石英晶体谐振式传感器
石英晶体传感器

精品课件
精品课件
总结:
综上所述,石英晶体测温传感器,具有良好的稳定性 以及高精度性,其可将温度的变化变换为振荡频率变 化的频率调制信号,而该信号极易发送与接收,有很好 的抗干扰能力,可实现遥测与遥控,易于用数字式仪器 测量,易于与单片机、计算机连接,在对频率和时间精 度要求较高的电子测量中有很大的应用空间。
精品课件
3.石英晶体的温度——频率转换
石英晶体切型:
晶片是从一块晶体上按一定的方位角切下的薄片,可以是圆形或正方形,矩形 等。按切割晶片的方位不同,可将晶片分为AT、BT、CT、DT、X、Y等多种 切型。不同切型的晶片其特性也不尽相同,尤其是频率温度特性相差较大。
精品课件
ห้องสมุดไป่ตู้
Y切型,LC切型,AC切型的石英晶体具有良 好的线性频率温度特性,石英晶体的固有 谐振频率与温度T的关系可以如下表达:
石英晶体测温传感器
精品课件
精品课件
石英晶体测温原理
石英晶体是弹性体,它存在固有振动频率。当强迫振动频率等 于它的固有振动频率时,就会产生谐振。利用这一特性人们将 它做成振荡器、压电传感器等元件。
通常,用于这些方面的石英晶体,它的温度稳定性是衡量其品 质的一项重要指标。由于石英晶体的固有振动频率与温度密切 相关,因此,我们可以利用这一特点作成高精度的温度一频率传 感器。
精品课件
石英谐振器的振荡频率随温度而变化。采取特殊的切割方向 , 可以使这种变化加强, 再把这种变化控制成线性或接近线 性关系, 就可以制成一种高灵敏度测温传感器。
根据不同的频率和切型, 石英晶体温度传感器的温度灵敏度
Ct 可以在20Hz/℃ 到2 850Hz/ ℃范围内变动。对这一变化
石英晶体谐振式绝对压力传感器研制

A s at T e dvl meto a nert e qa z eoa c rsue sno i epa e .Q a zcyt bt c: h ee p n f n it av u ̄ ・ snn e pesr esr s xli d u ̄ ・rs l r o g i r n a
维普资讯
20 0 8年 第 2 7卷 第 1 期
传感器与微系统( r su e a dM c ss m T cn l is Ta d cr n i oyt eh o g ) n r e oe
8 5
石 英 晶体 谐 振 式 绝对 压 力传 感 器 研 制
关键词 :石英 晶体 ;谐振 ; 压力传感器
中 图 分 类 号 :T 2 2 P 1 文 献 标 识 码 :A 文 章 编 号 :10 — 7 7 2 0 )2 0 8 -0 0 0 9 8 (0 8 1 - 05 2
De eo m e t 0 ua t . e o a c b o u e v l o n fq r z r s n n e a s l t
Dre S S Ure S enS 0r
PAN . a .W EN a An b o Hu .YAO n — u n GA0 e g c e ,XI S u h i Do g y a , Ch n — h n E h — a
( . i F reOrn neE up nsM itr pee tt eB ra , e ig107 , hn ; 1 A r oc d a c q ime t layRe rsn i ue u B in 00 1C ia i a v j
2 Ai o c i t r p e e t t e Or a Ha b n 1 0 0 , i a . r F r e M l y Re r s n i g n, r i 5 0 1 Ch n ; i a a v
石英晶体微天平传感器

应用
气体传感器:
将吸附特定气体的吸附膜附着于QCM电极表面,当空气中含有这种气体, 其分子就会被吸附于吸附膜上。被吸附的气体分子会引起QCM电极表面 质量的变化,使QCM的谐振频率产生变化。因此通过检测谐振频率的变 化即可判断空气中有无该种气体和该种气体量的多少。 QCM最早是应用于气相组分的分析、有毒易爆气体的检测。已对SO2 、 H2S、HCI 、NH3、NO2、Hg、CO、及其他碳氢化合物、氰化物等害气 体进行探测研究。
结构
QCM支架温控系统和液体 池的实物图:
QCM晶片两面的实物图:
应用
免疫传感器: 将特定的抗原(或抗体)固定于QCM的电极表面,当试剂中含有与其对应 的抗体(或抗原)时,两者之间就会相互结合,引起QCM表面电极质量的变 化。通过质量变化引起的谐振频率变化就可判断待测试剂中是否含有与Q CM电极表面的抗原(或抗体)相对应的抗体(或抗原)。
抗原 抗体
应用
基因传感器: 首先将DNA的单链固定 于QCM的电极表面, 当待测试剂中含有与其 对应的另一条DNA单 链时,两者就会结合在 一起,引起QCM表面 电极质量的变化,并通 过QCM谐振频率的变 化反映出来。这样通过 谐振频率的变化就可定 量测得待测试剂中含有 的特定DNA单链的量。
应用
基本原理
QCM定量基础: 德国物理学家Sauerbrey通过大量的研究发现厚度剪切压电石英晶体的谐振频率 变化Δf与在晶体表面均匀吸附的刚性物的质量Δm之间存在着比例关系, 他在 1959年给出了Sauerbrey 方程:
式中f为晶体的固有谐振频率,又叫基频率, ( Hz), m 为晶体表面涂层质量(g), △ f 为晶体谐振频率的变化量,A为涂层面积(cm2)。 该方程的适用前提是晶体表面的吸附层必须为刚性吸附层,既在晶体发生谐振 时该吸附层可随晶体本体发生无形变无相对位移的同步振动。 以此为理论依据,QCM最早只能应用与真空或气相环境中。
石英晶体微天平物质结构

