初一数学有理数拓展提高难题
经典七年级有理数提高类型难题

16、a 是有理数,代数式112++a 的最小值是( ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系i 中正确的是( ) A. a <b <c B. a <c <b C. b <c <a D. c <b <a 22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题29、若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.30、(茂名)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得 (a +1)⊕b = n +1, a ⊕(b +1)= n -2。
现在已知1⊕1 = 2,那么2008⊕2008 = 31、若00xy z ><,,那么xyz ______.34、若,,,,,a b c d e f 是六个有理数,且11111,,,,23456a b c d e b c d e f =-==-==-,则_______.fa= 36、比较下列各对数的大小: (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 37、(1) 111117(113)(2)92844⨯-+⨯- (2) 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦(3)、 200423)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--(4) 100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ 四、解答题38、 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如图),化简b c b a a -+-+ 40、已知22=-+-a ab ,求()()()()()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值41、(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值。
初一数学有理数难题与提高练习和培优综合题压轴题含解析

初一数学有理数难题与提高练习和培优综合题压轴题含解析一.选择题共12小题1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a810.为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127二.填空题共10小题13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是填入M、N、P、R中的一个或几个.15.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.只填序号,答案格式如:“①②③④”.21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题共18小题23.计算:++++…+.24.请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.28.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x=时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.30.同学们都知道:|5﹣﹣2|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:1数轴上表示5与﹣2两点之间的距离是,2数轴上表示x与2的两点之间的距离可以表示为.3如果|x﹣2|=5,则x=.4同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.5由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:11+2+22+23+24+…+21021+3+32+33+34+…+3n其中n为正整数32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:1当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.2已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:××××××…××××.35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.1以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗2小彬家距中心广场多远3小明一共跑了多少千米36.已知:b是最小的正整数,且a、b满足c﹣52+|a+b|=0,请回答问题1请直接写出a、b、c的值.a=,b=,c=2a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时即0≤x≤2时,请化简式子:|x+1|﹣|x﹣1|+2|x+5|请写出化简过程3在12的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:1;2﹣24+3﹣16﹣5;3;4;5;6;7;8;9;10;11;12﹣47.65×2+﹣37.15×﹣2+10.5×﹣7.39.1+2+3+…+100= 经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…nn+1=观察下面三个特殊的等式1×2=1×2×3﹣0×1×22×3=2×3×4﹣1×2×33×4=3×4×5﹣2×3×4将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:1直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…nn+1=2探究并计算:1×2×3+2×3×4+3×4×5+…+nn+1n+2=3请利用2的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.1如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;2如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;3如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;4一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数A、B两点间的距离为多少初一数学有理数难题与提高练习和培优综合题压轴题含解析参考答案与试题解析一.选择题共12小题1.2016春碑林区校级期末1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米分析首先根据题意求出头发丝的半径是60 000÷2纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.解答解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.2014秋赛罕区校级期末足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0分析每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.解答解:由题意知,红队共进4球,失2球,净胜球数为:4+﹣2=2,黄队共进3球,失5球,净胜球数为3+﹣5=﹣2,蓝队共进2球,失2球,净胜球数为2+﹣2=0.故选A.点评每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.2010春佛山期末要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数分析如果为整数,则a﹣52为4的倍数,可确定a的取值.解答解:∵为整数,∴a﹣52为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.点评本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.2013秋郑州期末体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%分析根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.解答解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.点评本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.2014 新华区模拟有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.2008分析从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.解答解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣﹣1=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.点评考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.2016春沭阳县期末有理数a,b,c都不为零,且a+b+c=0,则++= A.1 B.±1 C.﹣1 D.0分析根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.解答解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选B点评本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.2013 天桥区一模计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.22分析首先把A+C利用十进制表示,然后化成16进制即可.解答解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.点评本题考查了有理数的运算,理解十六进制的含义是关键.8.2012秋祁阳县校级期中若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0分析两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.解答解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.点评本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.2011秋南海区期末如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a8分析从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.