九年级圆的认识
九年级上册数学书圆的知识点总结

九年级上册数学书中圆的知识点总结1. 圆的概念:圆是一个由曲线包围的形状,它由一个中心点(称为圆心)和到这个中心的固定距离(称为半径)的所有点组成。
这个形状可以看作是线段OA 绕着它的一个端点O旋转一周后,另一个端点A所形成的轨迹。
2. 圆心和半径:在同一个圆或等圆中,相等的圆心角所对的弦长度相等,所对的弧长度相等,所对的弦的弦心距(即从圆心到弦的垂线段的长度)也相等。
这个规律是由于圆本身的性质决定的,它反映了圆的一个重要特性。
3. 弧、弦的关系:在同一个圆或等圆中,同一条弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
这个规律在证明一些几何定理时非常有用,它帮助我们理解圆中的角度和线段之间的关系。
4. 垂径定理:如果一条直径垂直于一条弦,那么这条直径会平分这条弦,并且平分弦所对的两条弧。
这个定理是圆中一个重要的定理,它在证明一些与弦有关的定理时非常有用。
5. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
这个定理是圆中一个基本的定理,它帮助我们理解圆中的角的关系。
6. 切线:切线是指与圆只有一个公共点的直线。
这个公共点称为切点。
切线在几何学中有着重要的应用,它可以用来证明一些关于圆的定理。
7. 切线定理:垂直于过切点的半径的直线是圆的切线。
这个定理帮助我们判断哪些直线是圆的切线,以及如何找到圆的切线。
8. 三角形的外接圆与外心:任何一个三角形都有一个外接圆和外心。
外接圆的半径等于三角形外心的半径。
这个知识点帮助我们理解三角形的性质以及如何找到三角形的外接圆和外心。
9. 圆与正多边形:正多边形的各边长度都相等,各内角也相等。
这个知识点可以帮助我们理解正多边形的性质以及如何计算它们的面积和周长。
10. 反证法:在证明一个几何命题时,如果直接证明有困难,可以先假设命题不成立,然后推导出与已知事实或已证明的定理矛盾的结果,从而证明假设不成立,命题得证。
反证法是一种有效的证明方法,它在几何学中经常被使用。
九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。
2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。
二、圆的性质:1.圆的任意两点之间的距离相等。
2.圆的半径是圆上任意一点到圆心的距离。
3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。
4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。
5.圆的弦是圆上的两点间的线段。
6.圆的切线是与圆只有一个交点的直线。
7.圆的割线是与圆有两个交点的直线。
8.圆的相似圆是指具有相同圆心,半径成比例的圆。
9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。
三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。
3.圆的表示方法:各种符号和字母的含义及表示。
四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。
2.圆的面积:A=πr²,其中A为面积,r为半径。
3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。
4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。
5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。
五、圆的证明题:1.圆上的弦垂直于直径。
2.圆上的垂直于弦的直径。
3.圆的半径与切线垂直。
六、圆的应用:1.圆的模拟应用,如钟表等。
九年级圆所有知识点讲解

九年级圆所有知识点讲解圆是几何学中的一个重要概念,广泛应用于数学以及日常生活中。