40
• Quartz crystal • 2. Electrode material
ΔF= - 2 F02ΔM/A(q q)1/2
ΔF: Frequency Change of Quartz Crystal; ΔM: Mass Change of the Substance on Electrode
石英晶体微天平(quartz crystal microbalance)是一种非常灵敏的质量检 测器,能够快速、简便和实时检测反应过 程中的质量变化,检测限可达到纳克级 水平,已被广泛应用于基因学、诊断学等 各方面,成为分子生物学和微量化学领域 最有效的手段之一。
1
QCM crystal. Grey=quartz, yellow=metallic electrodes.
26
当晶体被浸入到溶液中,振荡频率取决于 所使用的溶剂。当覆盖层比较厚时,频率 f 和质量变化 Dm 之间是非线性的,需要 修正。
27
当石英晶体振荡与流体接触时,晶体表面 对流体的耦合极大地改变振荡频率,并在 晶体与流体接触面附近产生一剪切振动。 振动表面在流体中产生平流层,它导致 频率与(h)1/2成比例降低,这里和h分别 是流体的密度和粘度。
9
而当石英晶体受到电场作用时,在它的某些 方向出现应变,而且电场强度与应变之间 存在线性关系,这种现象称为逆压电效 应。逆压电效应是在电场的作用下,在电 偶极距发生变化的同时产生形变.
10
三、石英谐振器的振动模式
石英谐振器是由石英 晶片、电极、支架及 外壳等部分构成。
11
1、伸缩振动模式 2、弯曲振动模式 3、面切变振动模式 4、厚度切变振动模式
2、光双晶:同时存在左旋和右旋两个部分连 生在一起。
QCM

石英晶体微天平是一种新型的高精度谐振式测量仪器,测量精度 可以达到纳克级,由于具备测量精度高,结构简单,成本低廉等 优点,越来越被科研工作者关注和重视。
1.基本原理 2.结 构
3.相关应用
基本原理
相关概念:
晶体的各向异性: 沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此 导致晶体在不同方向的物理化学特性也不同。 压电效应: 对某些电介质施加机械力从而引起它们内部的正负电荷中心发生相 对位移,产生极化,进而导致介质两端表面内出现符号相反的束缚 电荷的现象。 牛顿流体: 指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。 切应力: 物体由于外因而变形时,在物体内部各部分之间所产生的用于抵抗 这种外因的作用,并力图使物体从变形后状态回复到变形前状态的 内力。
基本原理
在上世纪六十年代初,压电石英晶体作为质量传感器的应用一直局限在 气相中。无合适的液相定量方程是其中的原因之一,但更主要的原因是 其在液相中的振荡一直未获得成功。因为晶体在液相中振荡导致的能量 损耗远大于气相中的损耗。直至八十年代,Nomura和Konash等实现了 石英晶体在溶液中的振荡,从而开拓压电传感器应用的全新领域。随后 Kanazawa等提出了著名的Kanazawa-Gordon方程,即在牛顿流体中晶 体的谐振频率变化满足:
基本原理
QCM定量基础:
德国物理学家Sauerbrey通过大量的研究发现厚度剪切压电石英晶体 的谐振频率变化Δf与在晶体表面均匀吸附的刚性物的质量Δm之间 存在着比例关系, 他在1959年给出了Sauerbrey 方程:
式中f为晶体的固有谐振频率,又叫基频率, ( Hz), m 为晶体表面涂层 质量(g), △ f 为晶体谐振频率的变化量,A为涂层面积(cm2)。 该方程的适用前提是晶体表面的吸附层必须为刚性吸附层,既在晶体 发生谐振时该吸附层可随晶体本体发生无形变无相对位移的同步振动。 以此为理论依据,QCM最早只能应用与真空或气相环境中。
振动传感器的原理及应用

