高一数学 高中数学圆的方程专题(四个课时)

合集下载

高中数学第四章圆与方程41圆的方程412圆的一般方程课件新人教A版必修2

高中数学第四章圆与方程41圆的方程412圆的一般方程课件新人教A版必修2

表示任何图形.
2021/4/17
高中数学第四章圆与方程41圆的方程412圆的
7
一般方程课件新人教A版必修2
[思考探究]………………|辨别正误| 1.若圆心是原点时,圆的一般方程应为怎样的形式? [提示] x2+y2+F=0. 2.若二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆, 需满足什么条件? [提示] ①A=C≠0;②B=0;③D2+E2-4AF>0.
2021/4/17
高中数学第四章圆与方程41圆的方程412圆的
30
一般方程课件新人教A版必修2
考向 3 定义法求动点的轨迹方程 【例 5】 已知 Rt△ABC 的斜边为 AB,且 A(-1,0),B(3, 0),求直角顶点 C 的轨迹方程. [解] 解法一:设顶点 C(x,y),因为 AC⊥BC,且 A,B, C 三点不共线,所以 x≠3,且 x≠-1. 又因为 kAC=x+y 1,kBC=x-y 3,且 kAC·kBC=-1, 所以x+y 1·x-y 3=-1,化简得 x2+y2-2x-3=0.
2021/4/17
高中数学第四章圆与方程41圆的方程412圆的
20
一般方程课件新人教A版必修2
解法二(几何法): 由题意得线段 PQ 的中垂线方程为 x-y-1=0. ∴所求圆的圆心 C 在直线 x-y-1=0 上,设其坐标为 C(a, a-1). 又圆 C 的半径长 r=|CP|= a-42+a+12. ① 由已知圆 C 截 y 轴所得的线段长为 4 3,而圆心 C 到 y 轴 的距离为|a|.
复习课件
高中数学第四章圆与方程4.1圆的方程4.1.2圆的一般方程课件新人教A版必修2
2021/4/17
高中数学第四章圆与方程41圆的方程412圆的一般方程课件 新人教A版必修2

高中数学第四章 圆与方程 412 圆的一般方程课件 新人教A版必修2

高中数学第四章 圆与方程 412 圆的一般方程课件 新人教A版必修2
大家好
1
第四章 圆与方程
4.1.2 圆的一般方程
第四章 圆与方程
1.正确理解圆的方程的形式及特点,会由一般式求圆 心和半径. 2.会在不同条件下求圆的一般式方程.
1.方程
当 D2+E2-4F>0 时,方程__x_2_+__y_2_+__D__x_+__E_y__+__F_=__0_叫做圆的
一般方程,其中圆心为__-__D2_,__-__E2__,半径为__12__D__2+__E__2-__4_F__.
形. 3.用“待定系数法”求圆的方程的大致步骤 (1)根据题意,选择_标__准__方__程__或_一__般__方__程__; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F,代入标准方程或一般方程.
探究点一 圆的一般方程的概念 判断方程 x2+y2-4mx+2my+20m-20=0 能否表示圆, 若能表示圆,求出圆心和半径. [解] 法一:由方程 x2+y2-4mx+2my+20m-20=0 可知, D=-4m,E=2m,F=20m-20, 所以 D2+E2-4F=16m2+4m2-80m+80=20(m-2)2, 所以当 m=2 时,它表示一个点; 当 m≠2 时,它表示圆的方程,此时,圆的圆心为(2m,-m), 半径为 r= 5|m-2|.

2.说明 (1)方程 x2+y2+Dx+Ey+F=0 不一定表示圆,当且仅当
__D__2_+__E_2_-__4_F_>__0__时表示圆.
(2)当___D__2_+__E_2_-__4_F_=__0_____时,方程表示一个点-D2 ,-E2.
(3)当___D__2_+__E_2_-__4_F_<__0_____时,方程无实数解,不表示任何图

