高三数学第二轮专题复习系列(4)-- 三角函数
三角函数:三角函数的图像与性质-高三数学二轮复习

(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f
2π
3
函数,则(
)
A. =
≤
π
2
,
− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π
−
6
B.函数f x 在区间
π
C.a的最小值为
6
象
高三数学二轮专题复习 三角函数

三角函数二轮复习建议三角函数内容主要有两块;一是三角函数的图象和性质,二是三角恒等变换.近三年高考中基本上是一个小题(三角函数的图象与性质)、一个大题(三角恒等变换),大都是容易题和中等题,难度不大,容易得分,也是必须要得分的.第1~2课时 三角函数的图象和性质基本题型一:求三角函数的周期例 1 函数f (x )=3sin(2x +π3)的最小正周期为 ;图象的对称中心是 ;对称轴方程是 ;当x ∈[0,π2]时,函数的值域是 . 说明:1.函数y =A sin(wx +ϕ)的图像与参数A ,w ,ϕ的关系;通过换元可将y =A sin(wx +ϕ)的图象转化为对y =A sin x 的图象的研究.2.对于三角函数的图象与性质,周期性是最本质的内容,周期与一个最高点就可决定决定整个三角函数的图象.3.此类问题呈现的形式有三种:①正面呈现,象例1的形式;②给出函数的一部分性质,如已知直线y =a (0<a <A )与函数y =A sin(wx +ϕ)的图象的三个相邻交点的横坐标为2,4,8,写出函数y =A sin(wx +ϕ)的一个单调增区间;③以图象形式呈现,给出函数y =A sin(wx +ϕ)的一部分图象.例2 若函数f (x )=sin(ωx +φ)(ω>0,0≤φ<2π)的图象(部分)如图所示,则ω=_________,φ=_________.说明:方法一 由图知T =4×[2π3-(-π3)]=2π,所以ω=1,从而2π3+φ=π2+2k π,k ∈Z ,解得φ=2k π-π6,k ∈Z .因为0≤φ<2π,所以φ=11π6. 方法二 由图知T =4×[2π3-(-π3)]=2π,所以ω=1,所以f (x )的图像可以看作是sin x 的图像向右移了π6个单位,即向左移了11π6个单位,.因为0≤φ<2π,所以φ=11π6. 基本策略:根据函数的图像先确定振幅A ,再确定周期T .利用周期求出角速度ω,最后利用峰(谷)点的坐标求出φ的值.一般不用平衡点(零点)来确定.三角函数图像的变换,每一次变换前,应先将“已知”函数一般化,写成f (x )的形式,再分别按照f (x )→f (x -a ),f (x )→f (ωx ),f (x )→f (x )+k ,f (x )→Af (x )的变化特征写出变换后的函数解析式.例3 如图,半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为圆上任意一点,以AB 为一边作等边三角形ABC .问:点B 在什么位置时,四边形OACB 面积最大?说明:对于此类以图形为背景的应用题,重点应放在变量的选择上.例4 已知函数f (x )=2sin x (sin x -cos x )+2,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数在区间[π8,3π4]上的最大值和最小值; (3)若f (α)=3-425,0<α<π2,求cos2α的值. 说明:此类题型的考查要求虽然不高,不要深挖,但在二轮复习中还要涉及一点.基本策略:利用恒等变形,化为“一个角的一个三角函数的一次式y =A sin(ωx +φ)+k (ω>0,0≤φ<2π)”是研究复杂三角函数式性质的基本方法.其中,对于函数f (x )=sin(ωx +φ)(ω>0,0≤φ<2π)的单调性,要用整体化的观点,将ωx +φ看作是一个角的大小,结合y =sin x 的单调区间和ωx +φ关于x 的单调性进行判断.第3~4课时 三角恒等变换例1 cos(-600°)= .说明:利用诱导公式将其转化为特殊角的三角函数值,也可根据三角函数定义利用数形结合直接求值.例2 若3cosα+4sinα=5(0<α<π),求tan(α+π4)的值. 说明:1.重视最基本方法的运用,即把cosα,sinα当成未知数,通过解方程组求得cosα,Csinα;2.在三角函数求值中要注意两点:①根据角之间的关系选择适当的三角变换;②根据角所在象限确定三角函数值的符号,要加以说明(题目条件中已经给定,角的范围太大,需要由几个条件或解题过程中得到的结论共同确定).例3 当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 . 说明:利用二倍角公式对f (x )进行化简,转化为用基本不等式求解的最值问题.例4 已知tan(π4+α)=12. (1)求tan α的值;(2)求sin2α-cos 2α1+cos2α的值.基本策略:在化简过程中,通过变角、变名、变次,换元等将其转化为最简单的三角函数或简单的初等函数.第5~6课时 解三角形 例1 在△ABC 中,角A ,B ,C 的对边长分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若c =1,求a 的值.