平面与平面垂直的性质_1-课件
合集下载
人教版高中数学必修2《平面与平面垂直的性质》PPT课件

3,∴h=
3 2.
在△BCD 中,BF=BD·cos 60°=2×12=1,DF=BD·sin 60°= 3,∴DC=2 3,
故 S△BCD=12BF·DC=12×1×2 3= 3.
∴VD-BCG=VG-BCD=13S△BCD·h=13× 3× 23=12.
[方法技巧] (1)在有关垂直问题的证明过程中要注意线线垂直、线面垂直、面面垂直的 相互转化.因此,判定定理与性质定理的合理应用是证明垂直问题的关键. (2)空间问题转化成平面问题是解决立体几何问题的一个基本原则.解题时, 要通过几何图形自身的特点,如等腰(等边)三角形的“三线合一”、中位线定理、 菱形的对角线互相垂直等,得出一些题目所需要的条件.对于一些较复杂的问 题,注意应用转化思想解决问题.
【对点练清】 如图,在四棱锥 P-ABCD 中,平面 PAB⊥平面 ABCD,BC∥平 面 PAD,∠ABC=90°,PA=PB= 22AB.求证: (1)AD∥平面 PBC; (2)平面 PBC⊥平面 PAD. 证明:(1)∵BC∥平面 PAD,BC⊂平面 ABCD,平面 ABCD∩平面 PAD=AD, ∴BC∥AD. ∵AD⊄平面 PBC,BC⊂平面 PBC,∴AD∥平面 PBC.
若①m⊥n,③n⊥β,④m⊥α 成立,则②α⊥β 一定成立; 若②α⊥β,③n⊥β,④m⊥α 成立,则①m⊥n 一定成立. ∴①③④⇒②(或②③④⇒①). 答案:①③④⇒②(或②③④⇒①)
• 题型二 垂直关系的综合应用
• [探究发现]
• 试总结线线垂直、线面垂直、面面垂直之间的转化关 系.
提示:在线线垂直、线面垂直、面面垂直的相互转化中.每一种垂直的
判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:
8.6.3平面与平面垂直(性质)PPT课件(人教版)

∴BC⊥PA.
又PA∩AD=A,∴BC⊥平面
B
PAB.
【悟】
面面垂直的性质定理的应用
() () ()
3 于直 它线 们必 的须 交垂 线直
2 中直 一线 个必 平须 面在 内其
1
用面
要面
两 个
注垂
平
意直
面
以的
垂
下性
直
三质
点定
理
应
面面垂直的性质定理的应用
【练1】 如图所示,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2. 将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC. 求证:BC⊥平面ACD.
二面角的有关概念
以二面角的棱上任一点为端点,在两个面内分别作垂直 于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
平面角的大小就是二面角的大小,范围是[00,1800]。
• ∠AOB即为二面角α-AB-β的 平面角
二面角的平面角的三个特征:
6.平面角是直角的二面角叫做直二面角
(1)顶点在棱上;
∴V 四棱锥 C-ABFE=13·S 正方形 ABFE·CF=43, V 三棱锥 A-CDE=13·S△CDE·AE=43,∴V 六面体 ABCDEF=43+43=83.
巩固练习
巩固练习
1:在三棱柱ABC-A1B1C1中,BC=CC1,平面A1BC1⊥平面BCC1B1.证明:平面AB1C⊥平面A1BC1.
b a
a / /b
a
a / /
a b
b
面面垂直的综合应用
例5.如图①所示,在直角梯形ABCD中,AB BC,BC / / AD,AD=2AB=4,BC=3,E为AD的中点,EF BC, 垂足为F .沿EF 将四边形ABFE折起,连接AD,AC,BC,得到如图②所示的六面体ABCDEF .若折起后AB的 中点M 到点D的距离为3,
【数学课件】两个平面垂直的判定和性质

两个平面垂直的判定和性质
面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
2.3.4面面垂直的性质定理课件

平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β a
符号语言:
l
α A
al 作用: 面面垂直线面垂直
l a a
何时用:已知面面垂直时,求线面垂直 关键:在一个平面内作(找)出垂直于交线的直线.
