初一数学有理数拓展提高难题(最新整理)
专题120 有理数的除法(拓展提高)(解析版)

专题1.20 有理数的除法(拓展提高)一、单选题1.21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.【点睛】本题考查了有理数的计算,正确掌握计算方法是解题的关键;2.已知数a,b在数轴上对应点的位置如图所示,则下列结论不正确的是()A.a+b<0 B.a﹣b>0 C.b<﹣a<a<﹣b D.ba>0【答案】D【分析】根据数轴上a、b的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b<0<a,|b|>|a|,∴﹣b>a,∴a+b<0,a﹣b>0,ba<0,b<﹣a<0<a<﹣b.故选:D.【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.3.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的20%,则该药品现在应降价的幅度是()A.40% B.45% C.50% D.80%【答案】A【分析】根据“在市场紧缺的情况下提价100%”,是把原价看作单位“1”,提价100%后的价钱是原价的:1+100%=200%,限定其提价的幅度:(1+20%)=120%,求该药品现在降价的幅度就是求降低的价格是市场紧缺时价格的百分之几,用降低的价格除以市场紧缺时的价格.【详解】[(1+100%)−(1+20%)]÷(1+100%)=0.8÷2=0.4 =40%, 故选:A .【点睛】此题考查除法应用题,求一个数是另一个数的百分之几,用一个数除以另一个数. 4.已知,a b 为实数,下列说法:①若,a b 互为相反数,则1ab=-;②若0a b a b -+-=,则b a >;③若0a b +<,0ab >,则33a b a b +=--;④若a b >,则()()0a b a b +⨯->;⑤若,0a b ab ><且22a b -<-,则4a b +>,其中正确的是( ).A .①②B .②③C .③④D .④⑤【答案】C【分析】①除0外,互为相反数的商为-1,可作判断;②由a-b 的绝对值等于它的相反数,得到a-b 为非正数,得到a 与b 的大小,即可作出判断;③由两数之和小于0,两数之积大于0,得到a 与b 都为负数,即2a+3b 小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;④由a 绝对值大于b 绝对值,分情况讨论,即可作出判断;⑤分情况可作判断. 【详解】解:①若ab≠0,且a ,b 互为相反数,则1ab=-,故不正确; ②∵|a-b|+a-b=0,即|a-b|=-(a-b),∴a-b≤0,即a≤b ,故不正确;③若ab >0,则a 与b 同号,由a+b <0,则a <0,b <0,则|a+3b|=-a-3b ,正确; ④若|a|>|b|,当a >0,b >0时,可得a >b ,即a-b >0,a+b >0,所以(a+b)•(a-b )为正数; 当a >0,b <0时,a-b >0,a+b >0,所以(a+b)• (a -b)为正数; 当a <0,b >0时,a-b <0,a+b <0,所以(a+b)• (a -b)为正数; 当a <0,b <0时,a-b <0,a+b <0,所以(a+b)• (a -b)为正数,正确; ⑤∵,0a b ab ><, ∴a>0,b<0, 当0<a <2时, ∵22a b -<-, ∴2-a <2-b ,∴a-b<0,不符合题意; 所以a≥2,∵|a-2|<|b-2|, ∴a-2<2-b ,则a+b<4,故不正确; 则其中正确的有③④. 故选C .【点睛】此题考查了相反数,绝对值和有理数的运算法则,熟练掌握各种运算法则是解本题的关键. 5.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 的所有数记作[],a b .例如,大于等于1且小于等于4的所有数记作[]1,4.若整数m 在[]5,15内,整数n 在[]30,20--内,那么nm的一切值中属于整数的个数为( ) A .5个 B .4个C .3个D .2个【答案】A【分析】先根据题意确定m 、n 的范围,然后用列举法即可解答. 【详解】解:∵整数m 在[]5,15内,整数n 在[]30,20--内 ∴5≤m≤15,-30≤n≤-20∴3020515m n --≤≤,即463m n -≤≤- ∴nm的一切值中属于整数有-2、-3、-4、-5、-6. 故答案为A .【点睛】本题主要考查了有理数的除法,根据题意确定m 、n 的取值范围是解答本题的关键.6.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数 ,2008应排在A 、B 、C 、D 、E 中 的位置.其中两个填空依次为( )A .-28 ,CB .-29 , BC .-30,D D .-31 ,E【答案】B【分析】观察发现规律:每个峰排列5个数,并且“峰n”的D 位置是(﹣1)n ·5n ,奇数是负数,偶数是正数,根据规律解答即可.【详解】解:观察发现:每个峰排列5个数,并且“峰n”的D 位置是(﹣1)n ·5n ,奇数是负数,偶数是正数,则“峰6”中D 的位置是有理数为5×6=30, ∴“峰6”中C 的位置是有理数为﹣29, ∵2008÷5=401 (3)∴2008应排在“峰402”的第2个数,在B 位置, 故选:B .【点睛】本题考查了数字的变化规律探究,观察出每个峰有5个数,并且“峰n”的D 位置是(﹣1)n ·5n 是解答的关键.二、填空题7.定义一种新的运算:x *y =2x y x +,如:3*1=3213+⨯=53,则2*3=__________. 【答案】4【分析】把原式利用题中的新定义计算转换为有理数运算,即可得到结果. 【详解】解:根据题中的新定义得:2232*342+⨯==, 故答案为:4【点睛】此题考查了新定义运算和有理数的混合运算,弄清题中的新定义是解本题的关键. 8.已知:2|2|(1)a b +++取最小值,则aab b+=________. 【答案】4【分析】先根据绝对值的非负性、偶次方的非负性求出a 、b 的值,再代入求值即可得. 【详解】20a +≥,2(1)0b +≥,2120()b a +∴++≥,∴当2120,0()b a ++==时,212()b a +++取得最小值0,20,10a b ∴+=+=,解得2,1a b =-=-, 则()2122214a ab b +=-⨯-+=+-=-, 故答案为:4.【点睛】本题考查了绝对值的非负性、偶次方的非负性、有理数的乘除法与加法,熟练掌握绝对值与偶次方的非负性是解题关键.9.有时两数的和恰等于这两数的商,如()4242-+=-÷,42423333+=÷等.试写出另外1个这样的等式______. 【答案】993322-+=-÷. 【分析】根据两数的和恰等于这两数的商的要求,举出实例即可.【详解】解:993322-+=-÷,()()11-1-122+=÷. 故答案为:993322-+=-÷.【点睛】本题考查生活经验的积累问题,掌握两数的和恰等于这两数的商是解题关键.10.已知m 、n 为有理数,那么m n -可看成数轴上表示数m 和数n 的两点之间的距离.若有理数x 在数轴上的位置如图所示,则22x x +-型的值为________.【答案】1【分析】由数轴上表示x 的点的位置,得到x 小于-2,可得出x+2都小于0,利用绝对值的代数意义:负数的绝对值等于它的相反数化简,去括号合并即可得到结果. 