在九年级的数学课程中,我们学习了许多与圆相关的知识点,包括圆的定义、圆的性质、圆的方程、弧长和扇形面积等。
本文将对这些知识点进行逐一讲解,帮助同学们深入理解圆。
一、圆的定义圆是指平面上到定点的距离恒定的一组点的集合。
其中,定点称为圆心,距离称为半径。
记作圆O,圆心为O,半径为r。
二、圆的性质1. 圆上任意两点到圆心的距离相等。
2. 圆的半径相等的两个或多个圆是同心圆。
3. 圆的半径垂直于圆上的切线。
4. 圆的直径是圆上任意两点的最大距离,且等于两倍的半径。
5. 圆的切线垂直于半径。
三、圆的方程1. 利用圆心和半径表示圆的方程:圆的方程为(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径的长度。
2. 利用直线与圆的方程表示圆的方程:若直线y = kx + c与圆(x - a)² + (y - b)² = r²有两个相交点,则k² + 1 ≠ 0,并且满足:(1) 4b²(k² + 1) - 4(ac + b² - r²)(k² + 1) > 0;(2) b - ka - c ≠ 0。
四、弧长和扇形面积1. 弧长:弧长是指圆上的一段弧的长度。
弧长与圆心角度数的关系是:弧长 = 圆周长 × (圆心角度数 / 360°)。
2. 扇形面积:扇形是指由圆心和圆上弧所围成的图形。
扇形面积与圆心角度数的关系是:扇形面积 = 圆的面积 × (圆心角度数 / 360°)。
通过以上对九年级圆的知识点的讲解,希望同学们能够对圆的定义、性质、方程以及弧长和扇形面积等方面有更深入的理解。
掌握这些知识点,对于解决与圆相关的数学问题将会更加得心应手。
九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。
2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。
二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。
2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.圆内接四边形的对角互补。
三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。
六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。
七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。
在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。
正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。
九年级圆有关知识点

九年级圆有关知识点圆是几何中重要的基本图形之一,其相关概念和性质在九年级的几何学中占有重要地位。
本文将就九年级圆的相关知识点进行论述,包括圆的定义、圆的元素、圆的性质和相关公式等内容。
一、圆的定义圆是平面上所有距离某一点(圆心)相等的点的集合。
圆由圆心和半径两个要素来确定。
二、圆的元素1. 圆心:圆心是圆的核心点,用字母O来表示。
2. 半径:半径是从圆心到圆上的任意一点的距离,用字母r来表示。
3. 直径:直径是通过圆心的线段,且两端点都在圆上,直径的长度是半径的两倍,用字母d来表示。
4. 弦:弦是连接圆上两点的线段,弦的长度可以小于、等于或大于直径的长度。
5. 弧:弧是圆上的一段连续的曲线。
三、圆的性质1. 圆与直线的关系:a. 直线是否与圆相交的情况:若直线与圆有且仅有一个交点,则该直线与圆相切;若直线与圆没有交点,则该直线与圆相离;若直线与圆有两个交点,则该直线与圆相交。
b. 切线:与圆有且仅有一个交点的直线称为切线,切线与半径的关系为垂直。
c. 弦的性质:圆上任意弦所对应的两条弧的长度是相等的。
2. 圆与角度的关系:a. 圆心角:圆心角是以圆心为顶点的角,其对应的弧的长度是角度的两倍,即弧长=S×r(S为圆心角的度数,r为半径长度)。
