2015北大自主招生数学试题
LDC数学教育2015年高考数学北京理

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)1A2.若A3A4.设AC5A6.设{A 1223B .若130a a +<,则120a a +< C .若120a a <<,则213a a a > D .若10a <,则()()21230a a a a -->俯视图7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述 了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确 的是ABCD9.在(101112.在13.在ABC △中,点M ,N 满足2AM MC = ,BN NC = .若MN xAB y AC =+,则x =;y = .14.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是.A B Oxy -122C三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)已知函数2()cos 222x x xf x =-.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.16.(本小题13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (18.19.(本小题14分)已知椭圆C :()222210x y a b a b +=>>,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.20.(本小题13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.2015年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)A (2)D (3)B (4)B (5)C (6)C (7)C (8)D 二、填空题(共6小题,每小题5分,共30分)((三15.(16.()13173 . 7CP AC==所以甲的康复时间不少于14天的概率为3 . 7(Ⅱ) 因为25a=,假设乙康复的时间为12天,则符合题意的甲有13天、14天、15天、16天,共4人。
2015年各高校自主招生考试试题综述

2015年各高校自主招生考试试题回忆录一、北京大学今年北大自招太过亲民,遇到这样的自招题你敢想?一句周杰伦《青花瓷》里的歌词,问描述的是什么?答案有“青花瓷”、“青花盆”和“青花瓶”,你觉得选什么呢……北大语文试题只有一道题目,要求根据孟子《生于忧患死于安乐》和庄子《人间世》这两个材料,写一篇文章。
英语有阅读材料涉及美国白人警察枪杀黑人、贵州省一教育基金会受“郭美美事件”影响遭遇零捐助等时事热点。
面试部分考题:1.用一条长度一定的的绳子围成一个n边形,怎样围才能使围出的的n边形面积最大?2.后轮驱动的车辆,起动和刹车时,分别是车头翘起还是车尾翘起?判断并说明理由。
3.如何看待微信在人际交往中的作用?4.如何看待欧洲历史上的分与合?5.北京和张家口联合申办冬奥会面临哪些机遇和挑战?6.请用三个词概括中国传统文化,并谈谈中国文化如何真正“走出去”。
7.怎么看待追求财富导致雾霾的说法8.请谈一下动物迁徙的意义?9.谈谈你对嘀嘀打车与专车经营的看法。
10.你认为的文学阅读的最高境界是什么?11.请谈有教无类与因材施教的关系。
12.请谈你对国企高管限薪令的看法。
13.有人提议将网络战归为武力冲突,谈谈你的看法。
14.谈谈你对亚投行的看法。
15.有人提议在基础教育阶段实施男女分开管理,即开办男校和女校,谈谈你的看法。
16.谈一谈信仰、义务、责任的关系。
17.爱因斯坦说:“简单是科学追求的伟大目标。
”谈谈你的看法。
18.请你设计一下中国的养老体系?19.你如何看待就医不要钱这种理想设计?20.谈一谈你对批判性思维和惯性思维的关系的理解。
21.谈一谈你所认识的经济全球化下中国的粮食问题。
22.谈一谈自我意识?23.有人说在全球化背景下我国粮食安全已经不是一个问题,你怎么看?24.你对“绿水金山就是真金白银”有何看法?25.你对“贫富分化是经济发展必然现象”有何看法?26.谈一谈你对自主招生的看法。
二、2015年北京大学自主招生“博雅人才培养计划”部分面试题1.北京申办冬奥会有哪些机遇和挑战2.如何治理雾霾,有何建议3.中国传统文化将如何走出去4.微信在人际交往中的作用5.欧洲历史上的分与合6.如何看待中国申请冬奥会面试分为两个阶段,第二阶段为一对一考察理科生需在45分钟内,尝试解答一道物理题和一道数学题,然后分别接受一名物理考官和一名数学考官的一对一考察。
2015年《高校自主招生考试》数学真题分类解析之7、解析几何

专题之7、解析几何一、选择题。
