第六章 统计指数
统计指数与综合指数

P0
P1
产 值(万元)
基期
P0Q0
报告期
P1Q1
假定期
P0Q1
甲 千克 5000 6000 50
70
25
42
30
乙 支 30000 30600 20
20
60
61.2
61.2
丙 件 8000 6000 110 100
88
60
66
合计 — —
—
—
—
15
173
163.2 157.2
解题步骤
(一)三种产品的个体价格指数 :
按反映现 象的范围
不同
二、统计指数的种类
个体指数——反映个别现象数量变动的相
对数,如单位产品产量指数。
总指数——说明现象总体变动的相对数,
如多种商品价格综合指数。
按指数的 性质不同
质量指标指数——说明质量指标数量变动
的相对数,如价格指数、单位成本指数。
数量指标指数——说明数量指标变动的相对
数,如销售量指数、产量指数。
以基期价格计算的报告期总产值
基期总产值
由于产量变化使总产值增减的百分 比
由于产量变化使总产Байду номын сангаас增减的绝对
数额
9
数量指标指数的编制示例
[例6-1] 根据表6-1资料编制三种产品的产量指数表
表6-1 某公司商品销售量和商品价格
产品 计量 名称 单位
产量
基期
Q0
报告 期
Q1
出厂价格(元 )
基期 报告期
P0
,而且还从绝对量上说明了由于价格的变动对
总产值产生的影响。
18
第三节 平均数指数
统计指数分析 PPT课件

第二步,将同度量因素固定,以消除 同度量因素变动的影响。
拉氏指数
(Laspeyres index) 1. 1864年德国学者拉斯拜尔提出的一种指数计算方法 2. 计算指数时,主张将权数的各变量值固定在基期 3. 计算公式为 质量指数: 数量指数:
例:
设某粮油零售店2001年和2002年三种商品的零售价格和 销售量资料如下表。试分别以基期销售量和零售价格为 权数,计算三种商品的价格综合指数和销售量综合指数
销售量综合指数为
结论∶与2001年相比,三种商品的零售价格平均 上涨了2.44%,销售量平均上涨了28.38%
帕氏指数
(特点) 1. 帕氏指数以报告期变量值为权数,不能消除权数变 动对指数的影响,因而不同时期的指数缺乏可比性 。 2.帕氏指数可以同时反映出价格和消费结构的变化,具 有比较明确的经济意义。因此,在实际应用中,常 采用帕氏公式计算价格指数
如果只要求分析每一种商品销售量或价格的 变动情况,就只需要编制个体指数。
q1 p1 iq 100%. i p 100%. qo p0
•
如果要反映该粮油零售商店的三种商品销售量和价 格的综合变动,就没那么简单。因为该粮油店的三种商 品使用价值不同,计量单位不一,销售量和价格都不能 直接相加,这三种商品构成的总体我们称为复杂现象总 体。对于这种复杂现象总体,就须用特殊的方法编制狭 义的统计指数即总指数来反映其综合变动。
该指数说明多种商品价格的综合变动程度。
分子、分母之差: 说明由价格变动带来的销售额的增(减)量。
平均指数的概念
平均指数
以指数化指标的个体指数为基础,通过 对个体指数进行平均计算的总指数。有 简单平均指数与加权平均指数之分。通 常所说的平均指数都是指加权平均指数。
ZYQ的统计学原理-第六章统计指数

第六章统计指数在对社会经济现象进行对比分析时,通常有两种情况:一种是对单一事物的变动进行分析,例如:研究某种商品价格或销售量的变动,可以将不同时期的价格或者销售量的数值直接进行对比;另外一种则是对由许多计量单位、使用价值不同的事物所构成的复杂现象总体的某种特征进行综合对比,例如:研究多种商品的价格或者销售量的综合变动,此时,若采用简单的数量对比,将无法保证对比的结果具有实际经济意义!为了如实地反映他们的变动,人们转而求助于指数理论!第一节统计指数概述一、统计指数的概念统计指数(Index)的概念起源于18世纪中期的欧洲,距今只有200多年的历史。
最初的指数是指一种商品的现有价格与原来价格的对比,以此反映其价格变动的程度。
