2014年郑州市九年级第一次质量检测及答案
2014年郑州市九年级第一次质量预测数学试卷及答案(word版)

2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( ) A .350.19×108 B .3.501 9×109 C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人 B .1.65米是该班学生身高的平均水平 C .这组身高数据的中位数不一定是1.65米 D .这组身高数据的众数不一定是1.65米5. 小明在2013年暑假帮某服装店买卖T 恤衫时发现:在一段时间内,T 恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T 恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x 元,那么下列所列方程正确的是( ) A .(80)(20) 1 200x x -+= B .(80)(202) 1 200x x -+= C .(40)(20) 1 200x x -+=D .(40)(202) 1 200x x -+=德美种是容宽德美种是容宽德美种是容宽德美种是容宽6. 如图,直线l 上摆有三个正方形a ,b ,c ,若a ,c 的面积分别为10和8,则b 的面积是( ) A .16B .20C .18D .24第6题图 第7题图 第8题图7. 如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当字母B 第2 014次出现时,恰好数到的数是( ) A .4 028B .6 042C .8 056D .12 0848. 如图,一条抛物线与x 轴相交于A ,B 两点,其顶点P 在折线CD -DE 上移动,若点C ,D ,E 的坐标分别为(-2,8),(8,8),(8,2),点B 的横坐标的最小值为0,则点A 的横坐标的最大值为( ) A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9. 计算16=_________.10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.lcbaDC B Axy PCED B OA Cy xO BA14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG =_________.第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________. 三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第_______步(填序号),原因:________________;还有第_______步出错(填序号),原因:____________________. 请你写出此题的正确解答过程.D'A'GFE DCB A y xEO D CBA17.(9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统计图:课程类别频数频率法律360.09礼仪550.1375环保m a感恩1300.325互助490.1225合计n 1.00(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a=_________;m=_________;n=_________.(2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.18.(9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.491305536校本课程报名意向条形统计图人数/人180160140120100806040200课程类别互助感恩环保礼仪法律19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y a x =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向_____,再向下平移7个单位,相应的朋友距离为_____; (2)探究二:将函数451x y x +=+化成y =__________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠P AB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动67.5°36.9°PAB区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.(参考值3 1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;出口出口出口出口(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.图1 图223. (11分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (-2,-1),且与y 轴交于点C (0,3),与x 轴交于A ,B 两点(点A 在点B 的左侧),点AB CDEFGM NABCD EFGM NP 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交直线AC 于点D . (1)求该抛物线的函数关系式.(2)当△ADP 是直角三角形时,求点P 的坐标.(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A ,P ,E ,F 为顶点的平行四边形?若存在,请直接写出点F 的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测QxyOA B D PC数学 参考答案一、选择题(每小题3分,共24分) 1. B 2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分) 9.410. -3 11.52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2(-三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式= == . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b ≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130; 400;……………………4分(2)如图:117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分21)1)(1(1aba a a a ab -∙-++⨯b1211)1)(1(aba a a a ab -∙+-+÷人数(人)493655课程类别 法律礼仪环保感恩互助100608012014016018040200130130AC…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.) 19.(9分)(1)左平移1个单位 ,25; …………………………4分 (2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位.