例2 在△ABC 中,角A ,B ,C 的对边长分别为a ,b ,c ,B =π3,cos A =45,b =3. (1)求sin C 的值;(2)求△ABC 的面积.说明:1.根据条件,结合图形灵活选择正弦定理、余弦定理、三角形面积公式.2.向量中有关概念的理解,公式的正确使用.例3 在平面四边形ABCD 中,∠A =60°,AD ⊥CD ,∠DBC =60°,AB =23,BD =4,求CD 的长.说明:这种以图形为载体的三角函数求值问题(与解三角形联系)在高考中也是一种常见题型,其关键是要弄清图中各种量(边、角)之间的关系,合理选择正弦定理、余弦定理、三角恒等变换进行求解.例4 (08上海)如图,某住宅小区的平面图呈圆心角为120o 的扇形AOB ,小区的两个出入口设置在点A 及点C 处,且小区里有一条平行于BO 的小路CD ,已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).说明基本策略:条件中给出了三角形中的边角关系,应利用正弦定理或余弦定理将条件统一到边或统一到角.在三角应用题中,应根据已知条件构造确定的三角形,构造的依据是全等三角形的条件.在二轮复习过程中,对于三角函数的复习应突出以下重点:1.三角函数的图象、周期性、单调性、奇偶性等性质以及图像的对称性,充分体现数形结合的思想.2.三角函数与代数、几何、向量的综合联系,尤其是以图形为背景的一类数学问题.3.三角恒等变换的核心是根据角之间的关系,选择适当的三角公式,在求值时应强调三角函数值的符号由角所在象限确定.4.上述一些例题仅供参考,教学中应适当增加一些相似题、变式题,同时还需选择一定量的练习加以巩固.5.本单元二轮专题和课时建议:AO D B C H A O D B C A O D B C。
二轮复习教案(4)三角问题的题型与方法(3课时)

高三数学第二轮复习教案第4讲三角问题的题型与方法(3课时)一、考试内容角的概念的推广,弧度制;任意角的三角函数,单位圆中的三角函数线,同角三角函数的基本关系式:sin2a+cos2a=1,sin a/cos a=tan a,tan a cot a=1,正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切;正弦函数、余弦函数的图象和性质,周期函数,函数y=Asi n(ωx+ψ)的图象,正切函数的图象和性质,已知三角函数值求角;正弦定理,余弦定理,斜三角形解法举例。
二、考试要求1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同解三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。
3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。
4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。
5.了解正弦函数、余弦函数、正切函数的图象和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图,理解A、ω、ψ的物理意义。
6.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x表示。
7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题。
三、复习目标1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等.2.熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等.并能应用这些方法进行三角函数式的求值、化简、证明.3.掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.4.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.5.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、6.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.四、双基透视(一)三角变换公式的使用特点1.同角三角函数关系式(1)理解公式中“同角”的含义.(2)明确公式成立的条件。
北京市高三数学二轮复习:三角函数(共64张PPT)

在 [
16
时, f ( x) max
2 2
正弦型函数性质的研究 变式教学
例1.已知函数
2017 年北京高考理科第 12 题 (12)在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的
1 终边关于 y 轴对称.若 sin , cos( ) =___________. 3
2017 年北京高考理科第 15 题 (15)(本小题 13 分)
3 在△ABC 中, A =60° ,c= a. 7
2015 三角 (2015 文科一小题一大题) (2015 理科一小题一大题) 2015 年北京高考文科第 11 题 11. 在 中, , , ,则 .