1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是2.(2009年复旦大学)平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是A.只有唯一值B.可取二个不同值C.可取三个不同值D.可取无穷多个值3.(2010年复旦大学)已知常数k1,k2满足0<k1<k2,k1k2=1.设C1和C2分别是以y=±k1(x−1)+1和y=±k2(x−1)+1为渐近线且通过原点的双曲线,则C1和C2的离心率之比等于5.(2011年复旦大学)A.ρsin θ=1B.ρcos θ=−1C.ρcos θ=1D.ρsin θ=−1 6.(2011年复旦大学)设直线L过点M(2,1),且与抛物线y2=2x相交于A,B两点,满足|MA|=|MB|,即点M(2,1)是A,B的连接线段的中点,则直线L的方程是A.y=x−1B.y=−x+3C.2y=3x−4D.3y=−x+5 7.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足A.a2(1−b2)≥1B.a2(1−b2)>1C.a2(1−b2)<1D.a2(1−b2)≤1 8.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是A.ρ2+2ρ(cos θ+sin θ)=5B.ρ2−6ρcos θ−4ρsin θ=0C.ρ2−ρcos θ=1D.ρ2cos 2θ+2ρ(cos θ+sin θ)=19.10.(2012年复旦大学)B.抛物线或双曲C.双曲线或椭圆D.抛物线或椭圆A.圆或直线线11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y−20=0,则抛物线方程为A.y2=16xB.y2=8xC.y2=−16xD.y2=−8xA.2B.2C.4D.413.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x−4)2+(y−1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是二、解答题。
北大、清华等高校自主招生数列试题

所 3 (
1 所 以 n
. = 其 类 比 到 等 比 数 列 上 . 否 具 有 相 同 是
的 性 质 ? 如 果 有 . 们 能 否 自创 自主 我
・
,
招 生试 题 ?
3 .此 题 为 典 的 “ 夕 ”司题 . 点 I 是
以 sr + o x tn + ox. 盾 . i ̄ c s< a x c t 才’ r
所 以
4
盯
r () - x ̄点 (,) 且满  ̄-x- ≤ ) f - 00 , 3 21 ≤
斯
+数{ 足≥ - ) 2列} 。 , . . ・‰ 满=
() I 确定厂 ) ( 的解析式;
( 证明 : l Ⅱ) > ;
( ) 明 : 1 + Ⅲ 证
6, 点 日 ( 0 , 中 s= l6+ + 则 S )其 6+ : … 厶. =
2
能构成 等差 数列・
2
…
0 1
粤 其 一兰
Sl l ‘CO S r X 厂—
因≥ F_ 2 为 ( 1_ 2 一 2÷ 《 , 1 = = 一 以( j 2 ) g一 吉 所
了 叉直线 \ 了 函数 \ 了 的 2 / 与 /
.
—
以眦 。 ( , ), 以 ! ±! 。 鲥 0 1 所 i
本 性 质 知 任 意 两 项 的 差 都 为 公 差d 的
公 倍 数 . 为 本 题 的 解 题 依 据 .若 将 此
二
x
1 .设 的边 长为 ( 中a ) 其 l .由
题 意 知 除 去 +后 剩 下 的 三 个 三 角
形 为全等 的正 三角 形 , 内切 圆半径 其
2015年高三数学高校自主招生考试 真题分类解析10 不等式

2015年高三数学高校自主招生考试真题分类解析10 不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值X围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k=时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( ) A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值X围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。
7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 . 8.(2009年华中科技大学) 对任意的a>0,b>0,的取值X围是.三、解答题。
9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年某某大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年某某大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年某某大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值.16.(2011年大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值.17.(2012年大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0). 