能让三角形“重合”的证据都给揪出来。
然后吧,就是巧妙利用已知条件。
嘿呀,题目给的肯定有它的道理啊!别把那些已知条件当摆设,得让它们发挥出大作用。
比如说给了你一组对应边相等,那咱就得赶紧顺着这条线索去挖掘其他相等的东西,让全等triangle 慢慢浮出水面。
接着呢,要学会“乾坤大挪移”。
啥意思呢?就是把一个三角形移到另一个三角形旁边,好好观察它们到底哪里长得一样。
这招特别好使,有时候眼睛一花没看出来,这么一挪,嘿,全等就显而易见啦!还有啊,画图辅助那可太重要啦!别偷懒,动手画画,那感觉就像给全等三角形盖房子,一笔一划把它们的轮廓给勾勒出来。
画着画着,你就会发现那些隐藏的关系一下子就跳出来了。
最后一个技巧,就是保持耐心别烦躁。
全等三角形的题目有时候可真能绕晕你,但咱可不能趴下啊!要像小强一样顽强,一点点去分析,一点点去突破。
着急上火可没用,得冷静沉稳,仔细琢磨。
总之呢,做全等三角形题目就像是一场冒险,这五大技巧就是你的秘密武器。
拿着它们勇敢地去闯荡题目的世界吧!别害怕犯错,错了咱就改,改了继续冲!相信大家掌握了这些技巧,再遇到全等三角形题目就能轻松应对啦!加油吧,小伙伴们,让我们在全等的世界里畅游无阻!。
全等三角形解题方法与技巧

“三步曲”证全等牢记判定定理:SSS SAS ASA AAS HL一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离出基本图形)二看条件:(一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。
)1、利用公共边(或公共角)相等例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么?练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。
求证:EB=ED 。
DA E CB2、利用对顶角相等例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗?练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由.练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
AED CBA BCDEFO4、利用平行线的性质得出同位角、内错角相等例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数.练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
(二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。
基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。
例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△.例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 .例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .图1图2D CE A BCEBFDAFEDCBH练习1:已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥CD 于F 。
12.1 全等三角形 解题技巧

12.1全等三角形技巧1全等三角形的性质运用1.利用全等三角形的性质求角度如图,△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,∠E=50°,求∠D的度数.解析:由三角形的内角和定理易知∠A的度数,∠D与∠A是对应角.解:∵∠A+∠B+∠C=180°,∠B=50°,∠C=70°,∴∠A=180°-∠B-∠C=180°-50°-70°=60°.∵△ABC≌△DEF,∴∠D=∠A=60°.2.利用全等三角形的性质求线段如图已知CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,AB=10,AD=4,求线段CE的长.解析:由△ABE≌△ACD可求出AB,AD的对应边分别为AC,AE,然后由CE=AC-AE的关系求出CE.解:∵△ABE≌△ACD,AB=10,AD=4,∴AC=AB=10,AE=AD=4.∴CE=AC-AE=6.3.利用全等三角形的性质判断两线位置关系如图所示,△ADF≌CBE,且点E,B,D,F在同一条直线上.判断AD与BC的位置关系,并加以说明.解析:本题主要考查全等三角形的性质与平行线的综合应用.判断AD与BC的位置关系,可以初步判别AD和BC的位置关系是平行,欲说明AD//BC,需说明∠3=∠4,要说明∠3=∠4,可以利用三角形外角性质证明.解:AD与BC的位置关系是AD//BC.理由如下:∵△ADF≌△CBE,∴∠1=∠2,∠F=∠E.又∵点E,B,D,F在同一条直线上,∴∠3=∠1+∠F,∠4=∠2+∠E(三角形的外角的性质).