解答解:A、a1+a2+a3+a7+a8+a9=a4+a5+a6﹣21+a4+a5+a6+21=2a4+a5+a6,正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2a2+a5+a8,正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、a3+a6+a9﹣a1+a4+a7=6,错误,符合题意.故选D.点评本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.2010 广州为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc分析m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.解答解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.点评本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.2009秋和平区校级期中设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值分析根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.解答解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x 的范围为﹣1≤x≤1,故选D.点评本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127分析根据题目信息,表示出C125与C126,然后通分整理计算即可.解答解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.点评本题是信息给予题,读懂题目信息是解题的关键.二.填空题共10小题13.2009秋绥中县期末2.40万精确到百位,有效数字有3个.分析根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.解答解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.点评从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.2016秋余杭区期末如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N或P填入M、N、P、R中的一个或几个.分析根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.解答解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.点评此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.2015 茂名为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+...+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015的值是.分析根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.解答解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点评本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.2013 天河区一模我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是13.分析根据题目信息,利用有理数的乘方列式进行计算即可得解.解答解:11012=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.点评本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.2012 台州请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.分析由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.解答解:根据题意可得:1⊕2=2⊕1=3=+,﹣3⊕﹣4=﹣4⊕﹣3=﹣=+,﹣3⊕5=5⊕﹣3=﹣=+,则a⊕b=+=.故答案为:.点评此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.2011 越秀区校级模拟我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.分析首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.解答解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.点评本题考查了不等式的整数解,正确确定x,y的值是关键.19.2011春宿迁校级期末符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=﹣2009.分析此题是一道找规律的题目,通过观察可发现1中等号后面的数为前面括号中的数的2倍减1,2中等号后面的数为分母减去1再乘2,计算即可.解答解:G2010﹣G﹣2010=2010×2﹣1﹣2010﹣1×2﹣2010=﹣2009.点评找到正确的规律是解答本题的关键.20.2006 连云港a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.只填序号,答案格式如:“①②③④”.分析首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.解答解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=b+1a+1<0,故④正确.所以一定成立的有①②④.故答案为:①②④.点评此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.2006 贺州若|x|=2,|y|=3,且<0,则x+y=±1.分析根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.解答解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+﹣3=﹣1或﹣2+3=1.故答案为:±1.点评理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.2004 乌鲁木齐王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.分析结合图形,知+=1﹣,++=1﹣,推而广之即可.解答解:结合图形,得+++…+=1﹣.点评此题注意运用数形结合的思想进行分析.三.解答题共18小题23.计算:++++…+.分析把++++…+变形为+++++++ +…++,再根据加法交换律和结合律计算即可求解.解答解:++++…+=++++++++…++=+++++++…+++=2×2014+=4028+=4028.点评此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.2016秋湖北月考请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.分析观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.解答解:解法1,﹣÷﹣+﹣=﹣÷+﹣+=﹣÷﹣=﹣÷=﹣;解法2,原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣56=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故﹣÷﹣+﹣=﹣.点评此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.2016秋东莞市期末已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.分析读懂题意,掌握规律,按规律计算每个式子.解答解:12※4=2×4+1=9;21※4※﹣2=1×4+1×﹣2+1=﹣9;3﹣1※5=﹣1×5+1=﹣4,5※﹣1=5×﹣1+1=﹣4;4∵a※b+c=ab+c+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※b+c+1=a※b+a※c.点评解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.2014秋朝阳区期末若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.分析根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.解答解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.点评本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.2016秋东台市期中有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.分析1根据数轴判断出a、b、c的正负情况,然后分别判断即可;2去掉绝对值号,然后合并同类项即可.解答解:1由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;2|b﹣c|+|a+b|﹣|c﹣a|=c﹣b+﹣a﹣b﹣c﹣a=c﹣b﹣a﹣b﹣c+a=﹣2b.点评本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.2016秋镜湖区校级期中1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.分析①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.解答解:①|2﹣5|=3,|﹣2﹣﹣5|=3,|1﹣﹣3|=4;②|x﹣﹣1|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则x+1+x﹣2=5,解得x=3,若x+1<0,x﹣2<0,则﹣x+1﹣x﹣2=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.点评本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.2016 河北请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.分析1将式子变形为1000﹣1×﹣15,再根据乘法分配律计算即可求解;2根据乘法分配律计算即可求解.解答解:1999×﹣15=1000﹣1×﹣15=1000×﹣15+15=﹣15000+15=﹣14985;2999×118+999×﹣﹣999×18=999×118﹣﹣18=999×100=99900。
七年级上册有理数复习拓展提高