4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值X围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x +)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且X围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的X围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n ≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011.……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011.当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.word所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x, [f(x)]min=f()=.11 / 11。
2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)

2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)数学试卷(满分:150分;考试时间:120分钟)学校 班级 姓名 号数 准考证号亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功!答题时请注意:请将答案或解答过程写在答题卡...的相应位置上,写在试卷上不得分. 一、选择题(共10小题,每小题4分,满分40分.每小题只有..一个..正确的选项,请把正确答案的代号填写在答题..卡.中相应的表格内) 1.下列计算正确的是A .32a a a =•B . 523)(a a = C . 32a a a =+ D . 326a a a =÷ 2.不等式组⎩⎨⎧≥->+0401x x 的解集是A .41≤≤-xB .41≥-<x x 或C .41<<-xD .41≤<-x3.一组数据:3,4,5,x ,7的众数是4,则x 的值是A .3B .4C .5D .64.下列图案中,既是中心对称又是轴对称的图案是A B C D5.已知两圆的半径分别为6和1,当它们外切时,圆心距为A .5B .6C .7D .86.如果一个定值电阻R 两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U 变化的图像是7.下列事件是必然事件的是A .直线b x y +=3经过第一象限;B .方程0222=-+-x x x 的解是2=x ;C .方程34-=+x 有实数根;D .当a 是一切实数时,a a =2.8.如图示,将矩形纸片ABCD 沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上;叠完后,剪一个直径在BC 上的半圆,再展开,则展开后的图形为9.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC=4 ,BD 为⊙O 的直径,则BD 等于A.4B.6C.8D.1210.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为A .41-n cm 2B .4n cm 2C .41cm 2D .n)41( cm 2二、填空题(共8小题,每小题4分,满分32分.请将答案填在答题卡...的相应位置上)11.2009-的相反数是 .12.分解因式:222-m = .13.生物学家发现目前备受关注的甲H1N1病毒的长度约为0.000056毫米,用科学记数法表示为毫米.14.正方形网格中,∠AOB 如图放置,则cos ∠AOB= .15.海峡两岸血浓于水,“两岸三通”有了新发展,最近大陆与台湾的包机航班改为定期航班,受到两岸人民的欢迎.如图是我国政区图,根据图上信息,台北与北京的实际距离<直线距离>约是 千米(精确到千米).A B D C H G E F F BCG(A) H(D) E G(A)H(D)F(C) E(B) B DC A A B C O A 'B 'C '北京* 台北 * 600千米 O DCBA 第9题 第10题第第14题 第15题16.如图,菱形OABC 中,120A =o ∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90o,则图中由弧,,A B B B '''C ,A '弧CB 围成的阴影部分的面积是 .(结果保留根号) 17.若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==12y x ,那么b a -= .18.从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 . 三、解答题(共8小题,满分78分. 请将答案写在答题卡...的相应位置上) 19.(满分8分)计算:20)2(30sin 2)23(-+--ο20.(满分8分)小明和小颖在玩“石头、剪刀、布”的一次游戏中,他们平局的概率是多少?(请列表或画树状图分析)21.(满分8分)如图, 将矩形EFBC 一条对角线FC 向两端延伸,使AF=DC ,连接AB 、ED .求证:AB ∥ED .22.