α l α l α l β β β
平行
相交
线在面β 内
【学习目标】 1.知识与技能:探究平面与平面垂直的性质 定理,进一步培养学生的空间想象能力。 2.过程与方法:面面垂直的性质定理得应用, 培养学生的推理能力。 3.情感与价值观:通过平面与平面垂直的性 质定理的学习,培养学生转化的能力。 教学重、难点 重点: 平面与平面垂直的性质定理 难点: 平面与平面垂直性质定理的应用。
S
A
C
B
课堂小结:
空间问题平面化 注意辅助线的作用
平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直 线与另一个平面垂直。 从已知想性质,从求证想判定 1、证题原则: 2、会利用“转化思想”解决垂直问题 面面垂直 线面垂直 线线垂直
面面垂直的判定:
判定定理:
一个平面过另一个平面的垂线,则这两 个平面垂直
(线面垂直面面垂直)
面垂 直,那么黑板所在的平面里的任意一条 直线是否就一定和地面垂直?
α
β
知识探究:
思考2:如果平面α 与平面β 互相垂直, 直线l在平面α 内,那么直线l与平面β 的位置关系有哪几种可能?
2.3.4平面与平面垂直的性质
温故知新
直线与平面垂直定义:直线与平面垂直判定定理: 如果直线 l 与平面 一条直线与一个平面内 内的任意一条直线都 的两条相交线都垂直, 垂直,我们说直线 l 则该直线与此平面垂 与平面 互相垂直。 直. 线面垂直 线线垂直. 线线垂直 线面垂直.
人教版中职数学拓展模块一:5.4.2平面与平面垂直(1)课件(共25张PPT)

例2 如图所示,在正方体 ABCD-A1B1C1D1中,求证: 平面 ACC1A1⊥平面 BDD1B1.
活动 6 巩固练习,提升素养
例2 如图所示,在正方体 ABCD-A1B1C1D1中,求证: 平面 ACC1A1⊥平面 BDD1B1.
分析 证明两个平面垂直的关键是在其中一个平面内 找到一条直线,证明这条直线与另一个 平面垂直.
抽象概括 如图所示,在二面角 α-l-β 的棱 l 上任取一点 O,
以点 O 为垂足,在半平面 α 和 β 内分别作垂直于棱 l 的 射线 OA 和 OB,则射线OA和OB构成的 ∠AOB 称为二面 角的平面角.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢? 注意: (1)二面角的大小是用它的平面角来度量的,一个二 面角的平面角是多少度,就说这个二面角是多少度. 约定二面角0°≤θ≤180°.
(2)平面角是直角的二面角叫做直二面角.
活动 3 巩固练习,提升素养
例1 如图所示,在正方体 ABCD-A1B1C1D1中,求二 面角 D1-AB-D 的大小.
活动 3 巩固练习,提升素养
例1 如图所示,在正方体 ABCD-A1B1C1D1中,求二 面角 D1-AB-D 的大小.
分析:如何求二面角的大小?需先找出二面角的平 面角,然后求出平面角的大小.
同样的,正方体魔方的侧棱与底面垂直,经过侧棱 的侧面与底面也是垂直的.
你能归纳出上述两例的共同特点吗?
活动 5 调动思维,探究新知
平面与平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这
两个平面互相垂直. 用符号表示为:若l⊥α,l ⊂β,则 β⊥α. 如下图所
活动 6 巩固练习,提升素养
例2 如图所示,在正方体 ABCD-A1B1C1D1中,求证: 平面 ACC1A1⊥平面 BDD1B1.
分析 证明两个平面垂直的关键是在其中一个平面内 找到一条直线,证明这条直线与另一个 平面垂直.