2、满足 成立的条件是〔 〕〔##省黄冈市竞赛题〕
A. B. C. D.
3、若 ,则 的值等于。
3、数轴与绝对值结合考查〔数形结合〕
1、利用数轴能形象地表示有理数;
例1:已知有理数 在数轴上原点的右方,有理数 在原点的左方,则〔 〕
A. B. C. D.
变式一:如图 为数轴上的两点表示的有理数,在 中,负数的个数有〔 〕
考点5、近似数、有效数字与科学计数法
①近似数:一个与实际数比较接近的数,称为近似数。
②有效数字:对于一个近似数,从左边第一个不是0的数字开始,草最末一个数字止,都是这个近似数的有效数字。科学计数法:把一个数记作a×10n形式〔其中1≤ a ≤10,n为整数。〕
题型1 近似值
例1 光的速度大约是300 000 000m/s,用科学计数法表示为〔 〕。
例2、简单计算
〔1〕 ; 〔2〕 ;〔3〕 ;〔4〕
例3、从图〔1〕中找规律,并在图〔2〕填上合适的数
例4、下列说法正确的是〔 〕
A.两数相减,被减数一定大于减数
B.0减去一个数仍得这个数
C.互为相反的两个数差为0
D.减去一个正数,差一定小于被减数
考点4 有理数的乘除、乘方
例1、"!"是一种运算符号,并且
例1、如果| -a | = -a,下列成立的是〔 〕
A .a<0 B.a≦0 C.a>0 D.a≧0
例2、的绝对值是8。
例3、若 ,则b=,若 。
例4、若 ,则 等于〔 〕
A、2 B、8 C、2或8 D、
例5、已知
(1)求a,b的值
(2)求 的值
例6、计算:
有理数--拓展提高难题及答案

初一数学《有理数》拓展提高试题友情提醒:试卷较难,请耐心想一想一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则a b a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=__ _ ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。
七年级数学上册《有理数》综合提高培优难题

七年级《有理数》培优训练一、选择题1、 -2,0,2,-3这四个数中最大的是( )A.-1B.0C.1D.2 2、下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 3、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃ 4、下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 5、计算(-3)3+52-(-2)2之值为何?( )(A) 2 (B) 5 (C)-3 (D)-6 6、下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯-7、数2-的相反数为( )A 、2B 、21C 、2-D 、21-8国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元B . 9.37×109元C . 9.37×1010元D .0.937×1010元 9、下列各组数中,互为相反数的是( )A .2和21B .-2和-21C . -2和|-2|D .2和2110、汶川发生特大地震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-12、实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( ) CA.a > b B . a = b C . a < b D . 不能判断 13、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .414、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A.7 B.3 C.3-D.2-15、用四舍五入法得到a 的近似数是3.80,精确地说,这个数的范围是( )A 、3.795 3.805a ≤〈B 、3.75 3.85a ≤〈C 、3.75 3.85a 〈〈D 、3.795 3.805a 〈≤ 16、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a19、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元20、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )< (C )(D )>21、计算:221 4.5(12)3151.3223∙----⨯-=( ) (A)-720; (B)-12245; (C)-17720; (D)-29245.22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题23、 9的相反数是______比–3小9的数是________;最小的正整数是____________24、 已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为___________________.25、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为26、 计算:______21=⎪⎭⎫ ⎝⎛--;______21=-;______210=⎪⎭⎫ ⎝⎛-;______211=⎪⎭⎫⎝⎛--。
初一数学有理数难题与提高练习和培优综合题压轴题(含解析)-

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径の六万分之一.则利用科学记数法来表示,头发丝の半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数の说法正确の是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5の倍数D.个位是5の数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生の成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组の达标率是()A.25% B .37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数の倒数の差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用の十六进制是逢16进1の计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制の数の对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3の正方形,则里面九个数不满足の关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中の字母对应の序号为β时,将β+10除以26后所得の余数作为密文中の字母对应の序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是( ) A .wkdrcB .wkhtcC .eqdjcD .eqhjc11.设y=|x ﹣1|+|x +1|,则下面四个结论中正确の是( ) A .y 没有最小值B .只有一个x 使y 取最小值C .有限个x (不止一个)y 取最小值D .有无穷多个x 使y 取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C 125+C 126=( )A .C 135B .C 136 C .C 1311D .C 127二.填空题(共10小题)13.2.40万精确到 位,有效数字有 个.14.如图M ,N ,P ,R 分别是数轴上四个整数所对应の点,其中有一点是原点,并且MN=NP=PR=1,数a 对应の点在M 与N 之间,数b 对应の点在P 与R 之间,若|a |+|b |=2,则原点是 (填入M 、N 、P 、R 中の一个或几个).15.为了求1+3+32+33+…+3100の值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015の值是 .16.我们常用の数是十进制数,计算机程序使用の是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数の结果是 .17.请你规定一种适合任意非零实数a ,b の新运算“a ⊕b”,使得下列算式成立: 1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定の新运算a⊕b=(用a,bの一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+yの值.19.符号“G”表示一种运算,它对一些数の运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.20.a、b两数在一条隐去原点の数轴上の位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立の是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动の积极性,给每位学生设计了一个如图所示の面积为1の圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积の,,….请你根据数形结合の思想,依据图形の变化,推断当n为整数时,+++…+=.三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料の理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4の值;(2)求(1※4)※(﹣2)の值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们の运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※cの关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cdの值.27.有理数a、b、c在数轴上の位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是,数轴上表示﹣2和﹣5の两点之间の距离是,数轴上表示1和﹣3の两点之间の距离是;②数轴上表示x和﹣1の两点A和B之间の距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是.