2015 年北京高考文科第 15 题 15. 已知函数 (1)求 (2)求 的最小正周期; 在区间 上的最小值. .
2015 年北京高考理科第 12 题 12. 在 中, , , ,则 .
(Ⅰ)求 sinC 的值; (Ⅱ)若 a=7,求△ABC 的面积.
(2016 文科一小题一大题) (2016 理科一小题一大题) 2016 年北京高考文科第 13 题 13. 在 中, , ,则 .
2016 年北京高考文科第 16 题 16. 已知函数 的最小正周期为 (1)求 (2)求 的值; 的单调递增区间. .
(1)求 (2)求
; 的长.
2013 三角 (2013 文科一小题一大题) (2013 理科一小题一大题) 2013 年北京高考文科第 5 题 5. 在 A. B. 中, C. , D. , ,则
2013 年北京高考文科第 15 题 15. 已知函数 (1)求 (2)若 的最小正周期及最大值; ,且 ,求 的值. .
高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料考点一:三角函数的概念例1、若角α的终边经过点P (12),则 2α的值为 . 解:222tan 4tan 2,tan 2.11tan 3αααα-==-∴==- 点评:一个角的终边经过某一点,在平面直角坐标系中画出图形,用三角函数的定义来求解,或者不画图形直接套用公式求解都可以。
考点二:同角三角函数的关系例2、若cos 2sin αα+=则tan α=( ) (A )21 (B )2 (C )21- (D )2- 解:由cos 2sin αα+=cos 2sin αα=, 又由22sincos 1αα+=,可得:2sin α+(2sin α)2=1可得αsin =-552,cos 2sin αα==-55,所以,tan α=ααcos sin =2。
例3、)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-解:由5tan 12α=-,所以,有⎪⎩⎪⎨⎧=+-=1cos sin 125cos sin 22αααα,α是第四象限角,解得:sin α=513- 考点三: 诱导公式 例4、若==+θθπ2cos ,53)2sin(则 . 解:由3sin()25πθ+=可知,3cos 5θ=;而2237cos 22cos 12()1525θθ=-=⨯-=-。
考点四:三角函数的图象和性质例5、设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<解:2sin 7a π=,因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,选D .例6、函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )解: ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.因此本题应选A.例7、把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 解:sin x3π−−−−−−→向左平移个单位sin()3y x π=+12−−−−−−−→横坐标缩短到原来的倍sin(2)3y x π=+,故选(C )。
高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料【基础自测】1.已知21cos cos ,31sin sin =--=-βαβα,求)cos(βα-的值. 2.已知1312)4sin(,53)sin(),,43(,=--=+∈πββαππβα,求)4cos(πα+的值. 3.求000098tan 22tan 98tan 22tan 3--⋅ 的值. 4.已知,0cos 2sin =+αα求下列各式的值 (1)αααα22cos 5cos sin 3sin 2-- (2)ααααcos sin cos sin -+5.已知函数R x x x x x y ∈++=,cos 3cos sin 2sin 22 (1) 求函数的单调递增区间(2)该函数的图像可由)(sin R x x y ∈=的图像经过怎样的平移和伸缩变换得到? 考点一:三角函数的概念例1.若角α的终边经过点),2,1(-P 则tan 2α的值为 . 考点二:同角三角函数的关系例2.若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21- (D )2- 例3.α是第四象限角,5tan 12α=-,则sin α=( )A .15B .15-C .513D .513-考点三: 诱导公式 例4.若==+θθπ2cos ,53)2sin(则 .例5.计算00000015sin 8sin 7cos 15cos 8sin 7sin -+例6.计算)10tan 31(50sin 00+ 考点四:三角函数的图象和性质例7.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<例8.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )例9.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 例10.已知⎪⎭⎫⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x .(Ⅰ)求x sin 的值;(Ⅱ)求⎪⎭⎫ ⎝⎛+32sin πx 的值. 例11.已知函数2π()sinsin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.例12.已知函数()tan(2),4f x x π=+,(Ⅰ)求()f x 的定义域与最小正周期;(Ⅱ)设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小. 考点五:三角恒等变换例13.已知函数x x x x f cos sin sin 3)(2+-=(I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 例14.已知向量a =(cos 23x ,sin 23x ),b =(2sin 2cos x x ,-),且x ∈[0,2π].(1)求ba + (2)设函数b a x f +=)(+b a⋅,求函数)(x f 的最值及相应的x 的值。