∴∠3=∠4(等量代换).∴AD//BC(内错角相等,两直线平行).技巧2利用全等的基本图形解决几何问题1.利用基本图形求角度如图,△ABE和△ADC分别是△ABC沿着AB,AC边翻折形成的,若∠1:∠2:∠3=28:5:3,则∠α=.解析:翻折后,△ABE≌△ABC≌△ADC,由全等三角形的性质易得∠ABE=∠2,∠DCA=∠3.因为∠1:∠2:∠3=28:5:3,设∠1=28x,∠2=5x,∠3=3x,由三角形的内角和定理知:∠1+∠2+∠3=28x+5x+3x=36x=180°,解得x=5°,所以∠2=25°,∠3=15°,所以外角∠α=∠EBC+∠DCB=2(∠2+∠3)=80°.答案:80°.2.利用基本图形求面积如图所示,在Rt△ABC中,∠ACB=90°,且AC=BC=4 cm,已知△BCD≌△ACE,求四边形AECD的面积.解析:由于线段AC把四边形AECD分成两部分,通过观察我们可以把△ACE旋转到△BCD的位置,使之与△ACD恰好构成△ABC,从而可求面积.解:∵△BCD≌△ACE,∴S△BCD=S△ACE.又∵S四边形AECD=S△ACE+S△ACD,∴S四边形AECD=S△BCD+S△ACD=S△ABC=12×4×4=8(cm2).3.利用基本图形解决折叠问题如图所示,长方形ABCD沿AE折叠,使点D落在BC边上的点F处,若BC=8 cm,∠1=40°,求∠2的度数与AF的长度.解析:因为折叠后△AFE与△ADE完全重合,所以△AFE≌△ADE,可以得到AF=AD,∠F AE=∠DAE,又因为长方形的对边相等,每个角都是直角,所以可求出角度与线段长度.解:由题意可知:△AFE≌△ADE.∴AF=AD,∠3=∠2.在长方形ABCD中,AD=BC=8 cm,∠1+∠2+∠3=90°.∴AF=8 cm,∠2=12(90°-∠1)=25°.。
三角形全等解题方法及技巧

三角形全等的解题方法及技巧如下:1. 掌握全等三角形的判定条件:全等三角形的判定条件是全等三角形的基础知识,必须熟练掌握。
2. 学会利用已知条件寻找全等三角形:根据已知条件,通过构造或变换,使两个三角形满足全等条件,从而解决问题。
3. 掌握辅助线的构造方法:在解题过程中,有时需要添加辅助线来帮助解决问题。
常见的辅助线包括中线、高线、角平分线等。
4. 学会利用全等三角形的性质:全等三角形的性质是解题的重要依据,如对应边相等、对应角相等、对应高相等、对应中线相等等。
5. 掌握一些常见的解题技巧:如利用角平分线的性质、利用高线的性质、利用中线的性质等。
6. 理解并掌握全等三角形的不同类型:全等三角形有多种类型,如SSS、SAS、ASA、AAS等。
每种类型都有其特定的判定条件,理解并掌握这些类型有助于更灵活地解决全等三角形问题。
7. 注重解题步骤和思路:在解决全等三角形问题时,要注意解题步骤和思路的清晰。
要明确问题的需求,确定所使用的判定条件和辅助线,然后逐步推导并证明。
8. 练习大量的题目:通过大量的练习,可以加深对全等三角形判定条件和性质的理解,提高解题的速度和准确性。
同时,也可以掌握一些常见的解题技巧和方法。
9. 善于总结和归纳:在解决全等三角形问题时,要及时总结和归纳所使用的判定条件、辅助线、性质和技巧。
这样可以加深对全等三角形知识的理解和记忆,并为以后解决类似问题提供帮助。
10. 保持耐心和细心:全等三角形问题有时可能会比较复杂和繁琐,需要耐心和细心地推导和证明。
在解题过程中,要注意细节,避免因为粗心大意而犯错。
总之,三角形全等的解题方法及技巧需要多练习、多总结,通过不断的实践来提高自己的解题能力。
三角形全等解题技巧

三角形全等解题技巧
三角形的全等解题技巧主要有以下几个方面:
1. 全等定理:根据全等定理,两个三角形如果具有相同的三边,则这两个三角形是全等的。
可以使用这个定理来判断两个三角形是否全等。
2. 全等判定法:全等判定法有SSS、SAS、ASA、AAS和HL
五种。
SSS是指如果两个三角形的三边分别相等,则这两个三
角形是全等的;SAS是指如果两个三角形有一个角相等,而
且两个角的夹边也相等,则这两个三角形是全等的;ASA是
指如果两个三角形有两个角分别相等,而且这两个角夹的两边也相等,则这两个三角形是全等的;AAS是指如果两个三角
形有两个角分别相等,而且这两个角的对边也相等,则这两个三角形是全等的;HL是指如果两个直角三角形的斜边和一个
直角边分别相等,则这两个三角形是全等的。
3. 全等矩形技巧:如果两个三角形的一个角是直角,而且其他两边对应相等,则这两个三角形是全等的。
在解题过程中,可以利用这个技巧来判断和证明三角形的全等关系。
4. 相似三角形技巧:如果两个三角形的对应角相等,而且对应边成比例,则这两个三角形是相似的。
在解题过程中,可以利用相似三角形的性质来推导和证明三角形的全等关系。
总结起来,判定和解题三角形全等的关键是要熟练掌握全等定理和全等判定法,并且灵活运用相关技巧和性质来解决问题。
全等三角形解题技巧

造全等三角形解题的技巧一、见角平分线试折叠,构造全等三角形例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。
求证:∠B:∠C=2:1。