相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………2分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………4分∵AC +BC =AB =63,∴54215123x x +=⨯ 63,解得x = 36.…………6分 ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分21. (10分)解:(1)480000400402++-=x x y …………………………………4分 (2) 投资46.9万元能完成工程任务. …………………………………5分 依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=, ∴2102750x x --=.1020351032x ±∴==±.(负值舍去). 510322.32x ∴=+≈.DEBECD AB =G∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ;方案二:一块矩形绿地的长为24m ,宽为14m ;方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .又∵AE =EF ,∠EHF =∠EBA =90º,∴△EHF ≌△ABE . …………4分∴FH =BE ,EH =AB =BC ,∴CH =BE =FH.∵∠FHC =90º,∴∠FCH =45º. tan ∠FCH =1. …………6分(2)作FH ⊥MN 于H .由已知可得∠EAG =∠BAD =∠AEF =90º.结合(1)易得∠FEH =∠BAE =∠DAG.又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º,∴△EFH ≌△AGD ,△EFH ∽△AEB . ……8分∴EH =AD =BC =n ,∴CH =BE.∴EH AB =FH BE =FH CH. ∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =mn . ∴当点E 沿射线CN 运动时,tan ∠FCN =mn .……10分 23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1),∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得 1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x , 32-=x .M B E A C D F G N H∵点A 在点B 的左边, ∴B(-1,0), A (-3,0). ∴P 1(-1,0). …………………………………………5分 ②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC = 90, ∴∠OAD 2= 45. 当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2 . 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分 设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分 ∵D 2在3+=x y 上, P 2在342++=x x y 上, ∴设D 2(x ,3+x ), P 2(x ,342++x x ). ∴(3+x )+(342++x x )=0.0652=++x x , ∴21-=x , 32-=x (舍). ∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1), F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x .解之得: 221--=x , 222+-=x . ∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。
2014年郑州一测试卷参考答案

2014年九年级第一次质量预测思想品德参考答案一、选择(共50分)▲单项选择(每小题2分,共20分)1.D2.B3.A4.C5.C6.B7.B8.C9.D 10.A▲多项选择(每小题3分,共30分。
下列每小题的四个选项中,至少有两项是符合题意的。
多选、错选均不得分。
少选者:若有两个正确选项,只选一项者得1.5分;若有三个正确选项,每少选一项即少得1分;若有四个正确选项,选三项者得2分,选一、二项者均得1分)11.ABCD 12.BCD 13.BC 14.AC 15.BCD 16.ABC 17.AB 18.ABCD 19.ABD20.ABCD二、辨析(10分)21.①广场舞简单易学,老少皆宜,有助于全民健身运动的开展。
(2分)②广场舞能够丰富群众精神文化生活,是群众文化建设的有效途径。
(3分)③广场舞音响声音过大,会影响附近居民的正常工作、学习和生活,甚至会引发纠纷。
(2分)④对于广场舞,应加强管理和引导,做到兴利除弊,而不是简单地一禁了之。
(3分)三、观察与思考(22题12分,23题14分,共26分)22.(1)未成年人正处于品德形成的关键时期;一些未成年人不懂得孝敬父母;这是加强未成年人思想道德建设的需要;孝道是做人之本,是传统美德的重要内容;弘扬孝道有利于家庭和谐;这是弘扬传统文化的需要;这是传递正能量的需要;等等。
(两方面即可,4分)(2)①主动与父母交流、沟通;(2分)②理解父母、体谅父母;(2分)③要在遵守道德与法律的基础上孝敬父母(或:在明辨是非、坚持原则的基础上孝敬父母;或:不能因为亲情包庇父母的违法行为)(2分)④帮助父母做力所能及的事。
(2分)23.(1)坚持环境保护的基本国策(或:走可持续发展的道路);(2分)艰苦创业是做任何事业必不可少的精神力量;(2分)广大人民群众通过行使建议监督权,参与国家和社会生活的管理。
(2分)(2)缓解城市交通拥堵问题;引领、促进中原经济区建设;解决就业;提升城市形象,促进城市发展等。
2014年九年级物理一模试题含答案

2014年九年级物理一模试题(本卷满分100分 完卷时间90分钟)考生注意:1.本调研试卷含五个大题。
2.考生务必按要求在答题纸规定的位置上作答,在其他纸张上答题一律无效。
一、单项选择题(共16分)下列各题均只有一个正确选项,请将所选选项的代号用2B 铅笔填涂在答题纸的相应位置上,更改答案时,用橡皮擦去,重新填涂。
1. 一节干电池的电压为 A .1.5伏B .24伏C .110伏D .220伏2. 下列实例中,利用连通器原理工作的是 A .吸尘器B .船闸C .温度计D .订书机3. 一名初中生游泳时所受到浮力的大小约为 A .5牛 B .50牛 C .500牛 D .5000牛4. 首次测定了大气压的值的科学家是 A .安培B .托里拆利C .奥斯特D .欧姆5. 关于磁场,下列描述中错误的是 A .磁体的周围一定存在磁场 B .磁场具有一定的方向 C .磁场的周围存在磁感线D .磁场能对磁体产生作用6. 在图1所示的电路中,电源电压保持不变。
闭合电键S ,当滑动变阻器的滑片P 向右移动时,变大的是A .电流表A 示数与电流表A 1示数的差值B .电流表A 示数与电流表A 1示数的比值C .电压表V 示数与电流表A 1示数的比值D .电压表V 示数与电流表A 示数的比值7. 图2(a )、(b )所示电路的电源电压相等且不变,若电流表A 1、A 2的示数相等,则电阻R 1、R 2、R 3、R 4的大小关系有 A .R 1+R 2=R 3+R 4B .R 1=R 3+R 4C .R 1>R 3+R 4D .R 2<R 3+R 48. 如图3所示,底面积不同的圆柱形容器A 和B 盛有甲、乙两种液体,两液面相平。