测量前先根据标准的机器类型注释决定被 测量设备的机器类型,然后输入机器类型 号,通过测量,仪器就会自动把测量值与 ISO10816-1:1995标准比较,然后
④ 相对与谐振子的振动能量,系统的功 耗是极小量。这一特征决定了传感器系统 的抗干扰性强,稳定性好。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
(1)振动筒传感器
振动筒传感器是一种典型的敏感频率的 振动传感器,于60年代末实用。下图给出 了一种用于绝压测量的振动筒压力传感器 最早使用的原理结构。其测量敏感元件是 一个恒弹合金(如3J53)制成的带有顶盖 的薄壁圆柱壳。
(4)主要技术指标
A、 性能特性
量程 : ±20g(X轴,Y轴,Z轴)
工作温度 :10℃~40℃
电源 :±15 ±0.5VDC
① 输出信号是周期的,被测量能够通过 检测周期信号而解算出来。这一特征决定 了谐振式传感器便于与计算机连接,便于 远距离传输;
② 传感器系统是一个闭环结构,处于谐 振状态。这一特征决定了传感器系统的输 出自动跟踪输入;
③ 谐振式传感器的敏感元件即谐振子固 有的谐振特性,决定其具有高的灵敏度和 分辨率;
震动、抗电磁干扰,温度影响系数小。
四、主要技术参数
量 程:30,60,
100Mpa
准确性:0.2%FS,0.5%FS
重复性:0.2%FS,0.4%FS 稳定性:准确度的年漂移一般不大于准确度
ST系列振动速度传感器
石英压力传感器

石英传感器原理凡是把非电量转换为电量的装置均称为传感器,它是实现信息检测、转换、控制和传输的元器件。
石英晶体传感器按用途、结构、形状等大体可分为机械传感器、通用传感器、化学传感器以及应用于DNA检测的生物传感器,而石英压力温度传感器是一种典型的机械通用型传感器。
传感器一般由敏感元件、传感元件和测量电路等组成。
石英传感器的敏感元件是石英晶体,石英晶体的主要成份是二氧化硅,其密度为2.65×103kg/m3,莫氏硬度为7,熔点高达1750℃,难溶于水,长期稳定性能好,石英晶体具有较高的机电耦合系数,线性范围宽,重复精度高,滞后小,无热释电效应,动态特性优良,振动频率稳定,是其它材料难以代替的。
根据石英晶体的压电效应、压电逆效应及对某些物理量和化学量的变化会引起其频率和Q值(或等效电阻)发生变化的原理而制成的石英传感器,具有精度高、灵敏度好、测量范围宽、反应迅速、数字输出等独特的优势。
由于晶体是频率控制元件,本身就能达到数字化(以频率的方式输出),当绝对频偏与被测含量呈线性关系时,其数字处理既简单又方便,且输出数字量稳定可靠,易与计算机接口,有利于二次仪表的数字化。
数字量与模拟量相比,具有抗干扰性强,适宜于远距离传输,消除了模拟数字转换这一复杂环节及其造成的误差。
由于石英晶体还具有短稳频率与长稳频率的优良特点,传感器的分辨率可提高几个数量级,减少了传感器的校准次数。
石英晶体机械传感器石英晶体机械传感器主要用于测量位移、速度、力、弹性、重量等,较有代表性的传感器包括石英晶体测力计、石英晶体压力计、石英晶体加速度计、石英谐振式重力仪、石英差频重力仪等。
1石英晶体测力计根据压电效应原理制造的石英晶体测力计,与接触表面的面积大小无关,当石英晶体受到力的作用时会产生机械形变,在其表面形成束缚电荷,电荷量的大小与作用力成正比,故测出其表面电荷量就可显示出作用力。
大部分石英晶体测力计均采用压电系数较大的X切型或AT切型的晶体,X切型晶体的压电方程为: qX=d11FX(1)式中,d11为压电常数,FX为沿晶体X方向施加的压力,qX为垂直于X 轴平面上的电荷。
石英称重传感器工作原理