点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。
练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。
图3提示:延长CN交于AB于点D。
则△ACN△ADN,∴AD=AC=6。
又AB=10,则BD=4。
可证为△BCD的中位线。
∴。
点评:本题相当于把△ACN沿AN折叠成△AND。
二、见中点“倍长”线段,构造全等三角形例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。
图4点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。
例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC图5试判断△EMC的形状,并说明理由。
注:①本题也可取EC的中点N,连接MN,利用梯形中位线定理来证明。
②亦可连接AM,利用角的度数来证明。
练习1:如图6,在平行四边形ABCD中,E为AD中点,连接BE、CE,∠BEC=,图6求证:(1)BE平分∠ABC。
(2)若EC=4,且,求四边形ABCE的面积。
提示:见图中所加辅助线,证△ABE△DFE。
练习2:△ABC中,AC=5,中线AD=7,则AB的取值范围为多少?三、构造全等三角形,证线段的和差关系例4 如图7,点E、F分别在正方形ABCD的边BC、CD上,且∠1=∠2。
图7求证:BE+DF=AE。
二、解题技巧.1利用角平分线构造全等三角形解题.2 利用中线构造全等三角形解题在等腰三角形的题目中常添加的辅助线是顶角的平分线,由此可以得到线段相等和垂直关系.另外,在未指明边(角)的名称时,应分类讨论.在解题时常会遇到与中线有关的问题,由中线可以提供的常见思路有:①线段相等构造全等;②在直角三角形中斜边上的中线等于斜边的一半;③中线倍长:即延长中线,使延长的部分等于中线构造全等.。
初中数学—全等三角形解题方法、思路及技巧汇总

初中数学—全等三角形解题方法、思路及技巧汇总全等三角形是初中数学中非常重要的内容,今天我们就把初二数学中,与全等三角形相关的方法、思路及技巧都来整理一下。
一、全等三角形的性质与判定。
五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。
全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。
二、寻找全等三角形常用方法1、直接从结论入手一般会有以下几种要求证的方向:•线段相等•角相等•度数•线段或者线段的和、差、倍、分关系然后根据题目要求证的方向,找到要证明的相关量分别在哪两个三角形中,再围绕这两个三角形进行研究。
2、从已知条件入手把所有能标注在图上的已经条件标注出来,注意用不同的标示进行区分,比如第一组相等的线段用一条短竖,第二组相等的线段用两条短竖,再比如第一组相等的角用一个小圆弧,第二组相等的角就用两个小圆弧等。
然后通过已知条件找到相关的两个三角形,再进行分析。
记住一句话:“充分利用已知条件”。
3、把已经条件和结论综合起来考虑找到所有的已知条件和隐藏条件,结合结论,找出可能全等的两个三角形,再进行分析。
4、如果上述方法都确定行不通,就考虑添加辅助线来构造全等三角形。
三、构造全等三角形的一般方法1、题目中出现角平分线(1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形(2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。
(3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形2、题目中出现中点或者中线(中位线)(1)倍长中线法,把中线延长至二倍位置(2)过中点作某一条边的平行线3、题目中出现等腰或者等边三角形(1)找中点,倍长中线(2)过顶点作底边的垂线(3)过某已知点作一条边的平行线(4)三线合一4、题目中出现三条线段之间的关系通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。
全等三角形解题方法、思路和技巧汇总

全等三角形解题方法、思路和技巧汇总一、全等三角形的性质与判定。
五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。
全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。
二、寻找全等三角形常用方法1、直接从结论入手一般会有以下几种要求证的方向:●线段相等●角相等●度数●线段或者线段的和、差、倍、分关系根据题目要求证的方向,找到要证明的相关量分别在哪两个三角形中,然后再围绕这两个三角形进行研究。
2、从已知条件入手把所有能标注在图上的已经条件标注出来,注意用不同的标示进行区分,比如第一组相等的线段用一条短竖,第二组相等的线段用两条短竖,再比如第一组相等的角用一个小圆弧,第二组相等的角就用两个小圆弧等。