现分别从两容器中抽出部分液体,液面仍保持相平,若甲对A 底部压力的变化量大于乙对B 底部压力的变化量,则剩余液体对各自容器底部的压强p A 、p B 和压力F A 、F B 的关系是A .p A <pB ,F A =F BR 1 R 2A 1S A 2S (a ) (b )图2 R 3R 4R 1 P ASV A 1 图1R 2图4R 1SA 2V R 2A 1B .p A <p B ,F A >F BC .p A >p B ,F A =F BD .p A >p B ,F A >F B二、填空题(共28分)请将结果填入答题纸的相应位置。
河南省郑州市2014年九年级第一次质量预测语文试题(含答案)(高清扫描版)

16.(1)亲自(2)长草木(的地方)
(3)降低身份,指谦卑(4)以……为远,认为……远(4分)
17.(1)先帝在世的时候,每次和我谈论起这些事,对桓、灵二帝没有不叹息、痛心和遗憾的。之礼来待他。(2分)
18.希望皇上亲贤远佞;亲自带兵出师;接受先帝嘱托,忧思难眠,尽职尽责。(答出任意1点1分;共2分)
14.示例一:举例论证(1分)。列举菲尔・奈特创业成功的例子,具体论述了耐克公司的成功是因为源于对运动的热爱与激情(对体育的巨大热情以及用装备全力支持运动员的奉献精神)(2分)。
示例二:比喻论证(1分)。用百合不能成为玫瑰,生动形象的论证了我们都各自有自己的潜力,不需要模仿谁(2分)。
示例三:对比论证(1分)。招聘会上随大流的人们与下文所举成功人士的例子作对比,具有很强说服力(2分)。
(突出主题1分,简洁明确1分;共2分)
活动内容:播放交通安全宣传视频、邀请交警讲座等
(合理可行即可,1项1分,共2分)
二、(16分)
7.在东京一个夏夜,“我”和朋友们外出散步,遇到一个日本老太婆想让我们帮忙搬运东西;我们中的某君拒绝了她的要求;于是大家快步躲避了这位老太婆(但是大家又过意不去,觉得不好意思,脚步不再从容了)。(3个要点,1点1分;共3分)
(品质1分,结合内容1分;2个层面,共4分)
11.以小见大(1分);通过描写生活中一件很小的事情,寄予作者“天下如一家,人们如家族”的社会理想(1分)。
运用对比(欲抑先扬)手法(1分);前文写大家的安闲自在,后面写脚步的紧迫,写出愉悦与内疚心情的差异,自然引发最后的“憧憬”(1分)。
运用白描手法(1分);描写平淡质朴,用词精练自然,隽永意深,用敏感、犀利的慧眼透视生活的细微处(1分)。
2014郑州市初三化学一模试卷

2014年九年级第一次质量预测参考答案一、选择题(本题包括10小题,每题2分,共20分)1.D 2.C 3.D 4.B 5.A 6.B 7.B 8.A 9.D 10.B二、填空题(本题包括6小题,每空2分,共36分)11.(6分)(1)SO 42–(2)Ca (3)CaO + H 2O === Ca(OH)212.(4分)火星四射,生成黑色固体,放出大量的热;3Fe + 2O 2 ====点燃 Fe 3O 413.(6分)(1)分子在不停地运动,分子间有间隔(2)纯净物由同种分子构成,混合物由不同种分子构成(3)氧化汞分子分解为汞原子和氧原子,每2个氧原子结合成1个氧分子,许多汞原子聚集成金属汞14.(6分)13;Al 3+;Al 2O 3(或其他合理答案)15.(6分)(1)A 和B(2)2NaOH+CuSO 4==Cu(OH)2↓+Na 2SO 4(3)产生蓝色沉淀、蓝色沉淀变为黑色16.(8分)(1)肥皂水;煮沸(或蒸馏)(2)<;化学反应前后元素种类不变(或质量守恒定律)三、简答题(本题包括4小题,共27分)17.(4分)(1)证明乒乓球碎片和滤纸片都是可燃物(2)燃烧的条件之一是温度达到可燃物的着火点18.(9分)(1)2KMnO 4 ====△ K 2MnO 4 + MnO 2 + O 2↑(或2KClO 3 MnO 2 2KCl + 3O 2↑); 2H 2O 2 ===MnO 22H 2O+ O 2↑(2)a ;用带火星的小木条放在b 处,观察木条是否复燃。
(3)B a ;CaCO 3 + 2HCl === CaCl 2 + CO 2↑+ H 2O (或B b ;Zn + H 2SO 4 === ZnSO 4 + H 2 )19.(4分)(1)二氧化碳与水发生了化学反应(2)分别往干燥的紫色石蕊纸花上喷洒稀盐酸和醋酸,观察现象。
(若答“往干燥的紫色石蕊纸花上喷洒醋酸”给1分)20.(10分)(1)C 2H 5OH + 3O 2 ====点燃 2CO 2 + 3H 2O C + O 2 ====点燃 CO 2CO 2 + Ca(OH) 2 = CaCO 3↓+ H 2O(2)①探究木炭与氧气反应生成什么;木炭在氧气中燃烧发出白光,澄清石灰水变浑浊。
郑州市2014年九年级化学一测试题定稿.doc

九年级第一次质量预测注意:本试卷分为试题卷和答题卡两部分。
考试时间60 分钟,满分100 分。
考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡。
用到的相对原子质量:H— 1 C— 12 O— 16Cu— 64Zn— 65Fe— 56一、选择题(本题包括10 小题,每小题 2 分,共 20 分。
每小题只有一个选项符合题意。
)....1.下列商品属于纯净物的是2.下列变化中,前者是物理变化,后者是化学变化的是A .冰雪融化、食物腐烂B.汽油挥发、胆矾研碎C.美酒飘香、铁锅生锈 D .水的电解、干冰升华3.用右图所示的简易净水器处理黄河水,下面分析正确的是A.净水器能将黄河水变为软水B.净化后的水属于纯净物可直接饮用C.净水器能杀灭河水里的细菌和病毒D.活性炭能吸附河水里的异味和色素4.下列图示实验基本操作正确的是A B C D5.酚酞是实验室常用的化学试剂,其化学式是的是C20H 14O4。
下列说法中不正确...A .在“分子运动现象的实验”中,酚酞分子扩散到氨水中,使氨水变红色B.酚酞溶液有酒精的气味,猜想酚酞溶液是酚酞溶于乙醇中形成的14C.酚酞中氢元素的质量分数计算式是318 ×100%D .一个酚酞分子由20 个碳原子、 14 个氢原子和 4 个氧原子构成6.下列物质中,由分子构成的是A .氯化钠B.苯C.金刚石 D .纳米铜7.下图是两种气体发生化学反应的微观示意图,其中相同的球代表同种原子。
下列说法正确的是A.分子在化学变化中不可分割B.化学反应前后原子的种类和数量不变C.该反应属于置换反应D.反应后生成了两种新的化合物8.自来水厂可用氯气消毒。
氯气通入水中发生的反应为:Cl 2 + H 2O == HCl + HClO ,反应前后氯元素没有呈现的的化合价为.....A .+2B .+1 C. 0 D.–19.下列关于一氧化碳和二氧化碳的叙述中,正确的是A .一氧化碳和二氧化碳均有可燃性B .一氧化碳和二氧化碳均有还原性C.一氧化碳和二氧化碳都有毒性 D .一氧化碳和二氧化碳都是无色气体10.一定条件,在密闭容器中有甲、乙、丙、丁四种物质充分反应,测得反应前后各物质的质量分数如下图所示。
2014年郑州市九年级第一次质量检测及答案