【详解】解:由数轴上表示x 的点的位置,得到x<-2, ∴x+2<0, ∴22x x +-=22x x ----=1,故答案为1.【点睛】本题考查了数轴,绝对值,熟练掌握绝对值的化简是解本题的关键.11.对于任意有理数a ,b ,c ,d ,规定一种运算:a a c db b dc =-,例如5(3)51231217⨯--⨯=-=-.那么3234--=_________.【答案】6【分析】根据规定的运算进行列式,再根据有理数的运算法则进行计算即可.【详解】()()323423126634-=⨯--⨯-=-=-. 故答案为:6.【点睛】本题考查了新定义运算及有理数的混合运算,理解题意,掌握运算法则是解题的关键. 12.如图,有理数a 、b 、c 在数轴上的对应点的位置如图所示: 则下列结论:①a+b-c >0:②b-a <0:③bc-a <0:④|a|b |c|-+=1a |b|c.其中正确的是_______.【答案】②③.【分析】根据数轴,得到11b a c <-<<<,然后绝对值的意义进行化简,即可得到答案. 【详解】解:根据题意,则11b a c <-<<<,∴0a b c +-<,故①错误;0b a -<,故②正确; 0bc a -<,故③正确;1(1)13a cb ab c-+=--+=,故④错误; 故答案为:②③.【点睛】本题考查了数轴的定义,绝对值的意义,解题的关键是掌握数轴的定义,正确得到11b a c <-<<<.13.一天,甲乙两人利用温差测试测量山峰的高度,甲在山顶测得的温度是-4℃,乙此时在山脚测得的温度是8℃.已知在该地区高度每增加100米,气温大约降低0.6℃,则这个山峰的高度大约是__________米. 【答案】2000【分析】先根据题意列出运算式子,再计算有理数的加减乘除运算即可得. 【详解】由题意得:()()840.6100840.6100--÷⨯=+÷⨯⎡⎤⎣⎦,120.6100=÷⨯, 20100=⨯,2000=(米), 故答案为:2000.【点睛】本题考查了有理数加减乘除运算的实际应用,依据题意,正确列出运算式子是解题关键. 14.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m 最少经过6步运算可得到1,则m 的值为__. 【答案】10或64【分析】根据得数为1,可倒推出第5次计算后得数一定是2,第4次计算后得4,依此类推,直至倒退到第1次前的数即可.【详解】解:如图,利用倒推法可得:由第6次计算后得1,可得第5次计算后的得数一定是2, 由第5次计算后得2,可得第4次计算后的得数一定是4,由第4次计算后得4,可得第3次计算后的得数是1或8,其中1不合题意,因此第3次计算后一定得8 由第3次计算后得8,可得第2次计算后的得数一定是16, 由第2次计算后得16,可得第1次计算后的得数是5或32, 由第1次计算后得5,可得原数为10, 由第1次计算后32,可得原数为64,故答案为:10或64.【点睛】考查有理数的运算,掌握计算法则是正确计算的前提,理解题意是重中之重.三、解答题 15.计算 (1)77()8181-+-= (2)()015-- = (3)( 2.25)(80)-⨯+= (4)3217⎛⎫÷-⎪⎝⎭= 【答案】(1)0;(2)15;(3)-180;(4)-49【分析】(1)先化简绝对值,再根据有理数加法法则计算; (2)先将减法化为加法再计算; (3)根据乘法法则计算;(4)将除法化为乘法,再根据乘法法则计算. 【详解】(1)77()8181-+-=77()8181-+=0; (2)()015-- =0+15=15; (3)( 2.25)(80)-⨯+=-180; (4)3217⎛⎫÷-⎪⎝⎭=721()3⨯-=-49. 【点睛】此题考查有理数的加法法则、减法法则、乘法法则、除法法则,熟练掌握各计算法则是解题的关键.16.如图A 在数轴上所对应的数为2-.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右所在的点处时,求,A B两点间距离.运动,当点A运动到6【答案】(1)2;(2)14个单位长度【分析】(1)根据左减右加可求点B所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据列出=速度×时间求解即可.【详解】解:(1)-2+4=2.故点B所对应的数是2;(2)(-2+6)÷2=2(秒),2+2+(2+3)×2=14(个单位长度).答:A,B两点间距离是14个单位长度.【点睛】本题考查了数轴,有理数的混合运算,解题的关键是理解题意,列出算式.17.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【答案】(1)0.3亿元,(2)甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.【分析】(1)由表可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两厂每个月的盈利相加即可得出结果.【详解】解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,0.7-0.4=0.3(亿元)∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元,2.4÷6=0.4(亿元);乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元,-1.2÷6=-0.2(亿元).∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元【点睛】本题考查了正负数的意义和有理数的加减法,解题关键正确理解正负数的意义,准确进行计算.18.请你先认真阅读材料: 计算12112()()3031065-÷-+- 解:原式的倒数是21121-+()3106530⎛⎫-÷-⎪⎝⎭=2112()(30)31065-+-⨯-=23×(﹣30)﹣110×(﹣30)+16×(﹣30)﹣25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣110再根据你对所提供材料的理解,选择合适的方法计算:11322()()4261437-÷-+-. 【答案】114-. 【分析】根据题意,先计算出113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭的倒数132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭的结果,再算出原式结果即可.【详解】解:原式的倒数是:132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-,故原式114=-. 【点睛】本题主要考查了有理数的除法,读懂题意,并能根据题意解答题目是解决问题的关键.19.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.【答案】(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.20.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 类数中任意取出15个数,从B 类数中任意取出16个数,从C 类数中任意取出17个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于C类;④m,n属于同一类.【答案】(1)A;(2)①B;②B;(3)①④【分析】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,得(15×1+16×2+17×0)=47÷3=15…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.。