然后通过已知条件找到相关的两个三角形,再进行分析。
记住一句话:“充分利用已知条件”3、把已经条件和结论综合起来考虑找到所有的已知条件和隐藏条件,结合结论,找出可能全等的两个三角形,再进行分析。
4、如果上述方法都确定行不通,就考虑添加辅助线来构造全等三角形。
三、构造全等三角形的一般方法1、题目中出现角平分线(1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形(2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。
(3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形2、题目中出现中点或者中线(中位线)(1)倍长中线法,把中线延长至二倍位置(2)过中点作某一条边的平行线3、题目中出现等腰或者等边三角形(1)找中点,倍长中线(2)过顶点作底边的垂线(3)过某已知点作一条边的平行线(4)三线合一4、题目中出现三条线段之间的关系通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。
这种方法,在证明多条线段的和、差、倍、分关系时,效果非常好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
造全等三角形解题的技巧
全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。
友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。
一、见角平分线试折叠,构造全等三角形
例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。
求证:∠B:∠C=2:1。
证法一:在线段AC上截取AE=AB,连接DE。
在△ABD和△AED中
∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。
∴DE=DB,∠B=∠AED。
∵AB+BD=AC,∴AE+DE=AC。
又∵AE+CE=AC,∴DE=CE。
∴∠C=∠EDC。
∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。
∴∠B:∠C=2:1。
证法二:延长AB到F,使BF=BD,连接DF。
∴∠F=∠BDF。
∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。
∵AB+BD=AC,∴AB+BF=AC,即AF=AC。
在△ADF和△ADC中,
∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。
∴∠F=∠C。
又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。
点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。
练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。
图3
提示:延长CN交于AB于点D。
则△ACN△ADN,∴AD=AC=6。
又AB=10,则BD=4。
可证为△BCD的中位线。
∴。
点评:本题相当于把△ACN沿AN折叠成△AND。
二、见中点“倍长”线段,构造全等三角形
例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。
图4
证明:延长AD到G,使DG=AD,连接BG。
∵AD为BC上的中线,∴BD=CD,
在△ACD和△GBD中,
∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。
∴AC=BG,∠CAD=∠G。
∵AF=EF,∴∠CAD=∠AEF。
∴∠G=∠AEF=∠BEG,∴BE=BG,
∵AC=BG,∴BE=AC。
点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。
例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC
图5
试判断△EMC的形状,并说明理由。
解析:△EMC为等腰直角三角形。
理由:分别延长CM、ED,使其相交于点N,
可证△BCM△DNM。
则BC=DN,CM=NM。
由于△DEA△ACB,则DE=AC,AE=BC,
∴DE+DN=AC+AE。
即EN=EC,
则△ENC为等腰直角三角形。
∵CM=NM,∴EM⊥CN,
则可知△EMC为等腰直角三角形。
注:①本题也可取EC的中点N,连接MN,利用梯形中位线定理来证明。
②亦可连接AM,利用角的度数来证明。
练习1:如图6,在平行四边形ABCD中,E为AD中点,连接BE、CE,∠BEC=,
图6
求证:(1)BE平分∠ABC。
(2)若EC=4,且,求四边形ABCE的面积。
提示:见图中所加辅助线,证△ABE△DFE。
练习2:△ABC中,AC=5,中线AD=7,则AB的取值范围为多少?