④当x=时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师の讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差の绝对值,实际上也可理解为5与﹣2两数在数轴上所对应の两点之间の距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间の距离是,(2)数轴上表示x与2の两点之间の距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,请你找出所有符合条件の整数x,使得|x+3|+|x﹣1|=4,这样の整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值の问题时,碰到了下面の问题:“当式子|x+1|+|x﹣2|取最小值时,相应のxの取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们の解题解决下面の问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应のxの取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应のxの取值范围及yの最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是,数轴上表示﹣2和﹣5の两点之间の距离是,数轴上表示1和﹣3の两点之间の距离是;②数轴上表示x和﹣1の两点A和B之间の距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东の方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家の位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小の正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、cの值.a=,b=,c=(2)a、b、c所对应の点分别为A、B、C,点P为易动点,其对应の数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)の条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度の速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度の速度向右运动,假设t秒钟过后,若点B与点C之间の距离表示为BC,点A与点B之间の距离表示为AB.请问:BC﹣ABの值是否随着时间tの变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013の值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014の值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题の一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似の问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊の等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式の两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式の计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)の探究结果,直接写出下式の计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上の原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示の数是﹣2,已知点A、B是数轴上の点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示の数是,A、B两点间の距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示の数是,A、B两点间の距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示の数是,A、B两点间の距离是;(4)一般地,如果A点表示の数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间の距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径の六万分之一.则利用科学记数法来表示,头发丝の半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝の半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米の关系就可以用科学记数法表示头发丝の半径.【解答】解:头发丝の半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法の表示方法.科学记数法の表示形式为a×10nの形式,其中1≤|a|<10,n为整数,表示时关键要正确确定aの值以及nの值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数の说法正确の是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队の进球总数记为正数,失球总数记为负数,这两数の和为这队の净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队の进球总数记为正数,失球总数记为负数,这两数の和为这队の净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数B.偶数C.5の倍数D.个位是5の数【分析】如果为整数,则(a﹣5)2为4の倍数,可确定aの取值.【解答】解:∵为整数,∴(a﹣5)2为4の倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方の有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数の平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生の成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组の达标率是()A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准の数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可の达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数の达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数の倒数の差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出の资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数の周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数の周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数の运算方法和数学の综合能力.解此题の关键是能从所给出の资料中找到数据变化の规律,并直接利用规律求出得数,代入后面の算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式の可能の取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++の所有可能の值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值の性质等知识点,注意分情况讨论字母の符号,不要漏解.7.(2013•天桥区一模)计算机中常用の十六进制是逢16进1の计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制の数の对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数の运算,理解十六进制の含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查の知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3の正方形,则里面九个数不满足の关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻の数为依次大7,左右相邻の数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数の加减混合运算,关键是从表格中看出各个数与a5の关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中の字母对应の序号为β时,将β+10除以26后所得の余数作为密文中の字母对应の序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应の数字是12,12+10=22,除以26の余数仍然是22,因此对应の字母是w;a对应の数字是0,0+10=10,除以26の余数仍然是10,因此对应の字母是k;t对应の数字是19,19+10=29,除以26の余数仍然是3,因此对应の字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应の数字为12、0、19、7、18,它们分别加10除以26所得の余数为22、10、3、17、2,所对应の密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题の关键是读懂题意,理清题目中数字和字母の对应关系和运算规则,然后套用题目提供の对应关系解决问题,具有一定の区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确の是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数の性质,分别讨论xの取值范围,再判断yの最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1の距离和,这个距离和の最小值为2,此时xの范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数の性质求代数式の最值问题,注意按未知数の取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题の关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有3个.