经典七年级有理数提高类型难题

16、a 是有理数,代数式112++a 的最小值是( ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系i 中正确的是( ) A. a <b <c B. a <c <b C. b <c <a D. c <b <a 22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题29、若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.30、(茂名)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得 (a +1)⊕b = n +1, a ⊕(b +1)= n -2。
现在已知1⊕1 = 2,那么2008⊕2008 = 31、若00xy z ><,,那么xyz ______.34、若,,,,,a b c d e f 是六个有理数,且11111,,,,23456a b c d e b c d e f =-==-==-,则_______.fa= 36、比较下列各对数的大小: (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 37、(1) 111117(113)(2)92844⨯-+⨯- (2) 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦(3)、 200423)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--(4) 100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ 四、解答题38、 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如图),化简b c b a a -+-+ 40、已知22=-+-a ab ,求()()()()()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值41、(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值。
有理数--拓展提高难题及答案

初一数学《有理数》拓展提高试题友情提醒:试卷较难,请耐心想一想一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则a b a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=__ _ ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。
人教版七年级上册 第一章 有理数 拓展提高试题

初一数学《有理数》拓展提高试题(一)一、 选择题(每小题3分,共30分)1.某粮店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg 、(25±0.2)kg 、 (25 ± 03)kg 的字样,从中任意拿出两袋 ,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kg D . 0.4kg2、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则ab a b+的取值不可能是-----------------------------------------------( )A .0 B.1 C.2 D.-24、当x=-2时, 37axbx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、17 5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是… ( )A 、1 B 、2 C 、3 D 、46、若|a |=4,|b |=2,且|a+b |=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零 B. 不大于零 C. 小于零 D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ).A.3个 B.4个 C.5个 D.6个 10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( )A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)13.若|x-y+3|+()22013y x -+=0,则yx x 2-= .15.设c b a ,,为有理数,则由c c b b a a ++ 构成的各种数值是16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=____ _ ___;三、解答题19、计算:⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛---32775.2324523(4分) 20、计算:5025249⨯⎪⎭⎫ ⎝⎛- (4分)21、已知02a 1b =-+-,22、(7分)阅读并解答问题求2008322.......221++++的值,解:可令S =2008322 (221)++++, 则2S =20094322......222++++ ,因此2S-S =122009-, 所以2008322......221++++=122009-仿照以上推理计算出2009325 (551)++++的值一.选择题 1.下列说法:(1)零是整数;(2)零是正数;(3)零是最小的有理数;(4)零是最大的负数;(5)零是偶数.其中正确的说法的个数为( ) A .2个 B .3个 C .4个 D .5个2.已知a 是有理数,则下列判断:①a 是正数;②a -是负数;③a 与a -必然有一个负数;④a 与a -互为相反数.其中正确的个数是( ).A 、1个 B 、2个 C 、3个 D 、4个3.若一个数的绝对值的相反数是﹣5,则这个数是( )A .5 B .﹣5 C .±5 D .0或54.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1400,﹣1200,1100,﹣800,1000,该运动员共跑路程( )A .5500m B .4500m C .3700m D .1500m5.数轴上到原点的距离小于3的所有整数有( )A .2,1 B .2,1,0 C .±2,±1 D .±2,±1,06.a 为最小自然数,b 为最大负整数,c 为绝对值最小的有理数,则a+b+c=( )A .﹣1 B .0 C .1 D .不存在7.若|m|=|n|,则m 与n 的关系是( )A .互为相反数 B .相等 C .互为相反数或相等 D .都是08.下列说法中,不正确的是( )A .