2014年郑州市九年级第一次质量检测及答案D4. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG=_________.D'A'GFE DCB A第14题图 第15题图5. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________.三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第____步(填序号),原因: ; 还有第_______步出错(填序号),原因:____________________.请你写出此题的正确解答过程.17. (9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统 计图:(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a =_________;m =_________;n =_________. (2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.校本课程报名意向条形统计图课程类别互助感恩环保礼仪法律18. (9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向____,再向下平移7个单位,相应的朋友距离为_____;(2)探究二:将函数451x y x +=+化成y =_________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠PAB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)67.5°36.9°PAB21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.AB C DE FGM NABCD EFGM N图1 图223.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(-2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交直线AC于点D.(1)求该抛物线的函数关系式.(2)当△ADP是直角三角形时,求点P的坐标.(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. B2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分)9.4 10. -3 11. 52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2( 三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130;400;……………………4分(2)21)1)(1(1aba a a a ab -•-++⨯b1211)1)(1(aba a a a ab -•+-+÷117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分AB C D E…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)19.(9分)(1)左平移1个单位 ,25; …………………………4分(2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位. 相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC,∴AC DEBECD AB ==5tan 67.512PC x=︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC,∴BC =4tan 36.93x x =︒.…………4分 ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36.…………6分∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分 21.(10分)解:(1)480000400402++-=x x y …………………………………4分(2) 投资46.9万元能完成工程任务. …………………………………5分依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=,∴2102750x x --=.1020351032x ±∴==±.(负值舍去).510322.32x ∴=+≈.∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ; 方案二:一块矩形绿地的长为24m ,宽为14m ; 方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .GNM B AE DFGH又∵AE=EF,∠EHF=∠EBA=90º,∴△EHF≌△ABE . …………4分∴FH=BE,EH=AB=BC,∴CH=BE=FH.∵∠FHC=90º,∴∠FCH=45º. tan ∠FCH=1. …………6分(2)作FH⊥MN于H .由已知可得∠EAG=∠BAD=∠AEF=90º.结合(1)易得∠FEH=∠BAE=∠DAG.又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90º,∴△EFH≌△AGD,△EFH∽△AEB. (8)分∴EH=AD=BC=n,∴CH=BE.∴EHAB=FHBE=FHCH.∴在Rt△FEH中,tan∠FCN=FHCH=EHAB=mn .∴当点E沿射线CN运动时,tan∠FCN=mn.……10分23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x xy (4)分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x, 32-=x.∵点A 在点B 的左边, ∴B(-1,0),A (-3,0).∴P 1(-1,0). …………………………………………5分②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC =90, ∴∠OAD 2=45.当∠D 2AP 2=90时, ∠OAP 2=45, ∴AO 平分∠D 2AP 2 .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x)=0. 0652=++x x , ∴21-=x, 32-=x(舍). ∴当x =-2时, 342++=x xy=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1),F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于点F .当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x.解之得: 221--=x, 222+-=x.∴F 点存在有两点,F 1(-22-,1),F 2(-22+,1). )。
2014年郑州一模数学理(扫描版)带答案