现在的指数,已经运用到我们经济生活的各个方面。
有些指数,如商品零售价格指数(Retail Price Index)、居民消费价格指数(Consumer Price Index)等,同人们的日常生活休憩相关;有些指数,如工业生产指数、股票价格指数(Stock Price Index)等,则直接影响人们的投资活动,成为社会经济的晴雨表。
1、广义的概念:——指一切说明社会经济现象数量变动或差异程度的相对数;例如:计划完成相对数、比较相对数、动态相对数等;2、狭义的概念:——指反映不能直接相加、对比的复杂社会经济现象综合变动程度的相对数;例如:某商场同时销售棉布、鞋帽和成衣等商品,由于这几种商品的性质不同、使用价值不同,故不能直接相加,对比其报告期与基期的销售量;又如:商品零售价格指数、居民消费价格指数、工业生产指数、股指等;3、狭义指数的特点:——相对性:复杂现象总体的某个变量在不同场合下综合对比所得的相对数;例如:不同时间上对比即得时间性指数、不同空间上对比即得空间性指数;——综合性:不是单一事物的变动,而是由多种事物构成的总体的综合变动;例如:股票价格指数是综合反映所有上市公司股票交易的价格变动;——平均性:狭义的指数所反映的总体变动只能是一种平均意义上的变动;例如:上海证券交易所综合指数当天与昨天相比,股票指数上涨了1.2%,表示平均来说上海证券交易所挂牌交易的上市公司平均股票价格今天比昨天上涨了1.2%,但有的上市公司上涨10%,也有的上市公司下跌了10%;二、统计指数的作用1、综合反映现象总体数量的变动方向和变动程度;1)百分比大于100%,则表示数量上升,具体大多少则表示上升的程度;2)百分比小于100%,则表示数量下降,具体小多少则表示下降的程度;例如:商品零售价格物价指数为100%,则说明多种商品零售物价总体变动呈上升状态,且上升了10%;2、对现象总体进行因素分析;1)复杂现象的总体,一般由多种因素构成,总体的变动是各构成因素变动综合影响的结果;例如:商品销售额=商品销售量单位商品价格;产品总成本=产品产量单位产品成本;原材料总费用=产品产量单位产品原材料消耗量单位原材料价格;2)可从相对数和绝对数两方面分析各因素对总体的影响方向和影响程度;3、研究现象的长期变动趋势;1)由连续编制的动态数列形成的指数数列,能反映现象的发展变化趋势;2)适合于对比分析有联系、性质不同的动态数列之间的变动关系;4、对经济现象进行综合评价和测定;例如:运用综合指数法评价和测定一个地区和单位经济效益的高低;利用平均指数法测定技术进步的程度及其在经济增长中的作用;利用指数法原理建立对国民经济发展变动的评价和预警系统等;三、统计指数的种类1、按照指数所研究对象的范围划分:1)个体指数——反映单一事物数量变动的相对数,属于广义指数,将某一指标的报告期数值与基期数值直接对比而得;例如:反映某一商品价格变动的个体价格指数反映某一产品产量变动的个体产量指数式中,k代表个体指数,p代表商品价格,q代表产品产量,下标1代表报告期,下标0代表基期;2)总指数——反映多种事物构成的复杂现象总体综合数量变动的相对数;例如:综合反映多种商品价格平均变动程度的价格总指数;综合反映多种产品产量平均变动程度的产量总指数;3)类指数——反映总体中某一类或某一组现象数量变动的相对数;本质上也是总指数,只不过它比总指数所包含事物的范围小而已;例如:零售商品物价总指数可分为粮食类价格指数、服装类价格指数等;工业总产量总指数可分为重工业类产量指数和轻工业类产量指数等;2、按照指数化指标的性质划分:所谓指数化指标,是指数所要测定其变动的统计指标;1)数量指标指数(Quantity Index Number)——指数化指标为数量指标;用来说明总体规模变动情况的指数,例如,工业产品物量指数、商品销售量指数、职工人数指数等;2)质量指标指数(Quality Index