有最小正整数,没有最小的负整数B .若一个数是整数,则它一定是有理数C .0既不是正有理数,也不是负有理数D .正有理数和负有理数组成有理数9.如图,数轴上所标出的点中,相邻两点间的距离相等,则点A 表示的数为( )A .30B .50C .60D .80 10.如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边11.若规定f (a )=﹣|a|,则f (3)=( )A .3 B .9 C .﹣9 D .﹣312.如图,数轴上有A 、B 、C 、D 四个点,其中表示互为相反数的点是( )A .点A 与点DB .点A 与点C C .点B 与点DD .点B 与点C13.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.01 二.填空题14.若a a =,则a 为 数;若a a =-,则a 为 数. 15.﹣54与65-大小比较结果是 .16.某种药品的说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度 .17.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,则这个数是 .18.如果+30m 表示向东走30m ,那么向西走40m 表示为 .三.解答题20.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,你能确定墨迹盖住的整数是哪几个吗?21.已知在纸面上有一数轴(如图),折叠纸面.(本题6分)(1)若1表示的点与-1表示的点重合,则-7表示的点与数 表示的点重合;(2)若-1表示的点与5表示的点重合,回答以下问题:①13表示的点与数 表示的点重合;②若数轴上A 、B 两点之间的距离为2015(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?22.在一次数学测验中,一年(4)班的平均分为86分,•把高于平均分的部分记作正数.(1)李洋得了90分,应记作多少?(2)刘红被记作-5分,她实际得分多少?(3)王明得了86分,应记作多少?(4)李洋和刘红相差多少分?23.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)若出租车每行驶100千米耗油10升,这天上午汽车共耗油多少升?(2)如果每升汽油7元,则出租车司机今天上午的油费是多少元?1.在1-12,1.2,2-,0 ,-(-2)中,负数的个数有( )A .2个 B .3个 C .4个 D .5个 2.数轴上表示12-的点到原点的距离是( )A .12 B .12- C .2- D .2 3、如果a 表示有理数,那么下列说法中正确的是( )A. +a 和-(-a )互为相反数B. +a 和-a 一定不相等C. -a 一定是负数D. -(+a )和+(-a )一定相等5、如图所示,点M 表示的数是( ) A. 2.5 B. 5.3- C.-2.5 D. 2.57. 用科学记录法表示 3080000,正确的是( )A.308×104 B.30.8×105 C.3.08×106D.3.8×106 8. 若b a b a b a 、则为有理数、,,22=的关系是( )A.相等B.互为相反数C.互为倒数D.相等或互为相反数9 下列各组数中相等的是( )A.23 和 32 B.-32 与 (-3)2 C.-23和 (-2)3 D.-32和3210. 若a =3,2=b ,且0>+b a ,那么b a -的值是( )A.5或1B.1或-1C.5或-5D.-5或-1二、填空题(每小题5分,共20分)12. a ,b 互为相反数,c 与d 互为倒数,则2a -3cd+2b=__________.13. 数轴上表示点A 和点B 的两数互为相反数,且A 和B 之间相距5个单位长度,则这两个点所表示的数为 _____ .14. 下列计算:①0(5)5--=-;②(3)(9)12-+-=-;③293342⎛⎫⨯-=- ⎪⎝⎭;④2011(1)-=-2011;⑤2011(1)-=2011;⑥2011(1)-=-1;⑦2011(1)-=1;⑧ (36)(9)4-÷-=-.其中正确的是____________________.(填序号) (1)121()24234-+-⨯-; (2)()()2251362393⎡⎤⎛⎫⎛⎫-⨯-+--÷-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 17.(8分)如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2m mb a ++-cd 的值. 18(10分)7筐苹果,以每筐25千克为准,超过的千克记作正数,不足的千克记作负数,称重的记录如下:+2,-1,-2,+1,+3,-4,-3这七筐苹果实际各重多少千克?这7筐苹果的实际总重量比标准质量多还是少?多(或少)多少千克19.(10分)观察下面一列数,探究其中的规律:1-,21,31-,41,51-,61 (1)填空:第11,12,13个数分别是 , , ;(2)第2016个数是 ;(3)如果这列数无限排列下去,与哪个数越来越近?答: .22.(12分) 若已知a >0,b <0,|b|>|a|,试讨论a ,-a ,b ,-b 四个数的大小关系,并用“>”把它们连接起来.23.(14分)某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(单位:千米):+15、-2、+5、-1、+10、-3、-2、+12、+4、-5、+6;(1)计算收工时,检修小组在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工检修小组耗油多少升?。
七年级数学上册《有理数》综合提高培优难题

七年级《有理数》培优训练一、选择题1、 -2,0,2,-3这四个数中最大的是( )A.-1B.0C.1D.2 2、下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 3、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃ 4、下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 5、计算(-3)3+52-(-2)2之值为何?( )(A) 2 (B) 5 (C)-3 (D)-6 6、下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯-7、数2-的相反数为( )A 、2B 、21C 、2-D 、21-8国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元B . 9.37×109元C . 9.37×1010元D .0.937×1010元 9、下列各组数中,互为相反数的是( )A .2和21B .-2和-21C . -2和|-2|D .2和2110、汶川发生特大地震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-12、实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( ) CA.a > b B . a = b C . a < b D . 