石英晶体(Quartz Crystal)是二氧化硅无水化合物,分子式是SiO2。
当石英晶体片沿X轴方向受力作用时,内部产生极化,在垂直于X轴的两个平面上产生等量的正负电荷,这种现象称为纵向压电效应。
而在垂直于Y轴的平面上,沿着Y轴的方向施加外力时,在与X轴垂直的平面上产生电荷,这种现象称为剪切效应。
石英晶体的压电效应是由于在外力作用下石英晶体内的硅原子和氧原子的位置产生相对变形,正电荷和负电荷的重心互相移位所致。
产生的电荷由覆盖在石英晶体表面的电极板进行收集、传输。
力值的计量就是直接利用这三个压电效应,制成单分量或多分量测力与称重传感器。
利用石英晶体制造称重传感器时,石英晶体篇有并联和串联连接两种方式。
并联连接:两个压电石英晶体片按极化方向相反粘接,负电荷集中在中间的负电极板上,正电荷在两端的正电极板上。
这时相当于两个电容器并联,输出电极板上的电荷和电容量将增加一倍,如图4所示。
如果有n个石英晶体片按并联方式连接,此时的总输出电荷将增加n倍,电荷灵敏度也增加n倍,而电压灵敏度则与单个石英晶体片工作时相同,n个石英晶体片并联所产生的电荷为:Q X=nd11F x式中:Q X——石英晶体圆片垂直于Fx平面产生的电荷d11——石英晶体的纵向压电模数,d11=2.31PC/N两个表面之间的电压U X为:U X=Q X/C X=d11F x/C X式中:C X——石英晶体圆片的电容量.C X=επd2/4t.ε——石英晶体的介电系数。
.串联连接:两个石英晶体片按极化方向相同粘接,于是在两个石英晶体片粘接处的中间电极板上正负电荷相互抵消,这时总电容量为单个石英晶体片工作时的一半,电压都增大一倍,而总电荷则不变,如图5所示。
..若n个石英晶体片串联连接,由于输出电压增加n倍,因此电压灵明度也增加n倍,而电荷灵明度则与单个石英晶体片工作时相同。
.由此得出,多个石英晶体片并联连接时,输出电荷量大,电荷灵敏度高;串联连接时,输出电压大,电压灵敏度高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石英晶体谐振式传感器
以石英晶体谐振器作为敏感元件的谐振式传感器。
石英晶体谐振器是用石英晶体经过适当切割后制成,当被测参量发生变化时,它的固有振动频率随之改变,用基于压电效应(见压电式传感器)的激励和测量方法就可获得与被测参量成一定关系的频率信号。
石英晶体谐振式传感器的精度高,响应速度较快,常用于测量温度和压力。
石英晶体温度-频率传感器早期的石英晶体温度-频率传感器采用具有非线性温度-频率特性的石英晶体谐振器制作。
在发现具有线性温度-频率特性的石英晶体切型后,这种温度传感器的谐振器采用LC切型的平凸透镜石英晶体块制成,其直径约为数毫米,凸面曲率半径约为100毫米以上。
谐振器封装于充氦气的管壳内,在传感器电路中利用它的压电效应和固有振动频率随温度变化的特性构成热敏振荡器,它的基本谐振频率为28兆赫。
电路中另有一个振荡频率为2.8兆赫的基准振荡器,它通过十倍频后输出一个28兆赫的参照频率。
两个振荡器的输出经门电路相加送往混频器得到差频输出信号,它是被测温度与基准温度(即基准振荡器的温度)之差与1000赫/℃(温度系数)的乘积,因此该差频输出信号记录了被测温度的变化。
由时间选择开关产生不同的时间控制信号作为选通脉冲,以获得不同的分辨率。
线性石英晶体-频率传感器可用于热过程流动速度不高、间隔时间较长的各种高精度温度测量的场合以及多路遥控系统、水底探测等方面,还可用它制成高分辨率的直读式数字自动温度计。
石英晶体谐振式压力传感器这种传感器所采用的谐振器是用厚度
切变振动模式AT切型石英晶体制作的。
谐振器可制成包括圆片形振子和受力机构的整体式或分离式结构。
振子有扁平形、平凸形和双凸形三种,受力机构为环绕圆片的环形或圆筒形。
图2是振子和圆筒为整体式结构的谐振器的结构图。
振子和圆筒由一整块石英晶体加工而成,谐振器的空腔被抽成真空,振动两侧上各有一对电极。
圆筒和端盖严格密封。
石英圆筒能有效地传递周围的压力。
当电极上加以激励电压时,利用逆压电效应使振子振动,同时电极上又出现交变电荷,通过与外电路相连的电极来补充这种电和机械等幅振荡所需的能量。
当石英振子受静态压力作用时,振动频率发生变化,并且与所加压力成线性关系。
在此过程中
石英的厚度切变模量随压力的变化起了主要作用。
与分离式结构相比整体式结构的主要优点是滞后小、频率稳定性极佳。
但它的结构复杂、加工困难、成本也高。
压力传感器的谐振器还有振梁式,也是由AT切型石英晶体制成,振梁横跨于谐振器中央。
在振梁的两端上下对称设置四个电极,用于激励振动和拾取频率信号。
当振梁受拉伸力时,其谐振频率提高,反之则频率降低。
因此输出频率的变化可反映输入力的大小。
这种传感器的优点是对温度、振动、加速度等外界干扰不敏感、稳定性好、品质因数高、动态响应特性好等。