Number)——指数化指标为质量指标;用来说明总体内涵数量变动情况的指数,例如,价格指数、单位产品成本指数、劳动生产率指数、工资水平指数等;3、按照指数所反映现象的对比性质不同划分:1)时间性指数——动态指数,反映现象在时间上动态变化的指数;按照计算过程中采用的基期不同,可分为以下两类:定基指数——连续编制的指数数列中各个指数以固定时期为基期;环比指数——连续编制的指数数列中各个指数以上一期为基期;2)空间性指数——静态指数,包括以下两类:反映同一时期不同空间指标值变动而形成的指数;反映同一时期的实际与计划指标值变动的指数,即计划完成指数;4、按照总指数的计算与编制方法划分:1)综合指数——两个有联系的总量指标对比所得的相对数;例如:销售额指数、产品产量指数、GDP总指数等;2)平均指数——用加权平均的方法计算出来的指数;所掌握的资料不全时,借助个体指数进行加权平均计算;3)平均指标对比指数——两个加权算术平均指标对比所得的指数;例如:总平均工资的可变构成指数、固定构成指数、结构影响指数等;本书将以各种数量指标和质量指标为例,着重介绍综合指数、平均指数、平均指标对比指数的编制方法以及其在统计分析中的作用!第二节综合指数一、综合指数编制的基本原理总指数的基本计算方法有综合指数法和平均指数法两种,习惯上把这两种方法编制的总指数称为综合指数和平均指数;综合指数(Aggregative Index Number)是通过对两个时期不同、范围相同的多要素现象同度量综合之后,进行总体数量对比得出的总指数;综合指数的计算特点就是:先综合,后对比!然而现象总体各个个体由于使用价值不同、计量单位不同,所以其数量表现不能直接加总而对比,这种现象叫做不同度量。
第六章 统计指数含答案

第六章统计指数分析习题一、填空题1.指数按其指标的作用不同,可分为和。
2.狭义指数是指反映由不能同度量的事物所构成的特殊总体变动或差异程度的特殊。
3.总指数的编制方法,其基本形式有两种:一是,二是。
4.平均指数是的加权平均数。
5.因素分析法的基础是。
6.在含有两个因素的综合指数中,为了观察某一因素的变动,则另一个因素必须固定起来。
被固定的因素通常称为,而被研究的因素则称为指标。
7.平均数的变动同时受两个因素的影响:一是各组的变量值水平,二是。
8.编制综合指数,确定同度量因素的一般原则是:数量指标指数宜以作为同度量因素,质量指标指数宜以作为同度量因素。
9.已知某厂工人数本月比上月增长6%,总产值增长12%,则该企业全员劳动生产率提高。
10.综合指数的重要意义,在于它能最完善地显示出所研究对象的经济内容,即不仅在相对数,而且还能在方面反映事物的动态。
二、单项选择1.统计指数按其反映的对象范围不同分为( )。
A简单指数和加权指数B综合指数和平均指数C个体指数和总指数D数量指标指数和质量指标指数2.总指数编制的两种形式是( )。
A算术平均指数和调和平均指数B个体指数和综合指数C综合指数和平均指数D定基指数和环比指数3.综合指数是一种( )。
A简单指数B加权指数C个体指数D平均指数4.某市居民以相同的人民币在物价上涨后少购商品15%,则物价指数为( )。
A 17.6%B 85%C 115%D 117.6%5.在掌握基期产值和各种产品产量个体指数资料的条件下,计算产量总指数要采用( )。
A综合指数B可变构成指数C加权算术平均数指数D加权调和平均数指数6.在由三个指数组成的指数体系中,两个因素指数的同度量因素通常( )。
A都固定在基期B都固定在报告期C一个固定在基期,另一个固定在报告期D采用基期和报告期的平均数7.某商店报告期与基期相比,商品销售额增长6.5%,商品销售量增长6.5%,则商品价格( )。
A增长13%B增长6.5%C增长1%D不增不减8.单位产品成本报告期比基期下降6%,产量增长6%,则生产总费用( )。
统计指数第六章

∑ q1p1
− ∑ q 0p 0 = ( ∑ q1p 0 − ∑ q 0p 0 ) + ( ∑ p1q1 − ∑ p 0q1 )
♦ ♦