(满分10分)2009年10月1日是中华人民共和国成立六十周年纪念日,某中学举行了一次“建国知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图.请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(请直接写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩的学生人数约为多少名?23.(满分8分)为了更好地宣传“2010年上海世博会”,“和谐之旅”号京沪城际铁路于2009年5月1日正式开通运营,预计高速列车在北京、上海间单程直达运行时间为半小时.某次试车时,试验列车由北京到上海的行驶时间比预计时间多用了6分钟,由上海返回北京的行驶时间与预计时间相同.如果这次试车时,由上海返回北京比去上海时平均每小时多行驶40千米,那么这次试车时由上海返回北京的平均速度是每小时多少千米?24.(满分10分)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过点A作AD ⊥BC 于点D (如图), 则 sin B =c AD ,sin C =bAD ,即AD =c sin B ,AD =b sin C , 于是c sin B =b sin C ,即C c B b sin sin =. A B C D E F 第21题 第22题 学生数50.5 60.5 70.5 80.5 90.5 100.5 222 28 0 32 36同理有A a C c sin sin =,Bb A a sin sin =. 所以 Cc B b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠B ,运用上述结论....(*)...和有关定理.....就可以求出其余三个未知元素c 、∠A 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件 a 、b 、∠B∠A ; 第二步:由条件 ∠A 、∠B ∠C ; 第三步:由条件 c .(2)如图,已知:∠A =60°,∠C =75°,a =6,运用上述结论(*)试求b .25.(满分12分)如图,抛物线)0(2≠++=a c bx ax y 与y 轴正半轴交于点C ,与x 轴交于点),(、08)0,2(B A ,OBC OCA ∠=∠。
北大自主招生真题及答案

二)一、选择正确的或者最好的表达形式(10 分)1、为维护语言的清纯,禁止在广告中用谐音字______成语。
A 篡改B 窜改C 纂改2、大家推荐在学界______的朱德熙先生担任学会主席。
A 深负众望B 不负众望C 深孚众望3、只要有诚心,再厚的冰也会______。
A 融化B 熔化C 溶化4、棋摊摊主卖个破绽,引路人______,骗取钱财。
A 入网B 入瓮C 入彀5、所有机票代售点,一律不得向旅客收取或者______收取手续费。
A 变向B 变相C 变项6、当时正值三年自然灾害, ______尚有艰难,有谁操心可有可无的戏班子的存亡。
A 裹腹B 裹肤C 果腹7、政府领导作为人们的公仆,要______都关心群众的疾苦。
A 不时不刻B 时时刻刻C 无时无刻8、我国的农业生产取得了举世______的伟大成就,首先应归功于改革开放的政策。
A 瞩目B 侧目C 注目9、中国队 20 号前锋一脚远射,令对方门将______,皮球正入网中。
A 措不及防B 猝手及防C 猝不及防10、把这些数据放在一起,就能看出______来。
A 端倪B 端睨C 端眤二、文言文阅读(10 分)州郡遇圣节锡宴,率命猥妓数十群舞于庭,作“天下太平”字,殊为不经。
而唐《乐府杂录》云:“舞有字,以舞人亚身于地,布成字也。
”王建《宫词》云:“罗衫叶叶绣重重,金凤银鹅各一丛。
每遇舞头分两向,太平万岁字之中。
”则此事由来久矣。
(精密《齐东野语》)1、文中所叙是一种什么景象?精密对此有何看法?2、结合现实生活中所见,谈谈你对类似现象的看法。
三、将下段古文翻译为现代汉语(20 分)古者先王竭力于亲民加事于明法彼法明则忠臣劝罚必则邪臣止忠劝邪止而地广主尊者秦是也群臣朋党比周以隐正道、行私曲而地削主卑者山东是也乱弱者亡,人之性也治强者王古之道也越王勾践恃大朋之龟与吴战而不胜身臣入宦于吴反国弃龟明法亲民以报吴则夫差为擒故恃鬼神者慢于法恃诸侯者危其国 ( 《韩非子•饰邪》)四、现代文阅读(20 分)不久前我在鄯善迪坎儿村,见一大棵梭梭树长在路旁。
2015年《高校自主招生考试》数学真题分类解析之8、平面几何

专题之8、平面几何一、选择题.1、(2009年复旦大学)一个菱形边长与其内切圆的直径之比为k∶1(k>1),则这个菱形的一个等于A.arctan(k)B.arctanC.arctanD.arctan2、(2009年复旦大学)用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?A.2种B.3种C.4种D.5种3、(2012年复旦大学)设S是平面上的一个六边形,不是凸的,且它的任意3个顶点都不共线,称一个以S的某些顶点为顶点的多边形为一个S多边形,则下面的结果一定不对的是A.每个S四边形都是凸四边形B.存在S五边形为凸五边形C.每个S五边形都不是凸五边形D.