2014年高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题ADACB DBCBB AB 二、填空题13.[1,3)-; 14.5; 15. 8π;16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150AD AD -+=,解之得5AD =或 3.AD =……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分 (2) 在ABD ∆中,由正弦定理可知sin sin BD ABBAD ADB=∠∠,又由cos BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos 3C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +, 则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+==②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a bE b a b η=⨯+⨯++⨯=+………… 10分32.12a bE E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大;当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分 19.解:(1)证明:由题意11tan tan 22AD AB ABD AB B AB BB ∠==∠==, 注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1,……………………3分又侧面,1.AB CO ∴⊥又与CO 交于点,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴, 以为原点,建立空间直角坐标系则(0,A,(B ,C,1B,D , 又因为12CC AD =,所以1C …………8分⊥CO 11A ABB BD O 1AB BC ⊥O xyz O -A所以(,0)33AB =-,(0,33AC =,1().633DC = 设平面ABC 的法向量为(,,)n x y z = ,则根据0,0AB n AC n ⋅=⋅=可得(1n =是平面ABC 的一个法向量,设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅==………………12分20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠,则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分 ⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B , 设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,2y =, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩-------------------------------------8分因为1122(2,),(2,)AC my y AD my y =+=+,所以212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅= ,即3m =±,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>. 所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>,11()1x u x x x-'=-=, 当01x <<时,()0u x '>;当1x >时,()0u x '<. 所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数. 故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时,()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. --------10分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==, 则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x xe exv x e x xe --'=-=,令(),()x x s x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=, 故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分 22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆∴.DC EC EDAB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB =. ……………………………………………………………… 6分⑵ FB FA EF⋅=2,∴FEFBFA EF =, 又 BFE EFA ∠=∠,∴FAE ∆∽FEB ∆, ∴EBF FEA ∠=∠,又 四点共圆,,, ∴//.EF CD .…………………………………………………… 10分23.解:⑴222212:(2)(1)1,:1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,2x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数) 将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==D C B A ,,,∴EBF EDC ∠=∠∴EDC FEA ∠=∠所以12||||AB s s =-==……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34)4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥- 即 1.x a ≤+所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立. ③当4>x 时,原不等式可化为43.x x a x -+-≥-即7,3a x +≥由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立.综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年郑州市九年级第一次质量检测及答案2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( )A .350.19×108B .3.501 9×109C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )德美种是容宽德美种是容宽德美种是容宽德美种是容宽A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人B.1.65米是该班学生身高的平均水平C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.小明在2013年暑假帮某服装店买卖T恤衫时发现:在一段时间内,T恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x元,那么下列所列方程正确的是()A.(80)(20) 1 200x x-+=B.(80)(202) 1 200x x-+= C.(40)(20) 1 200x x-+=D.(40)(202) 1 200x x-+=6.如图,直线l上摆有三个正方形a,b,c,若a,c的面积分别为10和8,则b的面积是()A.16 B.20 C.18 D.24lcbaDCBA第6题图第7题图第8题图7.如图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当字母B第2 014次出现时,恰好数到的数是()A.4 028 B.6 042 C.8 056 D.12 0848.