(1)产品成本指数 产品成本指数= 解:(1)产品成本指数= 由于单位产品成本变动使总成本使总成本变动的
绝对额;461000-48000=-1900(万元) 绝对额;461000-48000=-1900(万元)
♦ ♦
(2)产品产量总指数= (2)产品产量总指数= 产品产量总指数 由于产量变动而使总成本变动的绝对额: 由于产量变动而使总成本变动的绝对额:
∑ x 0 f1
k 结构 =
∑ f1 ∑ x 0f 0 ∑ f0
(相对数 )
∑ x 0 f1 ∑ f1
−
∑ x 0f 0 ∑ f0
(绝对数 )
♦
某企业工资资料
工人 类别 平均工资( 工人数 平均工资(元) 工资总额(万元) 工资总额(万元)
f0
f1
x0
500 300 —
x1
550 350 —
x 0f 0
标的个体指数和报告期总额资料,用加权 标的个体指数和报告期总额资料, 调和平均式指数计算。 调和平均式指数计算。
♦
平均数指数作为综合指数的变形来使用。
四、平均指标指数
♦
概念: 概念:平均指标指数是反映两个不同时期同一
经济内容平均指标的变动程度。 经济内容平均指标的变动程度。
♦
一、可变构成指数
∑ x1f1
48000-42000=6000(万元) 48000-42000=6000(万元)
♦ ♦
统计学 第六章 统计指数

K p
p1
q0
2
q1
p0
q0
q1 2
p1 q0 q1 p0 q0 q1
Kq
q1
p0
2
p1
q0
p0 p1 2
q1 p0 p1 q0 p0 p1
将例1资料带入公式,可得:
k p
p1q0 p0q0
p1q1 26120 38600 64720 108.59% p0q1 23800 35800 59600
在选择指数形式时,主要考虑指数的经济意义,还要考虑 实际编制工作的可能性及对指数分析性质的特殊要求。
(一)工业生产指数 编制过程:
首先,对各种工业产品分别制定相应的不变价格标准,记为P0 然后,逐项计算各种产品的不变价格产值,加总起来就得到全部工 业产品的不变价格总产值 最后将不同时期的不变价格总产值加以对比,就得到相应时期的工 业生产指数
与马埃公式一样,虽然从数量上不偏不倚,但缺乏经济意义,所 用资料较多,计算困难。
是对拉氏指数和帕氏指数直接进行平均(型交叉)的结果,公式 为:
kp
p1q0
p1q1
p0 q0
p0 q1
kq
q1 p0
q1 p1
q0 p0
q0 p1
将例1资料带入公式,可得:
k p
p1q0 p0q0k p
第六章 统计指数

第一节 统计指数的意义和种类
一、指数的意义 对于社会经济现象数量变动的分析采用一 种特殊的方法——指数法。所要研究的 现象总体可以区分为简单现象总体和复 杂现象总体。
指数有广义指数和狭义指数之分。
广义的指数:广义指数指所有的相对 数,即反映简单现象总体或复杂现象 总体数量变动的相对数,是指一切说 明社会经济现象数量变动或差异程度 的相对数。 狭义的指数:指不能直接相加和对比 的复杂社会经济现象总体数量变动的 相对数。狭义指数是指数分析的主要 方面
二、指数的种类
(一)按指数反映的对象范围不同,分为个体 指数和总指数 1、 个体指数:个体指数是反映个别现象(即 简单现象总体)数量变动的相对数。 个体产量指数和个体销售量指数统称为个体物量 指数。 q1 kq q 公式表示: 0 p1 k 个体价格指数公式: p
p
0
商品 名称 甲 乙 丙 合计
1
25 25 件 千克 40 36 50 70 米 — —
15000 21600 12600 49200
15000 24000 9000 48000
合计 —
pq k 1 pq k
1 1 p 1 p
49200 102.5% 48000
1
三、在平均指数的应用中,平均指数和综 合指数比较有两个重要特点: (一)综合指数主要适用于全面资料编制, 而平均指数既可以依据全面资料编制, 也可以依据非全面资料编制; (二)综合指数一般采用实际资料做权 数编制,平均数指数在编制时,除了用 实际资料做权数外,也可以用估算的资 料做权数。