高一数学人选择性必修课件圆的一般方程

高一数学人选择性必修课件圆的一般方程
$x^{2} + y^{2} - 2x + 4y + 1 = 0$
解析:对于第一个方程,有$D^{2} + E^{2} - 4F = 4 + 16 - 20 = 0$,因此该方程表示一 个点,不表示圆。对于第二个方程,有$D^{2} + E^{2} - 4F = 4 + 16 - 4 = 16 > 0$,因 此该方程表示一个圆。
方程中参数意义
$D, E$与圆心坐标关系
$D, E$分别决定了圆心的横纵坐标,即圆心坐标为$(-frac{D}{2}, -frac{E}{2})$。
$F$与半径关系
$F$与半径的平方有关,具体关系为$F = a^2 + b^2 - r^2$,其中$a, b$为圆心坐标, $r$为半径。
$D^2 + E^2 - 4F$与圆存在性关系
当$D^2 + E^2 - 4F > 0$时,方程表示一个存在的圆;当$D^2 + E^2 - 4F = 0$时,方 程表示一个点;当$D^2 + E^2 - 4F < 0$时,方程不表示任何图形。
03
圆的特殊方程及图形特征
标准方程及其图形特征
标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$为圆心坐 标,$r$为半径。
典型例题分析
01
02
03
例题1
已知圆的标准方程为$(x 2)^{2} + (y + 1)^{2} = 9$,求圆心坐标和半径。
解析
由标准方程可知,圆心坐 标为$(2, -1)$,半径为 $sqrt{9} = 3$。
例题2

高中数学《圆的方程》微课精讲+知识点+教案课件+习题

高中数学《圆的方程》微课精讲+知识点+教案课件+习题


▼知识点:
考点:
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程
(1)标准方程,
圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:
一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,
若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

教案:
课件:
练习:。

高一数学圆的标准方程课件ppt.ppt

高一数学圆的标准方程课件ppt.ppt
为X轴,O点为坐标原 B 点,建立如图所示平
X 面直角坐标系
例4.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
∵ 圆心在y轴上, ∴ 设圆心的坐标是(0,b),圆的半径是r, 那么圆的方程是 x2+(y-b)2=r2 因为点(0 , 7.2)和(18.51 , 0)在圆上。于是得方程组
弦AB的垂 直平分线
O
x
D
C
B(2,-2)
l:xy10
圆心:两条直线的交点
半径:圆心到圆上一点
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
典型例题
解法1:因为A(1, 1)和B(2, -2),所以线段AB的中点D的坐标
赵州桥的跨度为40米,拱高约8米
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
学以致用
例4.如图是赵州桥的圆拱示意图,该拱跨度 AB=40米,拱高OD=8米,求这座圆拱桥的拱圆所 在圆的标准方程。
Y
D A
O
r
解:以A.B所在的直线
相切的圆.
y
解: 设所求圆的半径为r
则:
r
| 31- 43-7|
32 42 =
1
6 5
C
M
O
x
∴所求圆的方程为:(x1)2(y3)2196 25
圆心:已知
半径:圆心到切线的距离
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

高中数学第四章 圆与方程 411 圆的标准方程课件 新人教A版必修2

高中数学第四章 圆与方程 411 圆的标准方程课件 新人教A版必修2

探究点三 利用圆的定义与标准方程求最值 已知 x,y∈R,且圆 C:(x-1)2+(y+2)2=4,求(x+2)2 +(y-2)2 的最大值与最小值.
[解] 因为(x-1)2+(y+2)2=4 表示以 C(1,-2)为圆心,半径 r =2 的圆, 所以 (x+2)2+(y-2)2表示圆上的动点 M(x,y)与定点 A(-2,2)的距离(如图).
在本例中,条件不变,求x-y 4的最大值与最小值.
解:法一:(数形结合法) 如图: x-y 4即为圆上的点 M(x,y)与 A(4,0)的连线所在直线的斜率 k, 过 A 的两条切线分别为 AA1,AA2,则 kAA1 圆与方程
4.1 圆的方程
4.1.1 圆的标准方程
第四章 圆与方程
1.会用定义推导圆的标准方程;掌握圆的标准方程的特 点. 2.会根据已知条件求圆的标准方程. 3.能准确判断点与圆的位置关系.
1.圆的标准方程 设圆心坐标为(a,b),半径为 r,则圆的标准方程为
___(x__-__a_)_2+___(y_-___b_)_2_=__r2_. 特别地,当圆心在坐标原点时,圆的标准方程为__x_2_+__y_2_=__r_2_.
2.点与圆的位置关系
设点 P 到圆心的距离为 d,半径为 r.
d 与 r 的大小
点与圆的位置关系
d_<__r
点 P 在圆内
d_=__r
点 P 在圆上
d_>__r
点 P 在圆外
探究点一 求圆的标准方程 求下列圆的标准方程. (1)圆心在 y 轴上,半径为 5,且过点(3,-4); (2)求过点 A(1,-1),B(-1,1)且圆心在直线 x+y-2=0 上的 圆的标准方程. [解] (1)设圆心为 C(0,b),则(3-0)2+(-4-b)2=52, 所以 b=0 或 b=-8, 所以圆心为(0,0)或(0,-8),又 r=5, 所以圆的标准方程为 x2+y2=25 或 x2+(y+8)2=25.