至少有两个S四边形是凸四边形4、(2011年同济大学等九校联考)如图,△ABC内接于☉O,过BC中点D作平行于AC的直线l,l交AB于E,交☉O于G,F,交☉O在A点处的切线于P,若PE=3,ED=2,EF=3,则PA的长为5、(2010年清华大学等五校联考)如图,△ABC的两条高线AD,BE交于H,其外接圆圆心为O,过O作OF垂直BC于F,OH与AF相交于G,则△OFG与△GHA面积之比为A.1∶4B.1∶3C.2∶5D.1∶26、(2012年清华大学等七校联考)已知锐角△ABC,BE垂直AC于E,CD垂直AB于D,BC=25,CE=7,BD=15,BE,CD交于H,连接DE,以DE为直径画圆,与AC交于另一点F,则AF 的长为A.8B.9C.10D.11二、解答题.7、(2009年华中科技大学)由图1,得4(ab)+c2=(a+b)2,①可推得勾股定理a2+b2=c2.则由图2,可得一个类似于①的等式:.从而推得一个重要的三角公式:.8、(2009年中国科技大学)如图所示,已知D、E、F分别为BC、AC、AB的三等分点,并且EC=2AE,BD=2CD,AF=2BF,若S△ABC=1,试求S△PQR.9、(2012年同济大学等九校联考)如图,AB是圆O的直径,CD⊥AB于H,且AB=10,CD=8,DE=4,EF是圆的切线,BF交HD于G.(1)求GH;(2)连接FD,判断FD与AB的关系,并加以证明.10、(2009年北京大学)如图,圆内接四边形ABCD,AB=1,BC=2,CD=3,DA=4,求圆的半径.11、(2010年北京大学等三校联考)A,B为边长为1的正五边形边上的点.证明:AB最长为.12、(2011年北京大学等十三校联考)在△ABC中,a+b≥2c,求证:∠C≤60°.13、(2011年北京大学等十三校联考)已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线长.14、(2012年北京大学等十一校联考)求证:若圆内接五边形的每个角都相等,则它为正五边形.A1A4A5A6都是凸四边形,故选项D正确;如图③,选项C正确.4.B【解析】因为AC∥PF,所以∠HAC=∠APE,又PA是☉O的切线,可得∠HAC=∠B,故∠APE=∠B,又因为∠PEA=∠BED,所以△BED∽PEA,故=,因为PE=3,ED=2,BE=AE,所以BE=AE=,再由相交弦定理可得GE·EF=BE2,故GE=2,得PG=1,最后由切割线定理可得PA2=PG·PF,知PA=.故选B.5.A【解析】观察到△OFG与△GHA相似,只要找到这两个三角形的边长之比,就可以求出其面积之比.因为O点为△ABC的外心,OF⊥BC,所以F是BC边的中点,故AF是BC边上的中线,由欧拉定理可知OH和AF的交点G为△ABC的重心,所以FG∶GA=1∶2,又△OFG∽△HAG,故两三角形面积之比为1∶4.选A.6.B【解析】方法一如图,7.用面积分割的方法考虑各部分面积之和等于整个图形的面积.四个三角形的面积的和为2×[(nsin β)(ncos β)]+2×[(msin α)(mcos α)],中间平行四边形的面积为mnsin[π−(α+β)]=mnsin(α+β),而整个图形的面积为(nsin β+msin α)(ncos β+mcos α),∴2×[(nsin β)(ncos β)]+2×[(msin α)(mcos α)]+mnsin(α+β)=(nsin β+msin α)(ncos β+mcos α),整理上式有sin(α+β)=sin αcos β+cos αsin β.8.过E作BC的平行线,交AD于S.10.11.以正五边形一条边上的中点为原点,此边所在的直线为x轴,建立如图所示的平面直角坐标系.(1)如图1,当A,B中有一点位于P点时,知另一点位于R1或者R2时有最大值|PR1|;当有一点位于O点时,|AB|max=|OP|<|PR1|.(2)如图2,当A,B均不在y轴上时,知A,B必在y轴的异侧方可能取到最大值(否则取A点关于y轴的对称点A',有|A'B|>|AB|).不妨设A位于线段OR2上(由正五边形的中心对称性,知这样的假设是合理的),则使|AB|最大的B点必位于线段PQ上,且当B从P向Q移动时,|AB|先减小后增大,于是|AB|max=|AP|或|AQ|.对于线段PQ上任意一点B,都有|BR2|≥|BA|.于是|AB|max=|R2P|=|R2Q|.由(1)(2)知|AB|max=|R2P|.下面研究正五边形对角线的长.如图3,12.【解析】论证角的范围往往是通过先论证该角的某个三角函数值的范围后,再结合相应函数的单调性进行的.本题是在三角形中解决问题,并且已知了三角形的三条边之间的关系,因此可考虑利用余弦定理先确定cos C的范围,再根据余弦函数的单调性证得结论.13.因为平行四边形中的各边长度是已知的,因此可考虑利用三角形的余弦定理进行求解.如图,不妨设AB=5,AD=3,BD=6.在△ABD中,由余弦定理得BD2=AB2+AD2−2AB·ADcos∠BAD;在△ABC中,由余弦定理得AC2=BA2+BC2−2BA·BCcos∠ABC,由于AD=BC,AB=BA,∠ABC+∠DAB=π,故两式相加得AC2+BD2=2(AB2+AD2),于是62+AC2=2×(52+32),解得AC=4,即另一条对角线长为4.14.方法一如图1所示,五边形ABCDE为☉O内接五边形,延长AE,CD,DC,AB,有两交点G,H,连接AC. 因为∠AED=∠EDC,所以∠GED=∠GDE,所以GE=GD.因为A,C,D,E在☉O上,所以∠CAG=∠GDE,∠GCA=∠GED,所以∠CAG=∠GCA,故GA=GC,可得AE=CD.连接AD,同理可得AB=CD,从而AE=AB=CD.同样延长BC,ED,BA,DE,可证得BA=BC=DE,所以AB=BC=CD=DE=EA,从而可得五边形ABCDE为正五边形.方法二如图2所示,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题