【分析】根据24 000确定精确度,从左边第一个不是0の数开始数起,到精确到の数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0の数开始数起,到精确到の数位为止,所有の数字都叫做这个数の有效数字;注意后面の单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应の点,其中有一点是原点,并且MN=NP=PR=1,数a对应の点在M与N之间,数b对应の点在P与R之间,若|a|+|b|=2,则原点是N或P(填入M、N、P、R中の一个或几个).【分析】根据数轴判断出a、b之间の距离小于3,且大于1,然后根据绝对值の性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N 或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴の定义和绝对值の意义.解此类题の关键是:先利用条件判断出绝对值符号里代数式の正负性,再根据绝对值の性质把绝对值符号去掉,把式子化简后根据整点の特点求解.15.(2015•茂名)为了求1+3+32+33+…+3100の值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015の值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数の乘方,读懂题目信息,理解求和の运算方法是解题の关键.16.(2013•天河区一模)我们常用の数是十进制数,计算机程序使用の是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数の结果是13.【分析】根据题目信息,利用有理数の乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数の乘方,读懂题目信息,理解二进制与十进制の数の转化方法是解题の关键.17.(2012•台州)请你规定一种适合任意非零实数a,bの新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定の新运算a⊕b=(用a,bの一个代数式表示).【分析】由题中の新定义,将已知の等式结果变形后,总结出一般性の规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数の混合运算,属于新定义の题型,其中弄清题意,找出一般性の规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+yの值±15或±9.【分析】首先把所求の式子转化成一般の不等式の形式,然后根据x,y是整数即可确定x,yの值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,yの值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,yの值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式の整数解,正确确定x,yの值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数の运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=﹣2009.【分析】此题是一道找规律の题目,通过观察可发现(1)中等号后面の数为前面括号中の数の2倍减1,(2)中等号后面の数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确の规律是解答本题の关键.20.(2006•连云港)a、b两数在一条隐去原点の数轴上の位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立の是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间の关系の正确信息,然后结合数の运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于bの符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立の有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数の运算法则の有关内容.特别注意④中,能够运用因式分解の知识分解成积の形式,再分别判断两个因式の符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1.【分析】根据绝对值の意义,知绝对值等于正数の数有2个,且互为相反数.根据分式值の符号判断字母符号之间の关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值の意义,注意互为相反数の两个数の绝对值相同.同时能够根据分式の值の符号判断两个字母符号之间の关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动の积极性,给每位学生设计了一个如图所示の面积为1の圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积の,,….请你根据数形结合の思想,依据图形の变化,推断当n为整数时,+++…+=1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合の思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数の混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料の理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后の结果取计算结果の倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数の混合运算,解决本题の关键是读懂题意,理解第二种解法の思路:两个数相除,可先求这两个数相除の倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4の值;(2)求(1※4)※(﹣2)の值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们の运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※cの关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目の关键是认真观察已知给出の式子の特点,找出其中の规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cdの值.【分析】根据互为相反数の两数之和为0,互为倒数の两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数の知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上の位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、cの正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值の性质,数轴,熟记性质并准确识图观察出a、b、c の正负情况是解题の关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是3,数轴上表示﹣2和﹣5の两点之间の距离是3,数轴上表示1和﹣3の两点之间の距离是4;②数轴上表示x和﹣1の两点A和B之间の距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间の距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间の距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|の最小值,意思是x到﹣1の距离与到3の距离之和最小,那么x应在﹣1和3之间の线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示xの点在﹣1和2之间の线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间の距离=两个数之差の绝对值.29.(2016•河北)请你参考黑板中老师の讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900【点评】考查了有理数の混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右の顺序进行计算;如果有括号,要先做括号内の运算.(2)进行有理数の混合运算时,注意各个运算律の运用,使运算过程得到简化.30.(2015秋•古田县校级期末)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差の绝对值,实际上也可理解为5与﹣2两数在数轴上所对应の两点之间の距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间の距离是7,(2)数轴上表示x与2の两点之间の距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,请你找出所有符合条件の整数x,使得|x+3|+|x﹣1|=4,这样の整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间の距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2の两点之间の距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,|x+3|+|x﹣1|=4,∴这样の整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.【点评】本题是一道去绝对值和数轴相联系の综合试题,考查了取绝对值の方法,取绝对值在数轴上の运用.难度较大.去绝对の关键是确定绝对值里面の数の正负性.31.(2015•宣城模拟)阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子の值;(2)同理即可得到所求式子の值.【解答】解:(1)设S=1+2+22+23+24+ (210)。