高三数学第二轮专题复习 三角函数(有答案)

高三数学第二轮专题复习 三角函数 班级 姓名1.cos300︒=( )A.312 C .1232.cos13计算sin43cos 43-sin13的值等于( )A .12B 3C .22D 33.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A .23 B. 43 C . 32D. 3 4.已知2sin 3α=,则cos(2)x α-=A.5- B .19- C.1955.为了得到函数的图像,只需把函数的图像 A.向左平移个长度单位 B .向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位6.下列函数中,周期为π,且在[,]42ππ上为减函数的是 A.sin(2)2y x π=+B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+ 7.已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6π D . ω=2 ϕ= -6π8.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A.()f xB.()f x -C. ()g x D .()g x -9.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23C B =,则A=A .030 B.060 C.0120 D.0150sin(2)3y x π=-sin(2)6y x π=+4π4π2π2π10.函数2()sin(2)4f x x x π=--的最小正周期是__________________ .11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=则角A 的大小为 .12.已知α为第二象限的角,3sin 5a =,则tan 2α= .13.在ABC ∆中,4π=A ,1010cos =B .(Ⅰ)求C cos ;(Ⅱ)设5=BC ,求CB CA ⋅的值.14.在ABC ∆中,AB =1BC =,3cos 4C =.(1)求sin A 的值; (2)求CA BC ⋅的值.15.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,1cos 4B =. (1)求b 的值; (2)求sinC 的值.16,已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-, 设()f x a b =⋅.(1)求函数()f x 的最小正周期. (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值及最小17.已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合;(II) 函数()f x 的单调增区间.18.已知函数2()sin 22sin f x x x =- (I )求函数()f x 的最小正周期. (II) 求函数()f x 的最大值及()f x 取最大值时x 的集合。
(完整版)高中数学三角函数复习专题

高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数一、本章知识结构:应用二、高考要求一.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
二.掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)三.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
四.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A、ω、 的物理意义。
五.会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示角。
三、热点分析1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。
(2)对公式要抓住其特点进行记忆。
有的公式运用一些顺口溜进行记忆。
(3) 三角函数是中学阶段研究的一类初等函数。
故对三角函数的性质研究应结合一般函数研究方法进行对比学习。
如定义域、值域、奇偶性、周期性、图象变换等。
通过与函数这一章的对比学习,加深对函数性质的理解。
但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。
(4) 由于三角函数是我们研究数学的一门基础工具,近几年高考往往考察知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。
如平面向量、参数方程、换元法、解三角形等。