1.整数x,y,z 满足xy+yz+zx=1,则(1+2x )(1+2y )(1+2z )可能取到的值为( )
A .16900
B .17900
C .18900
D .前三个答案都不对
2.在不超过99的正整数中选出50个不同的正整数,已知这50个数中任两个的和都不等于99,也不等于100.这50个数的和可能等于( )
A .3524
B .3624
C .3724
D .前三个答案都不对
3.已知x ∈[0,2
π],对任意实数a ,函数y=2cos x −2a cosx+1的最小值记为g(a ),则当a 取遍所有实数时,g(a )的最大值为( )
A .1
B .2
C .3
D .前三个答案都不对
4.已知2010−202是2n 的整数倍,则正整数n 的最大值为( )
A .21
B .22
C .23
D .前三个答案都不对
5.在凸四边形ABCD 中,BC=4,∠ADC=60∘,∠BAD=90∘,四边形ABCD 的面积等于
2AB CD BC AD ⋅+⋅,则CD 的长(精确到小数点后1位)为( )
A .6.9
B .7.1
C .7.3
D .前三个答案都不对
二.填空题
6.满足等式120151
11+)(1)2015
x x +=+(的整数x 的个数是_______. 7.已知a ,b,c,d ∈[2,4],则2
2222()()()
ab cd a d b c +++ 的最大值与最小值的和为___________
8.对于任意实数x ∈[1,5],|2x +px+q|≤2,的最大整数是__________
9.设x=2222b c a bc +-,y=2222a c b ac +-,z=222
2b a c ba
+-,且x+y+z=1,则201520152015x y z ++的值为___ 10.设12,,...,n A A A 都是9元集合{1,2,3,…,9}的子集,已知|i A |为奇数,1≤i ≤n,|i j A A ⋂|为偶数,1≤i ≠j ≤n ,则n 的最大值为____________
三.解答题
11.已知数列{n a }为正项等比数列,且3412a a a a +--=5,求56a a +的最小值
12.已知f (x)为二次函数,且a ,f (a ),f (f (a )),f (f (f (a )))成正项等比数列,求证:f (a )=a
13.称四个顶点都在三角形边上的正方形为此三角形的内接正方形。
若锐角△ABC 的三边满足a >b>c , 求证:这个三角形内接正方形边长的最小值为sin sin ac B a c B
+ 14.从O 出发的两条射线12,l l ,已知直线l 交12,l l 于A 、B 两点,且AOB S ∆=c(c 为定值),记AB 的中点为X , 求证:X 的轨迹为双曲线
15.已知i a (i=1,2,3,…,10)满足:1210...a a a +++=30,1210...a a a <21,求证:i a ∃,使得i a <1
##Answer##
1.1+2x =xy+yz+zx+2x =(x+y)(x+z),同理1+2y =(y+z)(y+x),1+2
z =(z+x)(z+y)
(1+2x )(1+2y )(1+2z )=2
[()(y z)(z x)]x y +++,对照前三个答案,只有A 是一个完全平方数 检验,不妨取x+y=2,y+z=5,z+x=13,有解x=5,y =−3,z=8.选A
2.考虑将1,2,⋯,99这99个正整数分成如下50组 (1,99),(2,98),⋯,(47,53),(48,52),(49,51),(50).若选出的50个不同的正整数中没有50,则必有2个数位于 (1,99),(2,98),⋯,(47,53),(48,52),(49,51)中的同一组,不合题意.所以这50个不同的正整数中必有50,而 (1,99),(2,98),⋯,(47,53),(48,52),(49,51)中,每组有且只有一个数被选中.因为50+49=99,所以(49,51)中选51;因为51+48=99,所以(48,52)中选52;以此类推,可得50,51,52,⋯,98,99是唯一可能的选法.经检验,选50,51,52,⋯,98,99满足题意,此时50+51+⋯+98+99=3725。
故选D .
3.令t=cosx ,令h(t)=2t −2a t+1,t ∈[0,1],g(a )=2(1)22,1()1,01(0)1,0h a a h a a a h a =-≥⎧⎪=-+<<⎨⎪=≤⎩
作图象知最大值为1,选A
4. 2010−202=202(205-1)=202(105+1)(105-1)=202(105+1)(55+1)(5-1)(432
555+++5+1),
432555+++5+1是奇数,5-1=4是22,55+1=54+1()+1被4除余数为2,同理105+1被4除余数也是2,于是n 的最大值为24,选D
5.设四边形ABCD 的面积为S ,直线AC,BD 的夹角为θ,则
7.设a r =(a ,d),b r =(b,c),二者夹角为θ,则所求为2||||a b a b ⎛⎫⋅ ⎪⎝⎭r r =2cos θ,如图。