抽象概括 如图所示,在二面角 α-l-β 的棱 l 上任取一点 O,
以点 O 为垂足,在半平面 α 和 β 内分别作垂直于棱 l 的 射线 OA 和 OB,则射线OA和OB构成的 ∠AOB 称为二面 角的平面角.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢? 注意: (1)二面角的大小是用它的平面角来度量的,一个二 面角的平面角是多少度,就说这个二面角是多少度. 约定二面角0°≤θ≤180°.
(2)平面角是直角的二面角叫做直二面角.
活动 3 巩固练习,提升素养
例1 如图所示,在正方体 ABCD-A1B1C1D1中,求二 面角 D1-AB-D 的大小.
活动 3 巩固练习,提升素养
例1 如图所示,在正方体 ABCD-A1B1C1D1中,求二 面角 D1-AB-D 的大小.
分析:如何求二面角的大小?需先找出二面角的平 面角,然后求出平面角的大小.
同样的,正方体魔方的侧棱与底面垂直,经过侧棱 的侧面与底面也是垂直的.
你能归纳出上述两例的共同特点吗?
活动 5 调动思维,探究新知
平面与平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这
两个平面互相垂直. 用符号表示为:若l⊥α,l ⊂β,则 β⊥α. 如下图所
面面垂直的判定与性质课件

详细描述
如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。
如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。
平面与平面垂直的判定课件
ABCD⊥平面BDD1B1.
证明:因为BB1⊥AB,BB1⊥BC,AB∩BC=B,
所以BB1⊥平面ABCD.又BB1⊂平面BDD1B1,
所以平面ABCD⊥平面BDD1B1.
1.理解二面角及其平面角
剖析:(1)二面角是一个空间图形,而二面角的平面角是平面图形,
二面角的大小通过其平面角的大小来刻画,体现了由空间图形向平
平面角.
答案:∠A1AD(或∠B1BC)
2.平面与平面垂直
(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说
这两个平面互相垂直.平面α与平面β垂直,记作α⊥β.
(2)画法:两个互相垂直的平面通常把直立平面的竖边画成与水平
平面的横边垂直.如图所示.
(3)判定定理
文字
语言
一个平面过另一个平面的垂线,则这两个平面
证明(方法一)如图,取AB的中点O,连接OD,OC.
因为AD=DB,所以DO⊥AB.
又△ABD≌△ABC,
1
所以 OD=OC=2AB.
又△ABC 是等腰直角三角形,
2
2
所以 OC= 2 AC.又 CD=AC,所以 OC= 2 CD,
所以OD2+OC2=2OC2=CD2,所以DO⊥OC.
又AB⊂平面ABC,OC⊂平面ABC,AB∩OC=O,
垂直
图形
语言
符号
语言
作用
l⊥α,l⊂β⇒α⊥β
判断两个平面垂直
名师点拨 平面与平面垂直的判定定理告诉我们,可以通过直线
与平面垂直来证明平面与平面垂直.通常我们将其记为:线面垂直,
则面面垂直.因此处理面面垂直问题(即空间问题)转化为处理线面
垂直问题,并进一步转化为处理线线垂直问题(即平面问题)来解决.
证明:因为BB1⊥AB,BB1⊥BC,AB∩BC=B,
所以BB1⊥平面ABCD.又BB1⊂平面BDD1B1,
所以平面ABCD⊥平面BDD1B1.
1.理解二面角及其平面角
剖析:(1)二面角是一个空间图形,而二面角的平面角是平面图形,
二面角的大小通过其平面角的大小来刻画,体现了由空间图形向平
平面角.
答案:∠A1AD(或∠B1BC)
2.平面与平面垂直
(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说
这两个平面互相垂直.平面α与平面β垂直,记作α⊥β.
(2)画法:两个互相垂直的平面通常把直立平面的竖边画成与水平
平面的横边垂直.如图所示.