b. 弧度制和度数制:角度单位有弧度制和度数制两种,弧度制中圆心角的一个完整圆角为2π弧度,而度数制中为360度。
四、圆的相关公式1. 圆的周长:圆的周长等于该圆的直径乘以π(π取近似值3.14),也可以用2π乘以半径来表示,即周长=2πr或周长=πd。
2. 圆的面积:圆的面积等于半径的平方乘以π,即面积=πr²。
五、圆的应用圆的相关知识点在现实生活中有广泛的应用。
例如:1. 建筑领域:圆的形状常用于建筑物中,例如圆形的柱子、圆顶等。
2. 地理测量:地球的形状可以近似看作是一个球体,地理测量中的经纬度也是基于圆的概念来确定位置的。
3. 交通标志:交通标志中的标志牌、箭头等往往采用圆形来说明交通信息。
九年级数学圆形知识点

九年级数学圆形知识点在九年级的数学学习中,圆形是一个重要的知识点。
掌握圆形的相关概念和性质,对于解题和应用都具有重要的帮助。
本文将介绍九年级数学中与圆形相关的知识点,包括圆的定义、圆的要素、圆周率和圆的面积。
一、圆的定义在九年级的数学学习中,我们首先需要了解圆的定义。
圆是由平面上所有到一个固定点的距离等于常数的点的集合形成的。
这个固定点被称为圆心,常数被称为半径,用字母r表示。
圆内的任意一点到圆心的距离都等于半径r。
二、圆的要素圆的要素主要包括圆心、半径、直径和弦。
圆心是圆的中心点,通常用字母O表示。
半径就是从圆心到圆上任意一点的距离,用字母r表示。
直径是圆上任意两点之间通过圆心的线段的长度,通常用字母d表示。
弦是圆上任意两点之间的线段。
三、圆周率圆周率是一个重要的数学常数,用希腊字母π表示。
在九年级的数学学习中,我们通常将π取近似值3.14或22/7。
圆周率与圆的周长有关,当我们知道圆的直径或半径时,可以利用圆周率计算圆的周长。
四、圆的面积计算圆的面积也是九年级数学中的重要知识点。
圆的面积用字母A表示。
当我们知道圆的半径时,可以利用公式A = πr²来计算圆的面积。
如果我们知道圆的直径d,则圆的面积可以表示为A = π(d/2)²。
五、圆的性质在九年级数学学习中,我们还需要了解一些圆的性质。
以下是一些常见的圆的性质:1. 圆上的任意一条弦都可以把圆分成两个弧,等长的弦所对应的弧也是等长的;2. 圆上的两个相等弧所对应的弦的长度也相等;3. 在同一个圆中,两个相等的弧所对应的圆心角的大小也相等;4. 在同一个圆中,圆心角与所对应的弧的长度成正比例关系,即圆心角较大的弧长度也较大;5. 圆的直径是圆上的最长弦,且经过圆心。
综上所述,圆形是九年级数学中的重要知识点,包括了圆的定义、圆的要素、圆周率和圆的面积等内容。
掌握了这些知识,我们能够更好地理解和应用圆形,在解题和实际生活中能够灵活运用圆的性质和计算方法。
初中九年级圆的知识点详解

初中九年级圆的知识点详解在初中九年级数学课程中,圆是一个重要的几何概念。
我们将在本文中详细解释圆的知识点,包括定义、性质和常见的相关公式。
一、圆的定义圆是一个平面上所有到圆心距离都相等的点的集合。
这个距离被称为半径,用字母r表示。
圆的圆心和半径是确定一个圆的基本要素。
二、圆的性质1. 圆的直径和半径关系:圆的直径是通过圆心,并且两个端点在圆上的线段,它的长度是半径的两倍,即直径d=2r。
2. 圆的周长和面积:圆的周长是指圆上一周的长度,用字母C表示,它可以通过公式C=2πr来计算,其中π≈3.14是一个无理数,代表圆周率。
圆的面积是指圆内部的区域,用字母A表示,它可以通过公式A=πr²来计算。
3. 圆的切线和法线:圆上的切线是与圆切于一点的直线,切线与半径的夹角为90度。
圆上的法线是与圆相交于一点,并且与切线垂直的直线。
4. 圆的弧度制和度制:在解决一些圆相关问题时,我们通常使用弧度制来度量角度。
弧度制的角度是通过圆的弧长和半径之间的比值来定义的。
一个完整的圆的弧长等于2πr,所以一个完整圆的角度为360°。
三、常见的圆相关公式1. 圆的周长公式:C = 2πr2. 圆的面积公式:A = πr²3. 圆的弧长公式:L = 2πr(θ/360°),其中θ是所对应的圆心角的角度。
4. 扇形面积公式:S = 0.5r²(θ/360°),其中θ是所对应的圆心角的角度。