(2003年高考应用题源于此)5.重视数学思想方法的复习,如前所述本章试题都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等.另外对有些具体问题还需要掌握和运用一些基本结论.如:关于对称问题,要利用y =sinx 的对称轴为x =kπ+ (k ∈Z ),对称中心为(kπ,0),(k ∈Z )等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征.在求三角函数值的问题中,要学会用勾股数解题的方法,因为高考试题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果.6.加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法.7.变为主线、抓好训练.变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律. 针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.8.注意对三角形中问题的复习.由于教材的变动,有关三角形中的正、余弦定理.解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,从1996年和1998年的高考试题就可看出,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关.9.在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考.在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
多数题型为选择题或填空题;其次是三角函数式的恒等变形。
如运用三角公式进行化简、求值解决简单的综合题等。
除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题。
五、典型例题两角和与差的三角函数【例1】 已知3,34πβαππβαπ-<-<-<+<,求βα-2的范围。
解:设βα-2=)()(βαβα-++B A ,(A 、B 为待定的系数),则βα-2=βα)()(B A B A -++比较系数232112⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧-=-=+B A B A B A ∴βα-2=)(23)(21βαβα-++从而可得:62πβαπ<-<-【例2】 设},23|{},,10||,35|{Z k k B Z k k k A ∈==∈≤==πββπαα,求B A 的解的终边相同的角的集合。
解:先写出A 与B 的交,再写出终边相同的角的集合。
设B A ∈0α,则B A ∈∈00αα且;所以παπα201023, 35k k ==∴212335k k =,即21109k k =,由于Z k k ∈≤11,10|| ∴10,02±=k ;因此}15,0{π±=B A因此所有与B A 的角的终边相同的角的集合为}Z k ,2k ,2|{∈±==ππγπγγ或k【例3】 已知αβαβαπβπ2222sin 21sin sin 2sin 2sin 346-=-<≤-,试求,的最值。
解:∵4πβ6π<≤-∴-22sin 21<≤β,21sin 02<≤β∴1sin 202<≤β ∵23222sin sin sin βαα=-∴03212≤-<sin sin αα即⎪⎪⎩⎪⎪⎨⎧<<-≤≤≤⇒⎪⎩⎪⎨⎧<--≥-1sin 310sin 1sin 3201sin 2sin 30sin 2sin 322ααααααα或 ∴1αsin 320αsin 31<≤≤<-或y=41)21(sin sin 21)sin 2sin 3(21sin 21sin 22222--=--=-αααααβ 当sin α∈[32,1]时函数y 递增,∴当sina=23时 y min =92-; 当sin α∈(31-,0)时,函数y 递减,∴当sin α=0时,y min =21∴故当)sin 21(sin ,92)sin 21(sin 32sin 22min 22αβαβα--=-=时,无最大值。
【例4】 求值()︒+︒︒+︒+︒10cos 110tg 60tg 110cos 40cos 2解:()()25cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 2310cos 21240cos 25cos 210sin 310cos 40cos 2=︒︒︒=︒︒+︒=︒︒-︒+︒=︒⎪⎪⎭⎫ ⎝⎛︒+︒+︒=︒︒+︒+︒=·原式【例5】 已知2π<β<α<4π3,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. 解法一:∵2π<β<α<4π3,∴0<α-β<4π.π<α+β<4π3, ∴sin(α-β)=.54)βα(sin 1)βαcos(,135)βα(cos 122-=+--=+=-- ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--【例6】 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 解法一:sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°) =1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)=41解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41.【例7】 设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a aa ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.【例8】 求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.解:原式的分子︒︒︒+︒︒+︒=20cos 10sin 20sin 20cos 10cos 20sin 2︒︒+︒=20cos 10cos 20sin 2︒︒+︒=20cos 10cos 40sin320cos 20cos 60sin 220cos 80sin 40sin =︒︒︒=︒︒+︒=,原式的分母=︒︒+︒=︒︒+︒80sin 80cos 40cos 280sin 80cos 40sin 1 ()︒︒+︒+︒=80sin 80cos 40cos 40cos ︒︒︒+︒=80sin 20cos 60cos 240cos310cos 10cos 30cos 280sin 20cos 40cos =︒︒︒=︒︒+︒=,所以,原式=1.