不能判断 13、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .414、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A.7 B.3 C.3-D.2-15、用四舍五入法得到a 的近似数是3.80,精确地说,这个数的范围是( )A 、3.795 3.805a ≤〈B 、3.75 3.85a ≤〈C 、3.75 3.85a 〈〈D 、3.795 3.805a 〈≤ 16、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a19、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元20、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )< (C )(D )>21、计算:221 4.5(12)3151.3223∙----⨯-=( ) (A)-720; (B)-12245; (C)-17720; (D)-29245.22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题23、 9的相反数是______比–3小9的数是________;最小的正整数是____________24、 已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为___________________.25、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为26、 计算:______21=⎪⎭⎫ ⎝⎛--;______21=-;______210=⎪⎭⎫ ⎝⎛-;______211=⎪⎭⎫⎝⎛--。
最新七年级数学有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.5.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.6.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]7.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.8.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
最新七年级数学有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.5.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。
专题224 有理数的混合运算(拓展提高)(解析版)

专题2.24 有理数的混合运算(拓展提高)一、单选题1.规定⊗是一种新的运算符号,且2a b a ab a ⊗=-+,则()23-⊗的值为( )A .12-B .0C .8D .4-【答案】C【分析】原式利用已知的新定义计算即可得到结果.【详解】解:根据题中的新定义化简得:-2⊗3=4+6-2=8, 故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.小明做了下列3道计算题: ①11202022-⨯=⨯=,②322(3)8917---=--=-,③32326669632323⎛⎫÷-=÷-÷=-= ⎪⎝⎭.其中正确的有( )A .0道B .1道C .2道D .3道【答案】B【分析】先计算乘法,再计算减法可判断①;先计算乘方,再计算加减可判断②;先计算括号内的,再计算除法可判断③,进而可得答案.【详解】解:1111212222-⨯=-=-,故①计算错误; 322(3)8917---=--=-,故②计算正确;32563666623655⎛⎫÷-=÷=⨯= ⎪⎝⎭,故③计算错误; 综上,计算正确的有1道.故选:B .【点睛】本题考查了有理数的运算,属于基础题目,熟练掌握运算法则是解题的关键.3.按下面的程序计算,若开始输入的值x 为正整数,输出结果86,那么满足条件的x 的值有( )A .4个B .3个C .2个D .1个【答案】A【分析】分直接输出4x ﹣2和不是直接输出4x ﹣2两种情况讨论,分别根据所给程序计算即可.【详解】解:设输入x ,直接输出4x ﹣2时,且4x ﹣2>80,那么就有4x ﹣2=86,解得:x =22,若不是直接输出4x ﹣2,那么就有:(1)4x ﹣2=22,解得:x =6;(2)4x ﹣2=6,解得:x =2;(3)4x ﹣2=2,解得:x =1,(4)4x ﹣2=1,解得:x =34, ∵x 为正整数,∴符合条件的一共有4个数,分别是22,6,2,1,故选:A .【点睛】本题考查了有理数的混合运算及程序流程图,读懂程序流程图是解题的关键.4.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为:2102(101)1202124015=⨯+⨯+⨯=++=;32102(1011)12021212802111=⨯+⨯+⨯+⨯=+++=. 按此方式,将二进制2(1001)换算成十进制数和将十进制数13转化为二进制的结果分别为( ) A .17,2(1101)B .9,2(1110)C .9,2(1101)D .17,2(1110)【答案】C【分析】首先理解十进制的含义,然后结合有理数运算法则计算出结果,然后根据题意把13化成按2的整数次幂降幂排列,即可求得二进制数.【详解】解:(1001)2=1×23+0×22+0×21+1×20=9. 13=8+4+1=1×23+1×22+0×21+1×20=(1101)2故选:C .【点睛】本题主要考查有理数的混合运算,理解十进制的含义,培养学生的理解能力.5.定义☆运算:观察下列运算:请你认真思考上述运算,归纳☆运算的法则,并计算:(-11)☆[0☆(–12)]等于( )A .132B .0C .-132D .-23【答案】D【分析】根据两数进行☆运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,0和任何数进行☆运算,或任何数和0进行☆运算,等于这个数的绝对值,解答即可.【详解】解:(-11)☆[0☆(–12)]=(-11)☆(+12)=-(11+12)=-23,故选D .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.水池,,A B C 都是长方体,深为1.6m ,底部尺寸为3m 4m ⨯.1号阀门24min 可将无水A 池注满;2号阀门用来从A 池向B 池放水,30min 可将A 池中满池水放入B 池;3号阀门用来从B 池向C 池放水,48min 可将B 池中满池水放入C 池.若开始、、A B C 三池无水,同时打开1号、2号和3号阀门,那么当B 池水深0.4m时,A 池有( )3m 的水.A .1.2B .3.2C .6D .16【答案】B【分析】先求出长方体的体积,再分别求出三个阀门的进水效率,然后求出B 池水深0.4m 时所用的时间,最后根据时间即可求出A 池的水深.【详解】解:长方形的体积=()334 1.619.2m ⨯⨯=, 1号阀门的进水效率=()319.2240.8m ÷= 2号阀门的进水效率=()319.2300.64m ÷= 3号阀门的进水效率=()319.2480.4m ÷= 当同时打开1号、2号和3号阀门, B 池水深0.4m 时,用时为:()()340.40.640.4⨯⨯÷-4.80.24=÷20=(分钟)A 池水深为:()0.80.6420-⨯0.1620=⨯()33.2m =故选B .