研究生《组合数学》试题
《组合数学》练习题一参考答案

《组合数学》练习题一参考答案《组合数学》练习题一参考答案一、填空:1.!()!m n P n m m n m =- 2.2)1(-n n 3. 0. 4. 2675.),2,1,0(3)2(2321 =+-+=n c c c a n n n n .6.4207.78.()()!!11...!31!21!111n n n ??-++-+-9.22 10.267二、选择:1. 1—10 A B D D A D A B B C三、计算: 1. 解因为]250[=25, ]450[=12, ]850[=6, ]1650[=3, ]3250[=1, ]6450[=0, 所以, 所求的最高次幂是2(50!)=25+12+6+3+1=47.2. 解由我们最初观察的式子,有614,1124,634,144=??===, 再利用定理1,我们得到24!415,102)15(545,155==??=-?==, 3511642434435=+?=???+=, 5061141424425=+?=??+=. 所以,x x x x x x f 24503510)(23455+-+-=.3. 解:设所求为N ,令}2000,,2,1{ =S ,以A ,B ,C 分别表示S 中能被32?,52?,53?整除的整数所成之集,则53466663133200333 532200053220003532000522000322000 =+?-++=+-???????+???????+???????=+---++==C B A C B C A B A C B A CB A N 4. 解:记7个来宾为1A ,2A ,…,7A ,则7个来宾的取帽子方法可看成是由1A ,2A ,…,7A 作成的这样的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。
组合数学研究生试卷

学科专业代码 081202/081203/430112学科专业名称 计算机应用技术、计算机软件与理论、计算机技术 考试科目代码_ 0606191301 考试科目 组合数学(本试卷考试时间为2个小时,卷面分数100分,答案请写在答题本上)一、填空题(本大题共5小题,每小题5分,共25分)1、在35⨯棋盘中选取两个相邻的方格(即有一条公共边的两个方格),有 __________种不同的选取方法。
2、将5封信投入3个邮筒,有_________种不同的投法。
3、含3个变元,,x y z 的一个对称多项式包含9个项,其中4项包含x ,2项包含 xyz ,1项包含常数项,求包含xy 的项有 个. 4、由1,2,3,4,5 组成的大于43500的五位数的共有____个。
5、把9个相同的球放入3个相同的盒,不允许空盒,则有_______种不同方式。
三、应用题(本大题共5小题,每题各15分,共75分)6、若有1克砝码3枚,2克砝码4枚,4克砝码2枚,问能称出多少种不同的重量?各有多少方案?7、 某学者每周上班6天工作42小时,每天工作的小时数是整数,且每天工作时间不少于6小时也不多于8小时。
今要编排一周的工作时间表,问有多少种不同的编排方法?8、 核反应堆中有α和β两种粒子,每秒钟内一个α粒子分裂成三个β粒子,而一个β粒子分裂成一个α粒子和两个β粒子,若在时刻t = 0时反应堆中只有一个α粒子,问t = 100秒时反应堆中将有多少个α粒子?多少个β粒子?9、 正六面体的8个顶点分别用红蓝两色染色,问有多少种不同的染色方案?刚体运动使之吻合算一种方案。
10、 期末考试有六科要复习,若每天至少复习完一科(复习完的科目不再复习),5天里把全部科目复习完,则有多少种不同的安排?一、填空题(每小题5分,共25分):1、22 解:用加法原则:5×(3-1)+3×(5-1)=22。
2、243 解:每封信都有3个选择。
组合数学研究生试卷整理版