最新七年级数学有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.5.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。
初一数学有理数难题与提高练习和培优综合题压轴题(含解析) 甄选

初一数学有理数难题与提高练习和培优综合题压轴题(含解析) (优选.)rd初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米 B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5的倍数 D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C .D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127二.填空题(共10小题)13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y 的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x= 时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米 B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数B.偶数C.5的倍数 D.个位是5的数【分析】如果为整数,则(a﹣5)2为4的倍数,可确定a的取值.【解答】解:∵为整数,∴(a﹣5)2为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C .D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013•天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数的运算,理解十六进制的含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题的关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有3个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N 或P(填入M、N、P、R中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2015•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a ⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【分析】首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=﹣2009.【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确的规律是解答本题的关键.20.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b <0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1.【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合的思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《有理数》拓展提高试题(一)姓名 友情提醒:试卷较难,请耐心想一想
一、 选择题(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为
( )
A.-1
B.0
C.1
D.2
2、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数
3、若0ab ≠,则a b a b
+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-2
4、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )
A 、-23
B 、-17
C 、23
D 、17
5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )
A 、1
B 、2
C 、3
D 、4
6、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
A.2
B. -2
C. 6
D.2或6
7、 x 是任意有理数,则2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零
8、观察这一列数:34-,57, 910-, 1713,3316
-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.6519
9、若1
4+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个
10、30
28864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .2
1-
二、填空题(每小题4分,共32分)
11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式
(每个数有且只能用一次)_______________ ______ ;
12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则y
x x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票
务需求.
15.设c b a ,,为有理数,则由c
c b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,
则 │b-a │+│a+c │+│c-b•│=____ _ ___;
17.根据规律填上合适的数: 1,8,27,64, ,216;
18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为100
1n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为50
1(21);n n =-∑又如“333333333312345678910+++++++++”可表示为103
1n n =∑,同学们,通过以上材料的阅读,请解答下列问题: (1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)
用求和符号可表示为 ;
(2)计算:5
21(1)n n =-∑= (填写最后的计算结果)。
三、解答题
19、计算:
⎪⎭⎫ ⎝
⎛--+-⎪⎭⎫ ⎝⎛---32775.2324523(4分)
20、计算:5025249⨯⎪⎭⎫ ⎝⎛- (4分)
21、已知02a 1b =-+-,
求()()()()
()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值 (7分)
22、(7分)阅读并解答问题
求2008322.......221++++的值,
解:可令S =2008322......221++++,
则2S =20094322......222++++ ,
因此2S-S =122009-,
所以2008322......221++++=122009-
仿照以上推理计算出2009325......551++++的值
23. (8分)三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为0,a
b ,b 的形式,试求20012000b a +的值.
24、(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由 K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子
跳蚤的初始位置K
点所表示的数。
(附答案,见下页)
答案‘
一、选择题
1、B
2、D
3、B
4、A 5 、A 6、D 7、D 8、D 9、D 10、D
二、填空题
11、(答案不唯一)、12、3
1- 13、670 14、702 15、1,-1,3,-3 16、-2c 17、125 18、(1)∑=50
1
n )n 2( (2)50
三、解答题
19、解:原式=15.175.56.4375.26.43
2775.23246.4-=-=--=---++ 20、解:原式=()49825005025150105025110-=--=⎪⎭
⎫ ⎝⎛⨯-⨯-=⨯⎪⎭⎫ ⎝⎛-- 21、2008
2007 22、4
2152010- 23、解:由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a
b ,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使a
b 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a
b .只能是1=b ,于是a =-1。
∴原式=2. 24、解: 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,
12x -+,123x -+-,…,1234
99100x -+-+-+. 由题意知:123499100x -+-+-+=20所以x=- 30.。