(3)判定定理
文字
语言
一个平面过另一个平面的垂线,则这两个平面
证明(方法一)如图,取AB的中点O,连接OD,OC.
因为AD=DB,所以DO⊥AB.
又△ABD≌△ABC,
1
所以 OD=OC=2AB.
又△ABC 是等腰直角三角形,
2
2
所以 OC= 2 AC.又 CD=AC,所以 OC= 2 CD,
所以OD2+OC2=2OC2=CD2,所以DO⊥OC.
又AB⊂平面ABC,OC⊂平面ABC,AB∩OC=O,
垂直
图形
语言
符号
语言
作用
l⊥α,l⊂β⇒α⊥β
判断两个平面垂直
名师点拨 平面与平面垂直的判定定理告诉我们,可以通过直线
与平面垂直来证明平面与平面垂直.通常我们将其记为:线面垂直,
则面面垂直.因此处理面面垂直问题(即空间问题)转化为处理线面
垂直问题,并进一步转化为处理线线垂直问题(即平面问题)来解决.
高一数学平面与平面垂直的性质1
金刚骷髅岛下载 www.dlivxБайду номын сангаас.cn
[单选]在催化重整汽油馏分中,其()远比直馏汽油馏分的高。A、芳烃B、异构烷烃C、正构烷烃D、不饱和烃 [单选]8岁男性,左眼突,运动障碍2个月。CT示视神经呈梭形增粗,视交叉增粗,中度、均匀强化。最可能的诊断是()A.视网膜母细胞瘤B.视神经脑膜瘤C.视神经胶质瘤D.海绵状血管瘤E.黑色素瘤 [单选]IBC规则适用于()建造的船舶。A.1984年9月1日及以后B.1987年4月6日及以后C.1986年7月1日及以后D.1980年5月25日及以后 [填空题]高层建筑结构通常要考虑()、()、()、()等方面的验算。 [单选]投标文件的参考格式最主要的是()。A.投标书B.邀请书C.招标书D.工程量清单 [单选]除哪一项外都是拉马克关于生物进化的观点()A.现在地球上的所有生物都是由神创造出来的B.生物是由古老生物由低等到高等逐渐进化的C.生物的适应性是用进废退和获得性遗传的结果D.用进废退而获得性状是生物进化的主要原因 [问答题,简答题]什么叫镧系收缩?其特点和结果如何? [单选,A1型题]休克的病理特点是()。A.有效循环血量代偿性增加B.组织器官有效灌流量锐减与有效循环血量不足C.有效循环血量不足D.组织器官灌流量减少E.组织器官有效灌流量增加 [单选]作为荧光标记物的荧光素必须具备的条件是()A.须具有化学的活性基团,能与蛋白质稳定结合B.荧光素标记后改变抗体的活性C.荧光与背景组织色泽相同D.易淬灭E.有较宽的激发光谱 [单选,A1型题]情感对于情绪来说具有的特点是()。A.强烈而冲动B.伴有明显的行为变化C.伴有明显的生理变化D.稳定而深刻E.带有明显的情境性 [单选]()ups中,无论市电是否正常,都由逆变器供电,所以市电故障瞬间,ups的输出不会间断。A.在线式B.后备式C.三端式D.一般式 [问答题]-15℃等于多少开尔文?293.15K等于多少摄氏度? [单选,A1型题]下列哪项不是臀位剖宫产的指征()A.骨盆入口轻度狭窄B.巨大儿C.软产道异常D.高龄初产妇E.第二产程、脐带脱垂、胎儿存活 [单选]客运专线预制梁混凝土灌筑时,模板温度宜在()A、3~40B、5~35C、6~45 [单选]龟鳖目鳖科中体型最大的、属于国家一级保护的动物是()。A.中华鳖B.山瑞C.马来鳖D.鼋 [单选]何谓中药的四气()A.是指中药的四种特殊气味B.寒凉药具有散寒、助阳的作用C.是指中药的寒、热、温、凉四种药性D.是指中药的辛、成、甘、苦四种味道E.温热药具有清热、解毒的作用 [单选]环境卫生学的基本理论是()A.