如图,一条抛物线与x轴相交于A,B两点,其顶点P在折线CD-DE上移动,若点C,D,E的坐标分别为(-2,8),(8,8),(8,2),点B的横坐标的最小值为0,则点A的横坐标的最大值为()A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9..10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG=_________.D'A'GFE DCB A第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________.三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第____步(填序号),原因: ; 还有第_______步出错(填序号),原因:____________________.请你写出此题的正确解答过程.17. (9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统 计图:(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a =_________;m =_________;n =_________. (2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.校本课程报名意向条形统计图课程类别互助感恩环保礼仪法律18. (9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向____,再向下平移7个单位,相应的朋友距离为_____;(2)探究二:将函数451x y x +=+化成y =_________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠PAB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)67.5°36.9°PAB21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.AB C DE FGM NABCD EFGM N图1 图223.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(-2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交直线AC于点D.(1)求该抛物线的函数关系式.(2)当△ADP是直角三角形时,求点P的坐标.(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. B2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分)9.4 10. -3 11. 52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2( 三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130;400;……………………4分(2)21)1)(1(1aba a a a ab -•-++⨯b1211)1)(1(aba a a a ab -•+-+÷117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分AB C D E…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)19.(9分)(1)左平移1个单位 ,25; …………………………4分(2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位. 相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC,∴AC DEBECD AB ==5tan 67.512PC x=︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC,∴BC =4tan 36.93x x =︒.…………4分 ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36.…………6分∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分 21.(10分)解:(1)480000400402++-=x x y …………………………………4分(2) 投资46.9万元能完成工程任务. …………………………………5分依题意,可得到2025x ≤≤.…………………………7分Q 240400480000469000x x -++=,∴2102750x x --=.1020351032x ±∴==±.(负值舍去).510322.32x ∴=+≈.∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ; 方案二:一块矩形绿地的长为24m ,宽为14m ; 方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .GNM B AE DFGH又∵AE=EF,∠EHF=∠EBA=90º,∴△EHF≌△ABE . …………4分∴FH=BE,EH=AB=BC,∴CH=BE=FH.∵∠FHC=90º,∴∠FCH=45º. tan ∠FCH=1. …………6分(2)作FH⊥MN于H .由已知可得∠EAG=∠BAD=∠AEF=90º.结合(1)易得∠FEH=∠BAE=∠DAG.又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90º,∴△EFH≌△AGD,△EFH∽△AEB. (8)分∴EH=AD=BC=n,∴CH=BE.∴EHAB=FHBE=FHCH.∴在Rt△FEH中,tan∠FCN=FHCH=EHAB=mn .∴当点E沿射线CN运动时,tan∠FCN=mn.……10分23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x xy (4)分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x, 32-=x.∵点A 在点B 的左边, ∴B(-1,0),A (-3,0).∴P 1(-1,0). …………………………………………5分②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC =ο90, ∴∠OAD 2=ο45.当∠D 2AP 2=ο90时, ∠OAP 2=ο45, ∴AO 平分∠D 2AP 2 .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x)=0. 0652=++x x , ∴21-=x, 32-=x(舍). ∴当x =-2时, 342++=x xy=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1),F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于点F .当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x.解之得: 221--=x, 222+-=x.∴F 点存在有两点,F 1(-22-,1),F 2(-22+,1). )。