学科专业代码 081202/081203/430112学科专业名称 计算机应用技术、计算机软件与理论、计算机技术考试科目代码_ 01 考试科目 组合数学 题号一 二 三 四 五 六 七 八 九 十 总分 分数 评卷人(本试卷考试时间为2个小时,卷面分数100分,答案请写在答题本上)一、填空题(本大题共5小题,每小题5分,共25分)1、在35⨯棋盘中选取两个相邻的方格(即有一条公共边的两个方格),有 __________种不同的选取方法。
2、将5封信投入3个邮筒,有_________种不同的投法。
3、含3个变元,,x y z 的一个对称多项式包含9个项,其中4项包含x ,2项包含 xyz ,1项包含常数项,求包含xy 的项有 个.4、由1,2,3,4,5 组成的大于43500的五位数的共有____个。
5、把9个相同的球放入3个相同的盒,不允许空盒,则有_______种不同方式。
三、应用题(本大题共5小题,每题各15分,共75分)6、若有1克砝码3枚,2克砝码4枚,4克砝码2枚,问能称出多少种不同的重量?各有多少方案?7、 某学者每周上班6天工作42小时,每天工作的小时数是整数,且每天工作时间不少于6小时也不多于8小时。
今要编排一周的工作时间表,问有多少种不同的编排方法?8、 核反应堆中有α和β两种粒子,每秒钟内一个α粒子分裂成三个β粒子,而一个β粒子分裂成一个α粒子和两个β粒子,若在时刻t = 0时反应堆中只有一个α粒子,问t = 100秒时反应堆中将有多少个α粒子?多少个β粒子?9、 正六面体的8个顶点分别用红蓝两色染色,问有多少种不同的染色方案?刚体运动使之吻合算一种方案。
10、 期末考试有六科要复习,若每天至少复习完一科(复习完的科目不再复习),5天里把全部科目复习完,则有多少种不同的安排?一、填空题(每小题5分,共25分):专业姓名1、22 解:用加法原则:5×(3-1)+3×(5-1)=22。
科技大学数学系《组合数学》试题及答案

组合数学试题 共 5 页 ,第 1 页科技大学研究生试卷及答案(考试时间: 至 ,共 2 小时)课程名称 组合数学 教师 学时 40 学分 2 教学方式 讲授 考核日期 20XX 年 XX 月 日 成绩 考核方式: (学生填写)一、(共10分) 1、(4分)名词解释:广义Ramsey 数R (H 1,H 2,…,H r )。
2、(6分)证明:R(C 4,C 4) ≥ 6,其中C 4为4个顶点的无向回路图。
解:1、使得K n 对于(H 1,H 2,…,H r )不能r -着色的最小正整数n 称为广义Ramsey 数R (H 1,H 2,…,H r )。
-----------------4分2、如下图所示的5个顶点的完全图就没有一个纯的C 4,实线和虚线分别代表不同的颜色。
-----------------4分故R(C 4,C 4)>=6。
-----------------2分二、(16分)未来5届欧盟主席职位只能有法国、德国、意大利、西班牙、葡萄牙五国的人当选,一个国家只能当选一次。
假如法国只能当选第一届、第二届或者第三届,德国不能当选第二届和第三届,意大利不能当选第一届,西班牙不能当选第五届,葡萄牙只能能当选第二届、第四届或者第五届。
问未来的5届欧盟主席职位有多少种不同的当选方案? 解:原问题可模型化为一个5元有禁位的排列. 其禁区棋盘C 如下图的阴影部分。
-----------------4分学 号 姓 名 学 院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………组合数学试题 共 5 页 ,第 2 页1 5432EDCBA由图,可得C 的棋盘多项式为 R(C)=3223)21()21()1(])21)(1()1([x x x x x x x x x +++++++++ ----------------4分=543211242281x x x x x +++++-----------------4分 所以安排方案数为5! - 8·4! + 22·3! - 24·2! +11-1 -----------------4分 = 22即共有22种。
太原理工大学研究生期末考试组合数学

1. 填空(本题共20分,共10空,每空2分)1) 三只白色棋子和两只红色棋子摆放在 5*5的棋盘上,要求每行每列只放 置一个棋子,则共有1200种不同的摆放方法。
2答案:5! C 512002) 在(5a 「2a 2+3a 3)6 的展开式中,a/?a 2?a 33 的系数是 -81000。
色 52 ( 2) 3381000答2!1!3!3)有n 个不同的整数,从中取出两组来,要求第一组数里的最小数大于第n 1二组的最大数,共有n 2 1种方案。
4)六个引擎分列两排,要求引擎的点火的次序两排交错开来,试求从一特 定引擎开始点火有12种方案。
答案:C 3 c ; C 2125) 从1到600整数中既不能被3整除也不能被5整除的整数有320 个。
6) 要举办一场晚会,共10个节目,其中6个演唱节目,4个舞蹈节目。
现 要编排节目单,要求任意两个舞蹈节目之间至少要安排一个演唱节目, 则共可以写出 604800种不同的节目单。
3答案.6! C 7 4! 60480027) 把n 男n 女排成一只男女相间的队伍,共有2 (n!)种排列方法;2若围成一圆桌坐下,又有2 (n!) /(2n )种方法。
2n8) n 个变量的布尔函数共有n个互不相同的。
9) 把r 个相异物体放入n 个不同的盒子里,每个盒子允许放任意个物体, 而且要考虑放入同一盒中的物体的次序,这种分配方案数目为P(n r 1,r)/ 八(n r 1)! ~ / 、 …w P(n r 1,r)n(n 1)(n 2)答案:2. (本题10分)核反应堆中有a 和B 两种粒子,每秒钟内一个 a 粒子分裂成三个B 粒子,而 一个B 粒子分裂成一个a 粒子和两个B 粒子。
若在时刻t=0时,反应堆中只 有一个a 粒子,问t=100秒时反应堆中将有多少个 a 粒子?多少个B 粒子? 解:设t 秒钟的a 粒子数位a t , B 粒子数为b t ,则a tb t i b 3a t 1 2b t 1 a 。
组合数学考试题附答案2