机体与环境在物质上的统一性B.环境因素对机体影响的作用机制C.机体对环境的适应能力D.环境因素对健康影响的复杂性E.环境中有益因素和有害因素对机体的综合作用 [单选]关于组织细胞增生性疾病,以下描述错误的是()A.临床症状、病变范围差异大,好发于儿童B.X线上可表现为网状结节,主要侵犯中上肺野C.可合并支气管扩张,肺大疱,自发性气胸等D.晚期不会出现蜂窝肺改变E.结节性病变可以和纤维化病变共存 [单选,A2型题,A1/A2型题]性成熟期一般自18岁左右开始,历时()A.10年B.20年C.30年D.40年E.25年 [名词解释]灰浆池 [单选,A1型题]上消化道出血的主要临床表现为()A.中下腹疼痛B.右下腹腹块C.鲜血便或略红色血便D.呕血呈咖啡色,大便呈柏油样E.恶心、呕吐胃内容物 [单选]以下跳汰机是按入选煤的粒度加以区分的()。A、块煤跳汰机B、单段跳汰机C、主选跳汰机D、单槽跳汰机 [单选]保险凭证是简化了的保险单,保险凭证的效力与保险单相比()。A.前者大于后者B.前者小于后者C.相等D.视具体情况而定 [单选]旅客列车发生()人以上食物中毒时,列车长应及时通知前方停车站和所在站的卫生防疫部门。A、4B、3C、1D、6 [单选]在我国,两个以上的人同日就同样的商标申请商标权的,商标权应授予()的人。A.最先使用B.最先设计C.最先申请D.最先申请和使用 [填空题]色漆的遮盖力常用遮盖1m2面积所需用的()来表示。 [单选]化脓性脑膜炎与病毒性脑膜炎在脑脊液检查中有根本性区别的项目是()A.脑脊液透明度B.脑脊液压力C.脑脊液细胞总数D.蛋白增高程度E.糖和氯化物定量 [单选,B1型题]呕吐物多且有粪臭味的是()A.幽门梗阻B.十二指肠淤积症C.小肠梗阻D.胃潴留E.胃癌 [单选,A2型题,A1/A2型题]治疗鼻出血的最佳方法是()。A.全身应用止血药物B.局部用肾上腺素棉片填塞C.用油纱行前鼻孔填塞D.在鼻内镜下寻找出血部位行电凝、微波、激光止血术E.结扎血管 [单选]关于生物电的叙述中,哪一项是错误的A.感受器电位和突触后电位的幅度可随刺激强度的增加而增大B.感受器电位和突触后电位的幅度在产生部位较其周围大C.感受器电位和突触后电位均可以总和D.感受器电位和突触后电位的幅度比动作电位大E.感受器电位和突触后电位都是局部电 [问答题,简答题]偶氮二异丁腈泄漏如何处理? [单选]下列关于商业信用,表述不正确的是()。A.商业信用是指企业之间相互提供的、与商品交易直接联系的信用形式B.企业间商品赊销属于商业信用C.预付货款不属于商业信用D.在发生商业信用过程中,一般要"立字为据"作为债权债务关系的证明 [单选]患者男性,65岁,3周前因脑血管意外导致左侧肢体瘫痪。患者神志清楚,说话口齿不清,大小便失禁。护士协助患者更换卧位后,在身体空隙处垫软枕的作用是A.促进局部血液循环B.减少皮肤受摩擦刺激C.降低空隙处所受压强D.降低局部组织所承受的压力E.防止排泄物对局部的直接刺激 [名词解释]免疫自稳(immunologichomeostasis) [单选]下列关于川乌、草乌在痹证治疗中的用法哪项不正确()A.两药皆为祛风除湿,温经止痛之品B.应用时,应从小剂量开始服用,逐渐增加C.适用于风寒湿痹的疼痛剧烈者D.久煎或与甘草同煎可以缓和毒性E.服药后患者若出现唇舌麻木或手足麻木、恶心、心悸等症状时,可不减量继续服用 [单选]下列哪项不属于CT扫描成像基本步骤()A.产生X线B.采集数据C.重建图像D.显示图像E.