p q p q p q p q
1 0 0 1 0 0
1 1
q1 q0
统计学原理第六章 统计指数_OK

2021/7/22
28
其他权数形式的综合指数的编制
在指数编制理论的发展和实践过程中,除了拉斯贝尔和派许 提出了以基期和报告期为权数以外,还有不少统计学家曾提出 或采用过其他形式的权数计算总指数的综合形式。
2021/7/22
29
(1) 采用平均权数。即在研究数量指标指数时,其同度量 因素质量指标以拉式和派式指数分析法中的基期和报告期 的质量指标的简单算数平均数为权数;而在研究质量指标指 数时,其同度量因素数量指标也以拉式和派式指数分析法中 的基期和报告期的数量指标的简单算术平均数为权数。
2021/7/22
20
(1) 采用基期权数。即把同度量因素固定在基期,以基期的 数量指标作为权数。则销售单价的综合指数公式为:
这个指数公式是由德国经济学家拉斯贝尔(Laspeyres)在 1864年提出的,简称拉氏指数公式。从以上公式可以看出:p1q0 为基期的销售量(数量指标)按报告期销售单价(质量指标)计算 所得的销售额,分母∑p0q0是基期的销售额。
2021/7/22
5
指数分析法在实际工作中有着极其重要的作用
1) 综合反映复杂的社会经济现象总体的变动方向和程度 2) 分析和测定现象的各个构成因素对现象发展变动的影响程度和
绝对效果 3) 研究事物在长时间内的变动趋势
2021/7/22
6
6.1.3 统计指数的种类
由于划分的标准不同,统计指数有很多种类: 按照研究对象的范围不同,可分为个体指数和总指数
2021/7/22
16
从上表可知,可以编制三个总指数,即销售量总指数、价格 总指数和销售额总指数。
在分析该商店三种商品的销售额变动时,只要把报告期的 销售额与基期销售额直接进行对比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.动态指数
动态指数是反映某一社会经济现象 在不同时间点上的变动过程。动态 指数又分为定基指数、同比指数和 环比指数。
三、统计指数的作用
1 统计指数可以综合反映复杂现象总体的综合变 动
2 分析各个因素的影响方向和影响程度 3 研究现象的长期变动趋势 4 对经济现象进行综合评价和测定
过渡页 TRANSITION PAGE
分别用公式表示为:
上限公式为:
2 总指数
总指数是综合反映多种(或全部)社会 经济现象总体变动方向和程度的相对数。
总指数的计算方法有两种:综合指数法 和平均指数法,习惯上分别把这两种方法计 算的指数称为综合指数和平均指数。
7
(二)按指数所说明社会经济现象性质分类
1.数量指标指数
数量指标指数是说明社会经济现象规模、总量 变动的相对数。如反映多种产品产量变动的相 对数、反映多种商品销售量变动的相对数。这 些相对数都是数量指标指数,也称为物量指数, 即数量指标形成的指数。
个体指数
报告期指标数值 基期指标数值
(6-1)
个体产量指数和个体销售量指数统称为个体物量指数。也称为物量指数,即数量指
标形成的个体指数。 用公式表示为:
kq
q1 q0
(6-2)
价格变动的个体指标、单位产品成本变动的个体指标分别称为价格个体指数和成本个体指数。都属于质量指标 个体指数,即质量指标形成的指数。
编制综合指数首先必须明确两个概念:一是指数化指标,二是同度量因素。
是编制综合指数所要测定的因素。如商品价格综合指数所要测定的因素是价格,在这种情 况下,价格就是指数化指标。
是指媒介因素。借助媒介因素,可以把不能直接加总或直接对比的因素过渡到可以加总 和对比。
编制综合指数的目的是测定指数化指标的变动情况,因此,在对比的过程中对同度量因素应加以固定。 — 14 —
以基期价格为同度量因素,其计算公式为:
销售量综合指数
( 报告期销售量 基期单价) ( 基期销售量 基期单价)
3 质量指标综合指数
仍结合表6-1资料,以商品零售价格指数为例,说明质量指标综合指数的编制方法。 (1)确定同度量因素