【点睛】本题考查了有理数混合运算的应用,关键是根据工作量=工作效率⨯工作时间,求同时打开1号、2号和3号阀门,B 池水深0.4m 所用时间.二、填空题7.计算:301202052-⎛⎫---= ⎪⎝⎭___________. 【答案】2【分析】先分别利用负整数指数幂、零指数幂的运算法则及绝对值的意义进行计算,再进行加减法运算即可解答. 【详解】解:301202052-⎛⎫--- ⎪⎝⎭815=--2=. 故答案为:2.【点睛】本题考查了有理数的混合运算,掌握负整数指数幂及零指数幂的运算法则是解题的关键. 8.现在给出1、2、3、…、100这100个数,请在他们的前面添加“+”或“﹣”,运算结果能为0吗?___.(填“能”或“不能”)【答案】能【分析】前50个数中奇数前添加“+”号,偶数前添加“−”号,后50个数中奇数前添加“−”号,偶数前添加“+”号,结论可得.【详解】解:1−2+3−4+•••+49−50−51+52−53+54−•••−99+100=()()()2512344950--⋅⋅⋅-个++++259(5152535491)()()00--⋅⋅⋅-个++++++=(−1)×25+1×25 =−25+25=0.故答案为:能.【点睛】本题主要考查了数字的变化的规律,有理数的混合运算,应用数字的规律是解题的关键. 9.母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.【答案】1,4,6(答案不唯一)【分析】根据题意,首先买最贵的花,数量由大到小,依此类推,凑成总钱数是50元,直到1枝为止,必须买三种花配成花束,每种花至少买一支,计算出设计的方案买的花的总价刚好是50元即可.【详解】∵12×1+5×4+3×6=50, ∴可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)【点睛】本题考查了有理数的混合运算的应用,解决本题时要注意本题答案不唯一,符合要求即可.10.按规律排列的一列数:12-,25,38-,411,514-,…,则第2021个数是______. 【答案】20216062- 【分析】结合题意,根据含乘方的有理数混合运算、数字规律的性质分析,即可得到答案.【详解】第1个数为:()()11122111-=-⨯⨯+-, 第2个数为:()()222=1522+21-⨯⨯-, 第3个数为:()()()333182331-=-⨯⨯+-,第4个数为:()()()4412441411=-⨯⨯+-,第5个数为:()()()5551142551-=-⨯⨯+- …第n 个数为:()()()121n nn n -⨯⨯+-第2021个数为:()()()202120212021122021202116062-⨯=-⨯+- 故答案为:20216062-. 【点睛】本题考查了含乘方的有理数混合运算、数字规律的知识;解题的关键是熟练掌握含乘方的有理数混合运算、数字规律的性质,从而完成求解.11.若a ,b 互为相反数,c ,d 互为倒数,且b ≠0,则(a +b )2019+(cd )2020+(a b)2021的值为_____. 【答案】0【分析】根据a ,b 互为相反数,c ,d 互为倒数,且b ≠0,可以得到a +b =0,cd =1,a b =﹣1,从而可以计算出所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,且b ≠0,∴a +b =0,cd =1,a b=﹣1, ∴(a +b )2019+(cd )2020+(a b)2021 =02019+12020+(﹣1)2021=0+1+(﹣1)=0,故答案为:0. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.12.将一段72cm 长的绳子,从一端开始每3cm 作一个记号,每4cm 也作一个记号,然后从有记号的地方剪断,则这段绳子一共被剪成____________段.【答案】36【分析】先求出每3厘米作一个记号,可以作几个记号;再求出每4厘米作一个记号,可以作几个记号;因为3和4的最小公倍数是12,所以每12厘米处的记号重合,由此即可求出绳子被剪出的段数.【详解】∵绳子长72cm ,∴每3cm 作一记号,可以把绳子平均分成72÷3=24(段),可以做24-1=23个记号,每4cm 也作一记号,可以把绳子平均分成72÷4=18(段),可以做18-1=17个记号,∵3和4的最小公倍数是12,所以重合的记号有72÷12=6(段),重复的有6-1=5个记号,∴有记号的地方共有23+17-5=35,∴这段绳子共被剪成的段数为35+1=36(段),故答案为:36.【点睛】此题主要考查了线段,有理数的混合计算,先由3厘米,4厘米的最小公倍数得到重复标记的个数,再根据植树问题中两端都不栽时植树棵树=间隔数-1求出一共剪成的段数,然后找出剪成1厘米的小段是长度的几分之几,进而求解.13.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子2a b c d -+-的值是___________.【答案】1【分析】先根据题意确定a 、b 、c 、d 的值,再把它们的值代入代数式求值即可.【详解】解:∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数, ∴a=1,b=-1,c=0,d=±1,∴原式=a-b+c 2-|d|=1-(-1)+02-|±1|=2-1=1.故答案为:1.【点睛】此题考查了有理数的混合运算,解题的关键是能由语言叙述求出字母的数值,再代入代数式求值.14.设2222222212233420192020 (12233420192020)A ++++=++++⨯⨯⨯⨯,则A 的整数部分为_________. 【答案】4038【分析】将原式拆开,同分母分数结合相加,即可得到结果. 【详解】解:2222222212233420192020 (12233420192020)A ++++=++++⨯⨯⨯⨯ =3420192020 (21324320202019)1223++++++++ =4201820202019 (12233201920192020)2132⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =2019222 (22020)+++++(2019个2相加) =201940382020∴A 的整数部分为4038.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题15.计算(1)5116()()()6767+-+-+-;(2)(﹣20)﹣(﹣18)+(﹣14)﹣13;(3)111(8)()842-⨯-+; (4)(﹣8)×(﹣43)×(﹣0.125)×54. 【答案】(1)﹣13;(2)﹣29;(3)﹣3;(4)﹣53 【分析】(1)原式化简后,相加即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式结合后,相乘即可求出值.【详解】解:(1)原式=56﹣16﹣17﹣67 =23﹣1 =﹣13; (2)原式=﹣20+18﹣14﹣13=﹣47+18=﹣29;(3)原式=﹣8×18﹣8×(﹣14)﹣8×12 =﹣1+2﹣4=﹣3;(4)原式=﹣8×0.125×43×54=﹣53. 