图像后处理 [单选,A1型题]体外冲击波碎石的禁忌证应除外()A.妊娠B.过于肥胖,影响聚焦C.严重尿路感染D.结石以下有梗阻E.鹿角形结石 [单选]临床拟诊为肝管结石,下列哪种成像技术为首选()A.CTB.MRIC.CTAD.DSAE.0.MRA [单选]某企业2008年度发生以下业务:以银行存款购买将于2个月后到期的国债500万元,偿还应付账款200万元,支付生产人员工资150万元,购买固定资产300万元。假定不考虑其他因素,该企业2008年度现金流量表中“购买商品、接受劳务支付的现金”项目的金额为()万元。A.200B.350C.650D [判断题]在倾斜井巷中使用的钢丝绳,其插接长度不得小于钢丝绳直径的1000倍。A.正确B.错误
8.6.3平面与平面垂直(第一课时)课件高一下学期数学人教A版
这种方法告诉我们,如果墙面经过地面的垂线, 那么墙面与地面垂直.
类似结论也可以在长方体中发现.如图,在长方体ABCDA'B'C'D'中,平面ADD'A'经过平面ABCD的一条垂线AA',此时, 平面ADD'A'垂直于平面ABCD.
新课引入 探究新知识
平面与平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那 么这两个平面互相垂直.
B A
O
思考2:在二面角的平面角的定义中O点是在棱上任取的,那么∠AOB的大小与点O在棱上的位置有 关系吗?
新课引入 探究新知识
思考3 二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二 面角是多少度.
平面角是直角的二面角叫做直 二面角.
二面角的大小α的取值 范围是0°≤α≤180°.
线面角
新课引入 探究新知识
像研究直线与平面垂直一样,我们首先应给出平面与平面垂直的定义,那么,该 如何定义呢?不妨回顾一下直线与平面垂直、直线与直线垂直的定义过程. 在定义直线与平面垂直时,我们利用了直线与直线的垂直.所以,直线与直线垂直是研 究直线、平面垂直问题的基础.
在平面几何中,我们先定义了角的概念,利用角刻画两条相交直线的位置关系, 进而研究直线与直线互相垂直这种特殊情况,类似地,我们需要先引进二面角的概念, 用以刻画两个相交平面的位置关系,进而研究两个平面互相垂直.
新课引入 探究新知识
二面角
从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角 的棱,这两个半平面叫做二面角的面.
记法:
①棱为AB,面为α、β的二面角记作二面角α-AB-β. ②也可在α、β内(棱以外的半平面部分)分别取点P、 Q,将这个二面 角记作二面角P-AB-Q.
类似结论也可以在长方体中发现.如图,在长方体ABCDA'B'C'D'中,平面ADD'A'经过平面ABCD的一条垂线AA',此时, 平面ADD'A'垂直于平面ABCD.
新课引入 探究新知识
平面与平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那 么这两个平面互相垂直.
B A
O
思考2:在二面角的平面角的定义中O点是在棱上任取的,那么∠AOB的大小与点O在棱上的位置有 关系吗?
新课引入 探究新知识
思考3 二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二 面角是多少度.
平面角是直角的二面角叫做直 二面角.
二面角的大小α的取值 范围是0°≤α≤180°.