高一数学A版必修二第4章《圆与方程》第4章 4.1.2 圆的一般方程 教学课件

高一数学A版必修二第4章《圆与方程》第4章 4.1.2 圆的一般方程 教学课件

4.1.2 圆的一般方程【课时目标】 1.正确理解圆的一般方程及其特点.2.会由圆的一般方程求其圆心、半径.3.会依据不同条件利用待定系数法求圆的一般方程,并能简单应用.4.初步掌握点的轨迹方程的求法,并能简单应用.1.圆的一般方程的定义(1)当________________时,方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程,其圆心为____________,半径为______________________.(2)当D 2+E 2-4F =0时,方程x 2+y 2+Dx +Ey +F =0表示点________________.(3)当__________________时,方程x 2+y 2+Dx +Ey +F =0不表示任何图形.2.由圆的一般方程判断点与圆的位置关系已知点M (x 0,y 0)和圆的方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).,则其位置关系如下表:一、选择题1.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A .⎝⎛⎭⎫-32,1和194B .(3,2)和192C .⎝⎛⎭⎫-32,1和192D .⎝⎛⎭⎫32,-1和1922.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )A .14<m <1 B .m >1 C .m <14D .m <1 3.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( ) A .x +y -3=0 B .x -y -3=0C .2x -y -6=0D .2x +y -6=04.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D . 2 5.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外6.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0二、填空题7.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为________.8.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.9.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.三、解答题10.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?11.如果方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.(1)求t的取值范围;(2)求该圆半径r的取值范围.能力提升12.求经过两点A(4,2)、B(-1,3),且在两坐标轴上的四个截距之和为2的圆的方程.13.求一个动点P在圆x2+y2=1上移动时,它与定点A(3,0)连线的中点M的轨迹方程.1.圆的一般方程x2+y2+Dx+Ey+F=0,来源于圆的标准方程(x-a)2+(y-b)2=r2.在应用时,注意它们之间的相互转化及表示圆的条件.2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况,设出方程,以便简化解题过程.3.涉及到的曲线的轨迹问题,要求作简单的了解,能够求出简单的曲线的轨迹方程,并掌握求轨迹方程的一般步骤.4.1.2圆的一般方程答案知识梳理1.(1)D 2+E 2-4F >0 ⎝⎛⎭⎫-D 2,-E 2 12D 2+E 2-4F (2)⎝⎛⎭⎫-D 2,-E 2 (3)D 2+E 2-4F <02.> = <作业设计1.C [由一般方程圆心⎝⎛⎭⎫-D 2,-E 2,半径r =12D 2+E 2-4F 两公式易得答案.] 2.D [表示圆应满足D 2+E 2-4F >0.]3.B [过M 最长的弦应为过M 点的直径所在直线.]4.D [先求出圆心坐标(1,-2),再由点到直线距离公式求之.]5.B [先化成标准方程(x -a )2+(y -1)2=2a ,将O (0,0)代入可得a 2+1>2a (0<a <1),即原点在圆外.]6.D [圆心应满足y =x 或y =-x ,等价于x 2-y 2=0.]7.(0,-1)解析 r =12k 2+4-4k 2=124-3k 2. 当k =0时,r 最大,此时圆面积最大,圆的方程可化为x 2+y 2+2y =0,即x 2+(y +1)2=1,圆心坐标为(0,-1).8.-2解析 由题意知圆心⎝⎛⎭⎫-1,-a 2应在直线l :x -y +2=0上,即-1+a 2+2=0,解得 a =-2.9.20 6解析 点(3,5)在圆内,最长弦|AC |即为该圆直径,∴|AC |=10,最短弦BD ⊥AC ,∴|BD |=46,S 四边形ABCD =12|AC |·|BD |=206. 10.解 设过A 、B 、C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ D -5E -F =265D +5E +F =-506D -2E +F =-40,解得⎩⎪⎨⎪⎧D =-4E =-2F =-20. 所以过A 、B 、C 三点的圆的方程为x 2+y 2-4x -2y -20=0.将点D (-2,-1)代入上述方程等式不成立.故A 、B 、C 、D 四点不能在同一个圆上.11.解 (1)方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示一个圆必须有: D 2+E 2-4F =4(t +3)2+4(1-4t 2)2-4(16t 4+9)>0,即:7t 2-6t -1<0,∴-17<t <1. (2)该圆的半径r 满足:r 2=D 2+E 2-4F 4=(t +3)2+(1-4t 2)2-(16t 4+9)=-7t 2+6t +1=-7⎝⎛⎭⎫t -372+167, ∴r 2∈⎝⎛⎦⎤0,167,∴r ∈⎝⎛⎦⎤0,477. 12.解 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,令y =0,得x 2+Dx +F =0,所以圆在x 轴上的截距之和为x 1+x 2=-D ;令x =0,得y 2+Ey +F =0,所以圆在y 轴上的截距之和为y 1+y 2=-E ;由题设,x 1+x 2+y 1+y 2=-(D +E )=2,所以D +E =-2. ①又A (4,2)、B (-1,3)两点在圆上,所以16+4+4D +2E +F =0, ②1+9-D +3E +F =0, ③由①②③可得D =-2,E =0,F =-12,故所求圆的方程为x 2+y 2-2x -12=0.13.解 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0).由于点A 的坐标为(3,0)且M是线段AP 的中点,所以x =x 0+32,y =y 02于是有x 0=2x -3,y 0=2y . 因为点P 在圆x 2+y 2=1上移动,所以点P 的坐标满足方程x 20+y 20=1,则(2x -3)2+4y 2=1,整理得⎝⎛⎭⎫x -322+y 2=14. 所以点M 的轨迹方程为⎝⎛⎭⎫x -322+y 2=14.。