【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数运算法则和运算律进行计算. 16.如果,a b 是任意2个数,定义运算⊗如下(其余符号意义如常):b a b a ⊗=,例如331112328,3228⎛⎫⊗==⊗== ⎪⎝⎭;求[(23)(3)2]2014-⊗+-⊗⊗的值. 【答案】1【分析】首先认真分析理解规则,根据b a b a ⊗=代入数值计算即可.【详解】解:∵b a b a ⊗=,∴[(23)(3)2]2014-⊗+-⊗⊗=32[(2)(3)]2014-+-⊗=()892014-+⊗=20141=1【点睛】本题考查了有理数的混合运算,此题的关键是读懂新规定,按照规定的规律进行计算. 17.下表记录的是黑河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米,(正号表示水位比前一天上升,负号表示水位比前一天下降)(1)本周最高水位是 米,最低水位是 米;(2)与上周末相比,本周末河流的水位是 .(填“上升了”或“下降了”)(3)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.8米时,就要开闸泄洪,请你计算一下,再经过多少个小时工作人员就需要开闸泄洪?【答案】(1)16.1,15.2;(2)上升了0.4m ;(3)再经过28个小时工作人员就需要开闸泄洪【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据有理数的减法,可得答案;(3)根据水位差除以上升的速度,可得答案.【详解】解:(1)周一:15+0.2=15.2(m ),周二:15.2+0.8=16(m ),周三:16﹣0.4=15.6(m ),周四:15.6+0.2=15.8(m ),周五:15.8+0.3=16.1(m ),周六:16.1﹣0.5=15.6(m ),周日:15.6﹣0.2=15.4(m ), 周五水位最高是16.1m ,周一水位最低是15.2m .故答案为:16.1;15.2;(2)15.4﹣15=0.4m ,和上周末相比水位上升了0.4m ,故答案为:上升了0.4m ;(3)(16.8﹣15.4)÷0.05=28(小时),答:再经过28个小时工作人员就需要开闸泄洪.【点睛】本题考查了正数和负数,利用有理数的运算是解题关键.18.某检测小组乘汽车检修供电线路,约定向东为正,向西为负,某天自A地出发进行检修到收工时,所+-+-+---,问:走路程(单位:km)为:22,3,4,8,17,2,3,5(1)收工时在A地的哪一个方向?距A地有多远?(2)若每千米耗油4升,这一天检修中共耗油多少升?【答案】(1)东边22千米处;(2)256升【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程,可得总耗油量.【详解】解:(1)+22+(-3)+4+(-8)+17+(-2)+(-3)+(-5)=43-21=+22,答:问收工时在A地东边22千米处;(2)(22+3+4+8+17+2+3+5)×4=64×4=256(升),答:从A地出发到收工共耗油256升.【点睛】本题考查了正数和负数,注意无论向哪行驶都耗油,计算时要加每次行驶的绝对值.19.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,+--+-+--+-+.行程记录如下(单位:米)150,32,43,205,30,25,20,5,30,25,75(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升,他们共使用了氧气多少升?【答案】(1)没有,离顶峰还有170米;(2)128升【分析】(1)约定前进为正,后退为负,依题意列式求出和,再与500比较即可;(2)要消耗的氧气,需求他共走了多少路程,这与方向无关.【详解】解:(1)根据题意得:150-32-43+205-30+25-20-5+30-25+75=330米,500-330=170米.∴他们没能最终登上顶峰,离顶峰还有170米;(2)根据题意得:150+32+43+205+30+25+20+5+30+25+75=640米,640×0.04×5=128升.∴他们共使用了氧气128升.【点睛】此题不但考查了正数和负数在实际生活中的应用,而且用到了有理数的加法,需同学们熟练掌握.20.观察与思考:我们知道,(1)1232n n n +++++=,那么3333123n ++++结果等于多少呢?请你仔细观察,找出下面图形与算式的关系,解决下列问题:......(1)推算:3333312345++++=___________2;(2)概括:3333123n ++++=___________;(3)拓展应用:求3333123100123100++++++++的值. 【答案】(1)15;(2)2(1)2n n +⎡⎤⎢⎥⎣⎦;(3)5050 【分析】(1)由前四个图可以直接推出.(2)由(1)分析可知,第n 个算式=(1+2+3+…+n )2=2(1)2n n +⎡⎤⎢⎥⎣⎦. (3)由(2)可知,13+23+33+…+1003=(1+2+3+…+100)2=2100(1001)2+⎡⎤⎢⎥⎣⎦,进而求出这个算式的和. 【详解】(1)∵13=12,13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,∴13+23+33+43+53==(1+2+3+4+5)2=152;故答案为:15;(2)由(1)可知,13+23+33+…+n 3=(1+2+3+…+n )2=2(1)2n n +⎡⎤⎢⎥⎣⎦,故答案为:2 (1)2n n+⎡⎤⎢⎥⎣⎦;(3)23333100(1001)1231002100(1001)1231002+⎡⎤⎢⎥+++⎣⎦=++++250505050=5050=【点睛】此题考查了有理数的混合运算,以及规律型:图形的变化类,得出规律并运用规律解决实际问题是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《有理数》拓展提高试题(一)姓名
友情提醒:试卷较难,请耐心想一想
一、 选择题(每小题 3 分,共 30 分)
1、设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则 a-b+c 的值为 ( )
A.-1
B.0
C.1
D.2
2、有理数 a 等于它的倒数,则 a 2004 是----------------------------------------------------( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数
3、若ab ≠ 0 ,则 a + a 的取值不可能是-----------------------------------------------( )
A .0 B.1 C.2 D.-2
4、当x=-2 时, ax 3
+ bx - 7 的值为 9,则当x=2 时,
ax 3 + bx - 7 的值是( )
A 、-23
B 、-17
C 、23
D 、17
5、如果有 2005 名学生排成一列,按 1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第 2005 名学生所报的数是………………………
( )
A 、1
B 、2
C 、3
D 、4 6、若|a|=4, |b|=2, 且|a+b|=a+b, 那么 a-b 的值只能是(
).