五、相关解题方法1. 已知圆的半径求周长和面积:根据上述公式直接计算即可。
2. 已知圆的周长求半径和面积:由C=2πr可得r=C/(2π),再带入A=πr²即可计算面积。
3. 已知圆的面积求半径和周长:由A=πr²可得r=√(A/π),再带入C=2πr即可计算周长。
4. 已知圆心角和半径求弧长和扇形面积:根据相应的公式计算即可。
六、例题解析1. 已知一个圆的半径为5cm,求其周长和面积。
九年级圆知识点归纳总结

九年级圆知识点归纳总结圆是数学中的一个基本几何概念,在九年级的几何学学习中占据重要的地位。
了解和掌握圆的相关知识点对于解决与圆相关的问题至关重要。
本文将对九年级圆的知识点进行归纳总结,帮助学生们更好地理解和应用这些知识。
一、圆的定义与性质1. 圆的定义:圆是一个平面上所有到圆心的距离都相等的点的轨迹。
2. 圆的要素:圆心、半径。
3. 圆的性质:- 圆上的任意一点到圆心的距离都相等。
- 圆的直径是通过圆心的一条线段,它的长度等于圆的半径的两倍。
- 圆的周长是圆周上的任意一点至邻近点的距离之和,也可以通过公式C=2πr计算(其中C表示圆的周长,r表示半径)。
- 圆的面积是圆内所有点构成的区域,可以通过公式A=πr²计算(其中A表示圆的面积)。
二、圆与直线的关系1. 切线:切线是与圆相切于一点的直线,且与半径垂直。
2. 弦:弦是圆上任意两点所确定的线段。
3. 弧:弧是圆周上两点之间的一段弧线。
4. 弧度与弧长的关系:弧度是角度的一种衡量单位,可以用弧长与半径之比来表示。
弧度制中一周对应的弧长等于圆的周长,即2πr。
三、圆的角关系1. 圆心角:由半径的两条边所夹的角称为圆心角。
2. 圆周角:由两条弧线所夹的角称为圆周角。
3. 圆心角与弧度的关系:圆心角的度数等于它所对应的弧度的长度。
四、圆的相交关系1. 相离:两个圆没有任何交点。
2. 外切:两个圆相切于一点,且其中一个圆位于另一个圆的外部。
3. 内切:两个圆相切于一点,且其中一个圆位于另一个圆的内部。
4. 相交:两个圆有两个交点。
五、圆的应用1. 利用圆求解问题:通过已知条件和圆的性质,可以解决与圆相关的实际问题,如求解圆的面积、周长等。
2. 圆的建模:在数学建模中,圆的概念具有广泛应用,可用于描述自然界中的许多现象和实际问题,如行星运动、电子轨道等。
六、圆的常见误区与解决方法1. 误区一:将弦与半径混淆。
解决方法:理解弦是由圆上的两点所确定的线段,半径是由圆心到圆上一点的线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思 考
某部队在灯塔A的周围进行爆破作业,A的周围 3km内的水域为危险区域,有一渔船误入离A点 2km的B处,为了尽快驶离危险区域,该般应沿 什么方向航行? 你能用数学知识来解释原因吗?
提示: 1、理解题意,画出图形; 2、结合图形,分析题意。
A B D
C
P
F
B
.
K
(4)线段EF、GH 不是 是弦吗?_______.
A
A
O
●
OA、OB、OC 1.如图,半径有:______________ B 若∠AOB=60°, 等边 则△AOB是 ________ 三角形. AB、BC、AC 2.如图,弦有:______________
C
在圆中有长度不等的弦,
直径是圆中最长的弦。
1.要确定一个圆,必须确定圆的 圆心 半径 __ __和__ __ 圆心确定圆的位置, 半径确定圆的大小.
O●
这个以点O为圆心的圆叫作“圆O”,记为 “⊙ O” . 2.圆是指“圆周”,是曲线,而不是“圆面”。
3.同一个圆的半径处处相等。
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); (2)到定点的距离等于定长的点都在圆上. 归纳:圆的定义2:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点组 成的图形.
O
r
·
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
线段OA叫做半径
以点O为圆心的圆,记作“⊙O”, 读作“圆O”.