线面角
新课引入 探究新知识
像研究直线与平面垂直一样,我们首先应给出平面与平面垂直的定义,那么,该 如何定义呢?不妨回顾一下直线与平面垂直、直线与直线垂直的定义过程. 在定义直线与平面垂直时,我们利用了直线与直线的垂直.所以,直线与直线垂直是研 究直线、平面垂直问题的基础.
在平面几何中,我们先定义了角的概念,利用角刻画两条相交直线的位置关系, 进而研究直线与直线互相垂直这种特殊情况,类似地,我们需要先引进二面角的概念, 用以刻画两个相交平面的位置关系,进而研究两个平面互相垂直.
新课引入 探究新知识
二面角
从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角 的棱,这两个半平面叫做二面角的面.
记法:
①棱为AB,面为α、β的二面角记作二面角α-AB-β. ②也可在α、β内(棱以外的半平面部分)分别取点P、 Q,将这个二面 角记作二面角P-AB-Q.
平面与平面垂直 课件高一下学期数学人教A版(2019)必修第二册
。
1)角的顶点在棱上
2)角的两边分别在两个面内
3)角的边都要垂直于二面角的棱
3个条件:
A
l
O
10
B
A
O
B
。
。
5.二面角的平面角的范围 [0 ,180 ]
6.直二面角
平面角是直角的二面角叫做直二面角.
A
B
O
步步高P83
例1
如图所示,已知三棱锥A-BCD的各棱长均为2,求二面角A-CD-
B的平面角的余弦值.
分析:要证明两个平面垂直,根据两个平面垂直的判定定理,只需证明
其中一个平面内的一条直线垂直于另一个平面.而由直线和平面垂直的
判定定理,还需证明这条直线和另一个平面内的两条相交直线垂直.
P
在本题中, 由题意可知BC AC , BC PA,
AC PA A, 从而BC 平面PAC ,
进而平面PAC 平面PBC .
求证:平面A BD 平面ACC A
分析:要证平面ABD 平面ACC A, 根据两个平面垂直的判定定理,
只需证明平面ABD经过平面ACC A的一条垂线即可. 这需利用AC , BD
是正方形ABCD的对角线.
证明: ABCD A B C D是正方体 ,
AA 平面ABCD , AA BD ,
如果棱记作l , 那么这个二面角记作二面角 l 或P l Q .
李志刚课件
思考
如图8.6-22,在日常生活中,我们常说“把门开大一些”,是指哪个角
大一些?受此启发,你认为应该怎样刻画二面角的大小呢?
4.二面角的平面角
以二面角的棱上 任意一点为端点,在两个面内分别作垂直于棱
1)角的顶点在棱上
2)角的两边分别在两个面内
3)角的边都要垂直于二面角的棱
3个条件:
A
l
O
10
B
A
O
B
。
。
5.二面角的平面角的范围 [0 ,180 ]
6.直二面角
平面角是直角的二面角叫做直二面角.
A
B
O
步步高P83
例1
如图所示,已知三棱锥A-BCD的各棱长均为2,求二面角A-CD-
B的平面角的余弦值.
分析:要证明两个平面垂直,根据两个平面垂直的判定定理,只需证明
其中一个平面内的一条直线垂直于另一个平面.而由直线和平面垂直的
判定定理,还需证明这条直线和另一个平面内的两条相交直线垂直.
P
在本题中, 由题意可知BC AC , BC PA,
AC PA A, 从而BC 平面PAC ,
进而平面PAC 平面PBC .
求证:平面A BD 平面ACC A
分析:要证平面ABD 平面ACC A, 根据两个平面垂直的判定定理,
只需证明平面ABD经过平面ACC A的一条垂线即可. 这需利用AC , BD
是正方形ABCD的对角线.
证明: ABCD A B C D是正方体 ,
AA 平面ABCD , AA BD ,
如果棱记作l , 那么这个二面角记作二面角 l 或P l Q .