组合数学试题 共 4 页 ,第 1 页电子科技大学研究生试卷(考试时间: 14:30 至 16:30 ,共 2 小时)课程名称 组合数学 教师 卢光辉,张先迪 学时 40 学分 2 教学方式 讲授 考核日期 2006 年 12 月 2 日 成绩 考核方式: (学生填写)一.填空题(每空2分,共22分)1.食品店有三种不同的月饼(同种月饼不加区分),第一种有5个,第二种有6个,第三种有7个, (1) 从中取出4个装成一盒(盒内无序),则不同的装法数有 种 ; (2) 从中取出6个装成一盒(盒内无序),则不同的装法数有 种 ;(3)若将所有的月饼排在一个货架上,则排法数有 种(给出表达式,不必算出数值结果)。
(4)若将所有的月饼装在三个不同的盒子中,盒内有序(即盒内作线排列),盒子不空,则不同的装法数又有 种(给出表达式,不必算出数值结果)。
2.棋盘C 如图1所示,则棋子多项式R (C ) =3.设有足够多的红球、黄球和绿球,同色球不加区分,设从中无序地取出n 个球的方式数为a n ,有序地取出n 个球的方式数为b n ,但均需满足红球的数量为偶,黄球的数量为奇,则(1) 由组合意义写出的{a n }的普通母函数为 ;求和后的母函数为 。
(2)由组合意义写出的{b n }的指数母函数为 ;求和后的母函数为 。
4.(1) 将6个无区别的球放入3个无区别的盒子中且盒子不空的放法数为 。
学 号 姓 名 学 院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………图1题……………无效…组合数学试题 共 4 页 ,第 2 页(2)将6个有区别的球放入3个无区别的盒子中且盒子不空的放法数为 。
(已知将5个有区别的球放入3个无区别的盒子中且盒子不空的放法数为25)二、(14 分) 给定重集B = {3·A , 3·B , 4·C ,10·D }。
《组合数学》工学研究生1

西安电子科技大学研究生课程考试试题考试科目:组合数学考试日期:考试时间:120 分考试方式:闭卷任课教师:学生姓名:学号:一、 (10分)请计算多项式8322⎪⎭⎫⎝⎛++-c b a 的展开式中222c b a和22bc a 两项的系数。
① ()222232121!2!2!2!2!8⎪⎭⎫⎝⎛-=22680 (5)分②()32232121!3!2!1!2!8⎪⎭⎫⎝⎛-=-22680 (5)分二、 (10分)满足不定方程4321x x x x +++=62的整数解共有多少组?其中要求31-≥x ,52≥x ,03≥x ,04≥x 。
① 做变换11x y =+3, 22x y =-5, 33x y =,44x y = ……………………………… 2分 ② 原方程化为4321y y y y +++=60 (2)分③ 问题等价于从4种相异元素中可重复地选60个元素的组合问题 (3)分④ 答案为601604C-+=363C=!60!3!63 (2)分⑤ 结果为39711 ………………………………………………………………………………………… 1分三、 (10分)一位学者要在一周内安排38个小时的工作时间,而且每天至少工作5小时,最多工作10个小时。
问共有多少种不同的安排方案?假设一周有5个工作日。
① 分析问题,写相应的(普)母函数 …………………………………………………………… 4分()x G =()51065x x x +++② 母函数展开得 ()x G =25x+526x+…+67638x+…+50x…………………………… 4分()x G =()552251xxx x++++=25x(1+2x +32x +43x +54x +65x +…+10x )350⎪⎭⎫⎝⎛∑=i i x (系数对称)=25x(1+3x +62x +103x +154x +215x +256x +277x +…+15x)250⎪⎭⎫⎝⎛∑=i i x =25x (1+4x +102x +203x +354x +565x +806x +1047x +1258x +1409x+14610x +…+20x )⎪⎭⎫⎝⎛∑=50i i x=25x (1+4x +102x +203x +354x +565x +806x +1047x +1258x +1409x+14610x +…+20x )⎪⎭⎫ ⎝⎛∑=50i i x=25x (1+5x +152x +353x +704x +…+78013x +…+524x +25x )=25x+526x+1527x+3528x+7029x+…+78038x+…+549x+50x③ 答:共有780种选法 …………………………………………………………………………… 2分四、 (10分)把4个颜色不同的糖果分给甲、乙、丙3位小朋友,且甲、乙、丙每人分得的糖果数最多分别为3、3、4颗。
组合数学考试题目及答案