高一数学圆的方程

高一数学圆的方程
时近四五月份,丁香花刚开时候并不热烈也不招摇,只是默默地偏居在某个安静的角落,默默地散发出淡淡的幽香,相比其它的花它更喜欢安静,不争不抢与世无争,然而随着时间丁香花的花香会 越发的热烈浓郁,仿佛让整个世间都发酵了,当丁香真正盛开的时候那种浓郁的气息便再也挥之不去了,在我的记忆里没有哪一种花会开得如此热烈,如此芳香宜人,总会有人循着那香味偏偏走来。
。尤其是在北方无论是在园林、还是在学校工厂或是在马路旁的花池里,人们都是喜种丁香花的,或是做为景观或是用来妆点,无论身在何处都有丁香花的身影,也许 是这种花好生养、它有着顽强的生命力,即便是一截儿小小的断枝,只要你把它埋进土里无需太久它就会焕发出无限生机。
丁香花有白色的、粉色的、也有蓝色的和黄色的、而这些丁香花里我对紫色的丁香花最是情有独钟的,虽然它没有红梅傲骨的清风,没有白莲的率真洒脱,更没有牡丹芍药那样名贵却也没有那样娇 气,它没有兰花清雅宁静,却也没有那样深居幽谷的贫乏。
花开千万各有不同,有的如众星捧月般耀眼,有的如清纯脱俗般清澈洁净,有的如傲骨寒霜般坚定倔强,然而只要是花那都是美丽的,都是忧郁的,都是值得怜爱的,花开一瞬然而这一瞬便是它生 命的终点,那一刻它将所有的美都留藏于人间,丰富了这个世界慰籍了空虚的灵魂后便急着去枯萎,虽然那是它所盼望的圆满,它是没有遗憾的,然而没有遗憾又何尝不是一种遗憾。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 高中数学圆的方程专题(四个课时)类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min=d .这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r ,故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-k k 解得 43=k 所以 ()4243+-=x y 即01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:010*******=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程.解:设切线方程为1(3)y k x -=-,即310kx y k --+=,∵圆心(1,0)到切线l 的距离等于半径2,2=,解得34k =-, ∴切线方程为31(3)4y x -=--,即34130x y +-=,当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2,故直线3x =也适合题意。

所以,所求的直线l 的方程是34130x y +-=或3x =. 2、过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为 解:设直线方程为kx y =,即0=-y kx .∵圆方程可化为25)1()2(22=++-y x ,∴圆心为(2,-1),半径为210.依题意有2101122=++k k ,解得3-=k 或31=k ,∴直线方程为x y 3-=或x y 31=.3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .解:∵圆1)1(22=+-y x 的圆心为(1,0),半径为1,∴1125522=++a ,解得8=a 或18-=a .类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m .例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.练习1:直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是解:依题意有a a >-21,解得1212-<<--a .∵0>a ,∴120-<<a .练习2:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 .解:依题意有11122<+-k k ,解得340<<k ,∴k 的取值范围是)34,0(.3、 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .4、过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示. 分析:观察动画演示,分析思路.解:设直线l 的方程为()34+=+x k y 即043=-+-k y kx 根据r d ≤有214322≤+-++k k k 整理得0432=-k k 解得340≤≤k . 类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

相关文档
最新文档