例1根据条件作图: (1)以o为圆心作圆 (2)以4厘米为半径作圆 (3)以AB=4厘米为直径作圆
B
O
●
⌒ BC ⌒ 2 .劣弧有一点可以作圆的最长弦有( A )条. A. 1 B. 2 C. 3 D.无数条 2.一点和⊙O上的最近点距离为4cm,最远距离为10cm, 7或3 则这个圆的半径是______cm. 1 条直径,____ 3.如图,图中有____ 2 条非直径的弦,圆中 以A为一个端点的优弧有____ 4 条,劣弧又有____ 4 条. 4.如图, ⊙O中,点A、O、D以及点B、O、C分别在一直线 2 。 上,图中弦的条数为_____ 5.CD为⊙O的直径,∠EOD=72°,AE交⊙O于B, 24° 且AB=OC,则∠A=_______.
. M
C
O
N .
D B
想一想
判断下列说法的正误:
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦; (7)圆心相同,半径相等的两个圆是同心圆; (8)半径相等的两个圆是等圆.
√ 1、圆中的直径是弦; 判断正误: ×2、弦是圆中的直径; √ 3、直径是圆中最长的弦; √ 4、直径的中点是圆心; √ 5、半径和弦都是线段; √ 6、直径相等的两个圆是等圆; × 7、弦是圆上两点间的部分; × 8、等于半径两倍的线段是直径。 × 9、若P是⊙O内一点,过P点的最长的弦有无数条。 × 10、半圆是弧,但弧不一定是半圆.
弦 直径
与圆有关的概念
经过圆心的弦(图中的AB)。 B O A
连接圆上任意两点的线段(图中的线段AB、AC)。
直径 凡直径都是弦,是圆中最长的弦 但弦不一定是直径.
注意:
.
C
弦
即时考你:
AB 如图(1)直径是_______; CD、DK、AB (2)弦是_____________; 不是 (3) PQ是直径吗?______; E G O H C Q
第
24章
圆
圆是生活中常见的图形,许多物体都给我们以圆的形象.
一石激起千层浪
天安门广场 国庆花坛
城市立体交通
一切平面图形中最美的是圆! 圆是和谐,圆是美好,圆是…….
什么是圆?
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
第5题
例2.设CD=3cm,作出满足下列要求的图形:
(1)到点C的距离都等于2cm的点组成的 图形. (2 )到点D的距离都等于2cm的点组成的图形. (3)到点C和点D的距离都等于2cm的所有 点组成的图形.
设CD=3cm,作图说明满足下列要求的图形: (3)到点C和点D的距离都等于2cm的所有点 组成的图形.
动态:如图,在一个平面内,线段OA绕 它固定的一个端点O旋转一周,另一个 端点A所形成的图形叫做圆. 静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
车轮为什么做成圆形?
把车轮做成圆形,车轮上各点到车轮中心(圆心) 的距离都等于车轮的半径, 当车轮在平面上滚动时, 车轮中心与平面的距离 保持不变。因此, 当车辆在平坦的路上行使时, 坐车的人会感觉到非常平稳, 这也是车轮都做成圆形的 数学道理。
C
A D
B
设CD=3cm,作图说明满足下列要求的图形: (4)到点C和点D的距离都小于2cm的所有点 组成的图形.
C
A D
B
设CD=3cm,作图说明满足下列要求的图形: (4)到点C和点D的距离都小于2cm的所有点 组成的图形. C
B
D
A
设CD=3cm,作图说明满足下列要求的图形: (5)到点C的距离小于2cm,且到点B的距离 大于2的所有点组成的图形.
C A D B
用一用
如图,一 根 3m 长的绳子 , 一端栓在柱子 上,另一端栓 着一只羊,请 画出羊的活动 区域.
5
5m
4m
o
5m
4m
o
正确答案
GOOD-BYE !
例3如图,AB,CD为圆O的两条直径, 求证(1)四边形ABCD为矩形 (2)若M,N为AO,BO的中点,则 CMDN为平行四边形 (3)CMDN能够为菱形吗?若能,需添 加怎样的条件? A
圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧.
以A、B为端点的弧记作 AB ,
读作:“圆弧AB”或“弧AB”。
大于半圆的弧(用三个点表示,如: 叫做优弧; 小于半圆的弧叫做劣弧. 如:
),
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧叫做半圆.
1.如图,弧有:______________ A