A.2
B. -2
C. 6
D.2 或 6
7、 x 是任意有理数,则 2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零 8、观察这一列数: - 3 , 5 , - 9 , 17 , - 33
,依此规律下一个数是(
)
A. 45 21 4 7
B. 45 19 10 13 16
C. 65 21
D. 65 19
9、若 4
x + 1
表示一个整数,则整数 x 可取值共有( ).
A.3 个
B.4 个
C.5 个
D.6 个
10、
1 -
2 +
3 -
4 + ⋅ ⋅ ⋅ - 14 + 15
- 2 + 4 - 6 + 8 - ⋅ ⋅ ⋅ + 28 - 30
等于( ) A. 1 4 B. - 1 4 C. 1
2
D. - 1
2
二、填空题(每小题 4 分,共 32 分)
11.请将 3,4,-6,10 这四个数用加减乘除四则运算以及括号组成结果为 24 的算式
(每个数有且只能用一次)
;
b
b
a a
b b
c c
∑ 5
3 3
⎭
⎝ 12. (-3)2013×( - 1
)2014=
;
3
13.若|x-y+3|+ (x +
y - 2013)2
=0,则 2x = .
x - y
14. 北京到兰州的铁路之间有 25 个站台(含北京和兰州),设制 种票才能满足
票务需求.
15. 设a , b , c 为有理数,则由
+ + 构成的各种数值是
16. 设有理数 a ,b ,c 在数轴上的对应点如图所示,
则 │b -a│+│a+c│+│c -b │=
_
;
17.根据规律填上合适的数: 1,8,27,64,
,216;
18、 读一读:式子“1+2+3+4+5+…+100”表示从 1 开始的 100 个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为 100
n ,这里“ ∑ ”是求和符号,例如“1+3+5+7+9+ (99)
(即从 1 开始的 100 以内的连 n =1
50
续奇数的和)可表示为∑(2n -1); 又如“13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 +103 ”可表示 10
n =1
为∑ n 3 ,同学们,通过以上材料的阅读,请解答下列问题:
n =1 (1)2+4+6+8+10+…+100(即从 2 开始的 100 以内的连续偶数的和)
用求和符号可表示为 ;
(2)计算: ∑(n 2 -1) =
(填写最后的计算结果)。
n =1 三、解答题
19、计算: 23 - ⎛- 4 - 2 ⎫ - 2.75 + ⎛
- 7 - 2 ⎫ (4 分)
⎪ ⎪
5 ⎝ ⎭ ⎝ ⎭
20、计算: ⎛- 9 24 ⎫
⨯ 50
(4 分)
25 ⎪
ab a + 1)(b + 1) (a + 2)(b + 2)
(a + 2006)(b + 2006) 21、已知 b - 1 +
a - 2 = 0 ,
求 1
+ ( 1 + 1 + ⋅ ⋅ ⋅ + 1
的值 (7 分)
22、(7 分)阅读并解答问题 求1 + 22
+ 23 + ....... +
22008 的值,
解:可令 S = 1 + 22
+ 23 + ...... +
22008 ,
则 2S = 22 + 23 + 24 + ...... +
22009 ,
因此 2S-S = 22009 - 1,
所以1 + 22
+ 23 + ...... +
22008 = 22009 - 1
仿照以上推理计算出1 + 52
+ 53 + ...... +
52009 的值
23. (8 分)三个互不相等的有理数,既可以表示为 1, a + b , a 的形式,也可以表示为 0, b , b 的形式,试求a 2000 + b 2001 的值. a
24、(8 分)电子跳蚤落在数轴上的某点 K 0,第一步从 K 0 向左跳 1 个单位到 K 1,第二步由K 1 向右跳 2 个单位到 K 2,第三步由 K 2 向左跳 3 个单位到 K 3,第四步由 K 3 跳 4 个单位到K 4,…,按以上规律跳了 100 步时,电子跳蚤落在数轴上的点 K 100 所表示的数恰是 20, 试求电子跳蚤的初始位置 K 0 点所表示的数。
(附答案,见下页)
∑ ⎭ ⎝ 答案‘
一、 选择题 1、B 2、D 3、B 4、A 5 、 A 6、D 7、D 8、D
9、D 10、D 二、填空题
11、(答案不唯一)、12、- 1
3
13、670
14、702 15、1,-1,3,-3
50
16、-2c 17、125
18、(1) ( 2n ) n = 1
(2)50
三、解答题
19、解:原式= 4.6 + 4 + 2 - 2.75 - 7 - 2
= 4.6 - 2.75 - 3 = 4.6 - 5.75 = -1.15
3 3 20、解:原式= - ⎛10 - 1 ⎫ ⨯ 50 = -⎛10 ⨯ 50 - 1 ⨯ 50⎫
= -(500 - 2) = -498
⎝ 21、
2007 2008 52010 - 21 25
⎪ ⎪ 25 ⎭ 22、
4
23、解:由于三个互不相等的有理数,既表示为 1, a + b , a 的形式,又可以表示为 0, b
, b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定a + b 与a 中有a
一个是 0, b 与b 中有一个是 1,但若a = 0 ,会使 b
无意义,∴ a ≠ 0 ,只能a + b = 0 ,即
a a
a = -
b ,于是 b
= -1.只能是b = 1,于是a =-1。
∴原式=
2. a 24、解: 设 K0 点所表示的数为 x ,则 K1,K2,K3,…,K100 所表示的数分别为 x -1,
x -1+ 2 , x -1+ 2 - 3 , … ,
x -1+ 2 - 3 + 4 - 99 +100 . 由 题 意 知 :
x -1+ 2 - 3 + 4 - 99 +100 =20 所以 x=- 30.
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。