【例9】 已知54βsin αcos ,53βcos αsin =+=+,求βαsin cos 的值. 解1:令γ2πβ-=,则原题等价于: 已知54γcos αcos ,53γsin αsin =+=+,求γcos αcos 的值. 两式分别和差化积并相除得:432γαtan=+,所以 ()2572γαtan 12γαtan 1γαcos 22=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=+. 分别将已知两式平方并求和得:()21γαcos -=-,所以,()()()10011γαcos γαcos 21γcos αcos -=-++=. 解2:由54βsin αcos ,53βcos αsin =+=+平方相加得:()21βαsin -=+. 上述两式平方相减得:()257βαsin 2α2cos β2cos -=-+-. 将上式前两项和差化积,得:()()()257βαsin 2βαsin βαsin 2-=-+-+, 结合()21βαsin -=+,可解得:()257βαsin -=-. 所以,()()()βαsin βαsin 21βsin αcos --+=10011-=. 【例10】 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2π,0上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2π,0上恒成立的不等式.任取∈21,x x ⎪⎭⎫⎝⎛2π,0,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立. 化简得()()2112sin 2cos cos x x x x m ->- 由2π021<<<x x 可知:0cos cos 12<-x x , 所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<2π0cos cos sin 21221x x x x m . 由于()2sin2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin 2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121xx x x x x x x +⎪⎭⎫ ⎝⎛+=2tan 2tan 2tan 2tan 122121x x x x +⎪⎭⎫⎝⎛+=且当2π021<<<x x 时,4π2,2021<<x x ,所以 12tan ,2tan 021<<x x ,从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故m 的取值范围为]2,(-∞.【例11】 ,27,3=nC t C B A c b ABC =c a a 的对边,已知、、分别为角、、中,△ .,233的值求的面积为又△△b a S ABC ABC +=解:∵ A+B+C=π,①°得由°.222)27(60cos 2,2760,3=-+==∴=ab b a c C tgC ②°得由 .23360sin 21,233==ab S ABC ⎪⎩⎪⎨⎧==-+④③由①、②得方程组6,44922ab ab b a ,4121)(32=++b a 得×④③211=+b a ∴【例12】 在∆ABC 中,a b c ,,分别是角A B C ,,的对边,设b c a 2=+,求2ctg 2ctg CA·的值 解:由条件,2b a c =+,依据正弦定理,得()()2cos 2sin 22cos 2sin4sin sin sin 2sin sin 2sin 22CA C A C A C A CA C A C A RB R -+=+++=++=·在02sin ≠+∆CA ABC 中,∴2cos 22cosC A C A +=- 2sin 2sin 22cos 2cos 22sin 2sin 2cos 2cosC A C A C A C A -=+ ∴2cos 2cos 2sin 2sin 3CA C A = ∴32sin2sin 2cos 2cos=C A C A ; 即32C ctg 2A ctg = 三角函数的图象与性质【例1】 试确定下列函数的定义域⑴1sin 1log 2-=xy ;⑵)1cos 2lg(sin )4(--=x xx tg y π解:⑴要使函数有意义,只须满足条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≠>≥-0sin 0sin 101sin 1log x x x 解得:},2652|{},622|{Z k k x k x Z k k x k x ∈+<≤+∈+≤<πππππππ ⑵要使函数有意义,只须满足条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≠<≠≥-11-2cosx 001)-lg(2cosx 0sin )4(x x tg 有意义π 解得},322|{Z k k x k x ∈+<<πππ 【例2】 求函数x xxx x x y 2sin 2cos cos 3cos sin 3sin 233++=的最小值解:∵sin sin cos cos 3333x x x x +()()()()[]()()[]()()x x x x x x x x x x x x x x x x x x xx x x x x 2cos 4cos 12cos 214cos 2cos 2cos 214cos sin cos 2cos cos sin 21cos 4cos 2cos sin 4cos 2cos 21cos cos 3cos sin sin 3sin 322222222=+=+=-++=++-=+= ∴⎪⎭⎫ ⎝⎛+=+=+=42sin 22sin 2cos 2sin 2cos 2cos 23πx x x x x xy 当2142sin --=⎪⎭⎫⎝⎛+最小值时,y x π 【例3】 已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。