注:延长AD到E,使DE=AD,连接BE。
则△BDE△CDA。
∴BE=AC=5,DE=AD=7。
在△ABE中,BE=5,AE=14。
利用三角形三边关系可求线段AB的取值范围为:9<AB<19。
三、构造全等三角形,证线段的和差关系
例4 如图7,点E、F分别在正方形ABCD的边BC、CD上,且∠1=∠2。
图7
求证:BE+DF=AE。
证明:延长CB到G,使BG=DF,连接AG。
在△ABG和△ADF中,
∵AB=AD,∠ABG=∠D=,BG=DF,∴△ABG△ADF。
∴∠G=∠AFD,∠4=∠1。
∵∠1=∠2,∴∠4=∠2。
∵AB∥CD,∴∠AFD=∠2+∠3=∠4+∠3=∠GAE。
又∵∠G=∠AFD,∴∠G=∠GAE。
∴AE=GE。
∵EG=BE+BG=BE+DF,∴BE+DF=AE。
从以上几例可以看出,全等三角形在证明中具有出奇制胜的作用。
在解决有关角平分线、中点、线段的和差的问题时,通过添加辅助线构造全等三角形的办法,不仅能使问题迎刃而解,而且有助于学生创新思维的培养,提高学生的数学思维能力和分析能力。
1. 全等三角形:能够完全重合的两个三角形,叫做全等三角形.
1. 全等三角形有如下性质:
(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;
(3)全等三角形的对应中线、对应角平分线、对应高相等;(4)全等三角形的面积相等,周长相等.
2. 等腰三角形两边相等的三角形叫等腰三角形.
(1)等边对等角;
(2)底边上的高、底边上的中线、顶角平分线互相重合;
(3)是轴对称图形,对称轴是顶角平分线;
(4)底边小于腰长的两倍并且大于零,腰长大于底边的一半;
(5)顶角等于180°减去底角的两倍;
(6)顶角可以是锐角、直角、钝角,而底角只能是锐角.
3.等腰三角形可分为腰和底边不等的等腰三角形及等边三角形.
等边三角形的三边相等,三个角都是60°,它具备等腰三角形的一切性质。
4. 等腰三角形的判定:①利用定义;②等角对
二、解题技巧
.1利用角平分线构造全等三角形解题
.2 利用中线构造全等三角形解题在等腰三角形的题目中常添加的辅助线是顶角的平分线,由此可以得到线段相等和垂直关系.另外,在未指明边(角)的名称时,应分类讨论.在解题时常会遇到与中线有关的问题,由中线可以提供的常见思路有:
①线段相等构造全等;②在直角三角形中斜边上的中线等于斜边的一半;③中线倍长:即延长中线,使延长的部分等于中线构造全等.。