李志刚课件
思考
如图8.6-22,在日常生活中,我们常说“把门开大一些”,是指哪个角
大一些?受此启发,你认为应该怎样刻画二面角的大小呢?
4.二面角的平面角
以二面角的棱上 任意一点为端点,在两个面内分别作垂直于棱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
述?该性质在实际应用中有何理论
作用?
β
l
α
γ
如果两个相交平面都垂直于另一个 平面,那么这两个平面的交线垂直 于这个平面.
理论迁移
例1 如图,已知α⊥β,l⊥β,
l ,试判断直线l与平面α的位
置关系,并说明理由.
α a
β
ml
例2 如图,四棱锥P-ABCD的底面是 矩形,AB=2B,C 2 ,侧面PAB是 等边三角形,且侧面PAB⊥底面ABCD. (1)证明:侧面PAB⊥侧面PBC; (2)求侧棱PC与底面ABCD所成的角.
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月28日星期 日2021/2/282021/2/282021/2/28
•
15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/282021/2/282021/2/282/28/2021
•
16、业余生活要有意义,不要越轨。2021/2/282021/2/28Februar y 28, 2021
•
11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/282021/2/282021/2/28Sunday, February 28, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/282021/2/282021/2/282021/2/282/28/2021
一个平面内垂直交线的直线与另一
个平面垂直.
思考6:上述定理通常叫做两平面垂 直的性质定理,结合下图,如何用 符号语言描述这个定理?该定理在 实际应用中有何理论作用?
l, m,lm
α
l .
l β
m
知识探究(二)平面与平面垂直的性质探究
思考1:若α⊥β,过平面α内一点A 作平面β的垂线,垂足为B,那么点 B在什么位置?说明你的理由.
α
A
B β
思考2:上述分析表明:如果两个平 面互相垂直,那么经过一个平面内 一点且垂直于另一个平面的直线, 必在这个平面内.该性质在实际应用 中有何理论作用?
α
A
B β
思考3:对于三个平面α、β、γ,
如果α⊥γ,β⊥γ, l ,那
么直线l与平面γ的位置关系如何? 为什么?
β l
α
a
b
γ
思考4:上述结论如何用文字语言表
αl β
αl β
α
l β
知识探究(一)平面与平面垂直的性质定理
思考2:黑板所在平面与地面所在平 面垂直,在黑板上是否存在直线与 地面垂直?若存在,怎样画线?
α
β
思考3:如图,长方体ABCD—A1B1C1D1 中,平面A1ADD1与平面ABCD垂直,其 交线为AD,直线A1A,D1D都在平面 A1ADD1内,且都与交线AD垂直,这两 条直线与平面ABCD垂直吗?
C1
D1
B1
A1
C
D
B
A
Hale Waihona Puke 思考4:一般地, , C D ,A B ,A B C D ,
, CD
AB ,AB CD ,垂足为B,那么直
线AB与平面 的位置关系如何?为
什么?
β
E D
B
A
α
C
思考5:据上分析可得什么定理?试 用文字语言表述之. β
D
B
A
α
C
定理 若两个平面互相垂直,则在
P
A
D
E
B
C
作业: P73练习:1,2.(做书上) P73习题2.3A组:2. P74习题2.3B组:3.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/282021/2/28Sunday, February 28, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/282021/2/282021/2/282/28/2021 5:38:56 PM
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/282021/2/282021/2/282021/2/28
谢谢观赏
You made my day!
我们,还在路上……
2.3.4 平面与平面垂直的性质
问题提出
1.平面与平面垂直的定义是什 么?如何判定平面与平面垂直?
定义和判定定理
2.平面与平面垂直的判定定理, 解决了两个平面垂直的条件问题; 反之,在平面与平面垂直的条件下, 能得到哪些结论?
知识探究(一)平面与平面垂直的性质定理
思考1:如果平面α与平面β互相垂 直,直线l在平面α内,那么直线l与 平面β的位置关系有哪几种可能?