组合数学考试题目及答案**组合数学考试题目及答案**一、单项选择题(每题3分,共30分)1. 从10个不同的元素中取出3个元素的组合数为()。
A. 120B. 210C. 100D. 150答案:B2. 以下哪个不是排列数的性质?()。
A. \( P(n, n) = n! \)B. \( P(n, 0) = 1 \)C. \( P(n, k) = \frac{n!}{(n-k)!} \)D. \( P(n, k) = \frac{n!}{k!} \)答案:D3. 从5个不同的元素中取出2个元素的排列数为()。
A. 10B. 20C. 15D. 25答案:B4. 组合数 \( C(n, k) \) 和排列数 \( P(n, k) \) 之间的关系是()。
A. \( C(n, k) = \frac{P(n, k)}{k!} \)B. \( P(n, k) = \frac{C(n, k)}{k!} \)C. \( C(n, k) = k \times P(n, k) \)D. \( P(n, k) = k \times C(n, k) \)答案:A5. 以下哪个是组合数的性质?()。
A. \( C(n, k) = C(n, n-k) \)B. \( C(n, k) = C(n-1, k-1) \)C. \( C(n, k) = C(n, k+1) \)D. \( C(n, k) = C(n+1, k+1) \)答案:A6. 从8个不同的元素中取出3个元素的组合数为()。
A. 56B. 54C. 48D. 35答案:A7. 以下哪个是排列数的递推关系?()。
A. \( P(n, k) = P(n-1, k) + P(n-1, k-1) \)B. \( P(n, k) = P(n-1, k) - P(n-1, k-1) \)C. \( P(n, k) = P(n-1, k) \times P(n, 1) \)D. \( P(n, k) = P(n-1, k-1) \times P(n, 1) \)答案:D8. 从7个不同的元素中取出4个元素的排列数为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生《组合数学》试题
姓名
1.( 15分)平面上给出25个点,其中没有任何3个点共线。
这些点能确定多少条直线?多少个三角形? 解:
2.( 15分)一个面包店有6种不同类型的面包,这些面包以每打12个为单位向外出售。
这个面包店能装配成多少打不同的面包(不考虑面包的顺序)?如果在每打中每种类型的面包至少有一个,那么又能装配成多少打不同的面包? 解:
3.( 15分)试用生成函数求下式之和:123123n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⋅+⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
. 解:
4.( 15分)网络专业的学生选修C++ 的有38人,选修VB 的有15人,选修DELPHI 的有20人,选修这三门课的同学总数为58人,且其中只有3人同时选修这三门课,试求同时选修两门课的同学有几人? 解:
5.( 15分)在一次聚会上有10位男士和10位女士。
这10位女士能够有多少种方法选择男舞伴开始第一次跳舞?如果每个人必须换舞伴,那么第二次跳舞又有多少种选择方法? 解:
6.( 15分)求解满足初始值h 0 = 1, h 1 = 2, h 2 = 0的递推关系
123
223n n n n h h h h n ---=+-≥.
7.( 10分)证明:任取11个整数,求证其中至少有两个数,它们的差是10的倍数。