本例中,由于三种商品的计量单位不同,单价也不能直接相加。为了反映三种商品价格总的变化程度,确定 商品销售量作为同度量因素。
第二节
总指数的编制方法
一、综合指数概述 二、平均指数概述 三、综合指数与平均指数的关系
— 11 —
统计总指数的计算通常有两种形式,即综合指数和平均指数。 在开始介绍本节内容之前,我们给出一组数据,这组数据是关于某商场三种商 品的销售资料(见表6-1),本节的知识点示例将以此组数据为依据。
— 12 —
2.质量指标指数
质量指标指数是说明质量指标变动的相对数。 如反映多种商品物价变动的相对数、反映多 种产品单位成本变动的相对数和反映劳动生 产率变动的相对数等。这些相对数是说明经 济工作质量好坏的,所以称为质量指标指数。
(三)按对比时间分类
1.静态指数
静态指数是指在同一时间条件下不 同单位,或不同地区间同一社会经 济现象指标值进行对比所形成的指 数。
统计基础
实务
目录页 CONTENTS PAGE
第六章 统计指数
第一节 统计指数概述 第二节 总指数的编制方法 第三节 指数体系及因素分析 第四节 几种常见的统计指数
— 2—
过渡页 TRANSITION PAGE
第一节
统计指数概述
一、统计指数的定义 二、统计指数的分类 三、统计指数的作用
— 3—
一、统计指数的定义
一、综合指数概述
(一)综合指数的定义
综合指数是总指数的一种形式,它是由两个总 量指标相对比形成的指数。在研究的总量指标中, 包含两个或两个以上的因素,将其中一个或一个以 上的因素指标固定下来,仅考察另一个因素的变动, 这样编制出来的总指数就叫做综合指数。
(二)综合指数的编制 1 综合指数的编制方法及原则
(2)确定同销售量所属时期固定,使其只反映价格变化的程度,而不受销售量变化的影响。
为了反映在现实销售量条件下价格总变动的程度及其产生的经济效果,一般把商品销售量固定在报告期,
即:
价格综合指数= (报告期单价 报告期销售量) (基期单价 报告期销售量)
通过加总,才能综合反映三种商品销售量总的变动过程。但是由于三种商品销售计量单位不 同,不能直接加总。根据表6-1的资料,可以利用销售单价作为媒介因素(同度量因素)。由于 “ 销售量单价 销售额 ”,将销售量换算为销售额就可进行加总,即:
(2)确定同度量因素(权数)所属时期
确定同度量因素(权数)后,应该把其所属时期固定。在编制商品销售量综合指数时, 应该把单价所属的时期固定,即两个时期的商品销售额都按同一单价计算,这样,消除了价 格变动的影响,只反映销售量的变化。为了使单价保持不变,可以将基期和报告期的销售量 都乘以基期价格来编制商品销售量综合指数。
用符号 k p 表示价格指数,则有:
kp
p1q1 p0 q1
(6-7)
二、平均指数概述
(一)平均指数的定义
平均指数是指采用平均数的计算形式来计算的 指数,是个体指数的加权平均数。
统计指数,简称指数,是反映现象变动和进行因素分析的基本方法。其一般表达式为: 指数 报告期量 / 基期量
二、统计指数的分类
(一)按所反映对象的范围分类
1 个体指数 个体指数是指反映个别事物变动的相对数。个体指数具体包括个体产量指数、个体销售量指
数、个体价格指数和个体单位成本指数。
其计算公式为:
综合指数的编制方法及原则包括以下三点:
① 确定同度量因素。根 据研究对象的特点和现象
之间的关系,
确定同度量因素。
② 固定同度量因素的时 期。为排除同度量因素变
动的影响,
将其固定在同一时期。
③ 将两个时期的指标数 值进行对比,
测定指标的综合变动。
2 数量指标综合指数
运用综合指数法计算总指数时,如果指数化指标是数量指标,此时计算的指数称为数量 指标综合指数。或者说,反映数量指标变动的综合指数称为数量指标综合指数,如销售 量指数、职工人数指数等。下面以表6-1中的资料计算商品销售量指数为例来说明数量 指标综合指数编制的一般方法。 (1)确定同度量因素