弹性与塑性力学第2,3章习题答案
弹性与塑性力学第2,3章习题答案

第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
弹塑性力学习题解答

第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
弹性力学课后答案

弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。
2-14 见教科书。
2-15 2-16 见教科书。
见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )
得
G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax
弹塑性力学课后答案

εij第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得:3030cos 2sin 22210410413cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 60223132 3.598 3.60()22x yx yxy x y xy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+⨯=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 22210410413cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 60222132 3.598 3.60()22x yx yxyx y xy MPa MPa s ss ss a tas s t a t a +-=++---+=++=--??=----+=-?=-?=??由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
弹塑性力学习题及问题详解

本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:假如ijji a a =,如此0ijk jk e a =。
〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------4/114/5)22/(14/54/11)22/(1)22/(1)22/(12/3(应力单位)(a )从给定的σij 和从主应力值σ1,σ2和σ3中确定应力不变量I 1,I 2和I 3; (b )求出偏应力张量S ij ;(c )确定偏应力不变量J 1,J 2和J 3; (d )求出八面体正应力与剪应力。
解答:同上题2.1(a )(b )(c )方法得到σ1=4、σ2= 2 、σ3=1 对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i(1)=(0, μ21,±21) n i (2)=(±21, μ0.5,μ0.5) n i (3)=(±21, ±0.5,±0.5) (a )特征方程:σ3—I 1σ2 + I 2σ—I 3=0中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
代入数据的:I 1 =7;I 2 =14;I 3 =8(b )偏应力张量由式子(2.119)得出S ij =σ12-p δij ,其中p=7/3S ij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------12/54/5)22/(14/512/5)22/(1)22/(1)22/(16/5-(c)J 1= S ii =0,J 2=1/6[4+1+9]=2.333, J 3=1/27(2*49+9*7*14+27*8)=0.741(d) σotc =1/3*7=2.333 τotc = 2/3(I 12-3 I 2) 1/2=1.2472.3(李云雷)(a )解释:如果吗?能得出0S ,3321=>>S S S (b )解释:2J 可以为负值吗? (c )解释:3J 可以为正值吗? 解:(a )不能,因为,0321=++S S S 所以3S 不能等于0.(b )因为])()()[(612132322212σσσσσσ-+-+-=J ,所以2J 不可能为负值。
(c )可以,当321,,S S S 中有一个正数,两个负数时3J 为正值。
2.7 (金晶)证明以下关系(a )221213J I I =-证明:112321213322222112312331222212312133222221212312133212133222212312133221()()2()22211(222)3311()()331[(6I I I I I J σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ=++=++=++=++++=+++++-=+++++-++=++-++=-Q 22222221332123121332221211)()()]()()3313J I I σσσσσσσσσσσσσσ+-+-=++-++∴=-(b )33312112327J I I I I =-+证明:11232121332312312123121332222222123121232321313322222233121123123121232321313123()()31212(3)()327327I I I I I I I I I σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ=++=++==++⨯++=++++++-+=-+++++++++=22222233312123232131312312331112132122231122333132331124()()9279131(3ij jk kiij ij ij jk jk jk ki ki ki ij J s s s s p s p s p p s p s p s p s pp p σσσσσσσσσσσσσσσσσσσδσδσδσσσσσσσσσσσσσ-+++++++++==-=-=--⎡⎤⎢⎥=-∴=-=-=-⎢⎥⎢⎥-⎣⎦=+Q Q 同理代入得233123123222222333121232321313123123333121)()()()124()()927912327J s s s p p p J I I I I σσσσσσσσσσσσσσσσσσσσσσσ+==-⨯-⨯-=-+++++++++∴=-+代入下式(c )122oct 12=33I I τ-()证明:2222112312331221213322222222321312121231213322222232131212122oct 12()()2()3()()()22244[()()()](3)92229=33oct I I I I I I I I σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσττ=++=++++=++---∴-=++---=++---=++=-∴-Q ()(d)2123213()J s s s s s s =-++证明:22221122331221211222222222212311223312233122211223322113312233112321311()2211()(222)22()ij ji J s s s s s s s s s s s s s s s s s s s s s s s s s s s σσσσσσ==+++++⋅⋅⋅=++=+++++=---+++=-++2.9(梁健伟)证明:从一个给定的应力状态中加上静水应力,其主方向不改变。
证明:设静水应力为),,(p p p ,从主方向的定义有i j ij n n σσ=,从给定的应力状态中减去静水应力得i j ij ij n p n p )()(-=-σδσ,即:1313212111)()(n p n n n p -=++-σσσσ2323222121)()(n p n n p n -=+-+σσσσ3333232131)()(n p n p n n -=-++σσσσ 把等式右边的i pn 移项到左边得1313212111n n n n σσσσ=++ 2323222121n n n n σσσσ=++3333232131n n n n σσσσ=++所以从一个给定的应力状态中减去一个静水应力,其主方向不变。
2.10(张东升) 证明:通过在应力原始状态中加上静水拉力或压力,不改变作用于过某定点任何平面的剪应力分量n S 。
证明:关于主应力轴,任意平面上n S 是用1σ,2σ, 3σ由式2222222222112233112233()()n S n n n n n n σσσσσσ=++-++给出。
现假设静水应力状态(,,σσσ)是被叠加上去,得一组主应力123,,σσσσσσ+++。
对于这一新的应力状态,在任意斜截面i n 上的剪应力分量由下式得出:2222222222112233112233[()()()][()()()]n S n n n n n n σσσσσσσσσσσσ=+++++-+++++由恒等式1i i n n =,将上式展开化简得2222222222112233112233()()n S n n n n n n σσσσσσ=++-++。
这表明,原结论成立。
2.11 (黄耀洪)画出例2.6中式(2.135)和式(2.136)中所给出的在主应力空间上的两个应力状态,并画出它们在偏平面上的投影。
求(1)1003030302ijσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的主应力,1112233103215I σσσ=++=++=22231113111223233313321223010310062093047023203I σσσσσσσσσσσσ=++=++=+-+=1112133212223313233100303033302Iσσσσσσσσσ⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦代入32123I I Iσσσ-+-=解得111σ=23σ=31σ=同理,解得(2)300070005ijσ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的主应力13σ=25σ=-37σ=-(1)ijσ(2)ijσ在主应力空间上的两个应力状态如下图所示:求(1)1003030302ijσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的1ρ、1θ115533Ip===111156s pσ=-=-=22352s pσ=-=-=-33154s pσ=-=-=-122221123()7.48s s sρ=++=22221231()282J s s s=++=1123cos0.982sJθ==1arccos0.981128θ'==︒同理,求得(2)300070005ijσ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的27.48ρ=、21128θ'=︒(1)ijσ(2)ijσ在偏平面上的投影如下图所示:2.12 (李松)如果σij t jk=t ijσjk, σij和t ij为两点的两个应力状态,证明两个应力状态的主轴重合。