高考数学 常见题型 平面向量与三角形的“心”

合集下载

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。

在高中数学中,向量问题经常与“四心”问题结合考查。

因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。

四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。

2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。

垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。

2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。

外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。

2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。

内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。

2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。

下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。

A。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。

平面向量与三角形“四心”

平面向量与三角形“四心”

解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。

2022年高考数学之平面向量专题突破专题十 平面向量与三角形的四心(解析版)

2022年高考数学之平面向量专题突破专题十 平面向量与三角形的四心(解析版)

2022年高考数学之平面向量专题突破专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP→-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅ +22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c -33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a=b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()ABC -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC→)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .57.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .238.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .611.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .112.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2313.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π314.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 115.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大值为()A .1B .2C .3D .417.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.18.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则|PA →+PB →+2PC →|的最大值为()A .23B .33C .43D .5319.已知O 是锐角三角形ABC ∆的外接圆的圆心,且A θ∠=,若cos cos 2sin sin B C AB AC mAO C B += ,则m =()A .sin θB .cos θC .tan θD .不能确定20.在ABC ∆中,5BC =,G ,O 分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能21.在ABC ∆中,3AB=,BC =,2AC =,若点O 为ABC ∆的内心,则AO AC ⋅的值为()A .2B .73C .3D .522.设O 是△ABC 的内心,AB =c ,AC =b ,若AO →=λ1AB →+λ2AC →,则()A .λ1λ2=b cB .λ21λ22=b cC .λ1λ2=c 2b2D .λ21λ22=c b23.在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为()A .1063B .1463C .43D .6224.在△ABC 中,已知向量AB →与AC →BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形25.ABC ∆外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m 的值()A .12B .2C .1D .34专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP →-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC ∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心1.答案C解析由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心2.答案C 解析设BC 的中点为M .由已知原式可化为2PA OB OP OC OP λ=-+- .即2PA PBλ=2PC PM += ,所以PM PA λ=,所以P ,A ,M 三点共线.所以P 点在边BC 的中线AM 上.故P 点的轨迹一定过ABC ∆的重心.3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心3.答案C解析∵|AB |sin B =|AC |sin C ,设它们等于t ,∴OP →=OA →+λ·1t(AB →+AC →),设BC 的中点为D ,则AB →+AC →=2AD →,λ·1t (AB →+AC →)表示与AD →共线的向量AP →,而点D 是BC 的中点,即AD 是△ABC 的中线,∴点P 的轨迹一定通过三角形的重心.故选C .4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心4.答案C 解析由正弦定理得2sin 2sin 2sin 0R AOA R BOB R COC ++= ,即0aOA bOB cOC ++=,由上式可得()()cOC aOA bOB a OC CA b OC CB =--=-+-+ ,所以()a b c OC aCA bCB ++=--=ab -(||||CA CB CA CB +,所以OC 与C ∠的平分线共线,即O 在C ∠的平分线上,同理可证,O 也在A ∠,B ∠的平分线上,故O 是ABC ∆的内心.5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心5.答案C 解析3AB = ,2AC =,13||22AB ∴= ,33||42AC = .即133||||242AB AC ==,设12AE AB = ,34AF AC = ,则||||AE AF =,∴1324AD AB AC AE AF =+=+ .由向量加法的平行四边形法则可知,四边形AEDF 为菱形.AD ∴为菱形的对角线,AD ∴平分EAF ∠.∴直线AD 通过ABC ∆的内心.故选C .6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心6.答案C解析||||AP AB AC AC AB =+ ∴11||||()||||AP AB AC AC AB AC AB =+,∴根据平行四边形法则知11||||AC AB AC AB +表示的向量在三角形角A 的平分线上,而向量AP 与11||||AC AB AC AB +共线,P ∴点的轨迹过ABC ∆的内心,故选C .7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅+22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心7.答案C 解析因为22c b c c a c PA PB PA PC PA PB PC PB b b a a--⋅=⋅+=⋅+ ,所以2PA PB PA ⋅-=()c PA PC PA b ⋅-,2()c PA PB PB PB PC PB a ⋅-=⋅- ,所以c PA AB PA AC b ⋅=⋅ ,c BA PB PB BC a⋅=⋅ ,所以||cos ||cos c PA c PAB PA b PAC b ⋅∠=∠ ,||cos ||cos c PB c PBA PB a PBC a⋅∠=∠ ,所以PAB PAC ∠=∠,PBA PBC ∠=∠,所以AP 是BAC ∠的平分线,BP 是ABC ∠的平分线,所以点P 是ABC ∆的内心,故选C .8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心8.答案B解析9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心9.答案D解析由PA →·PB →=PB →·PC →,可得PB →·(PA →-PC →)=0,即PB →·CA →=0,∴PB →⊥CA →,同理可证PC →⊥AB →,PA →⊥BC →.∴P 是△ABC 的垂心.10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心10.答案D解析11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+ ,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心11.答案A 解析取AB 的中点D ,则 22||||BA OA BC AB OB AC ⋅+=⋅+ ,∴2()||BA OA OB BC ⋅+=-+2||AC ,∴2(2)BA OD AB CD ⋅=⋅-,∴20BA OC = ,∴BA OC ⊥ ,∴点O 在AB 边的高所在的直线上,故选A .12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心12.答案D 解析 BC OC OB =- ,CA OA OC =- 、AB OB OA =- ,∴由22222OA BC OB CA OC+=+= 2AB + ,得222222()()()OA OC OB OB OA OC OC OB OA +-=+-=+- ,∴OB OC OA OC OA OB ⋅=⋅=⋅ ,即()()()OC OB OA OA OC OB OB OC OA ⋅-=⋅-=⋅-,∴OC AB OA BC OB AC ⋅=⋅=⋅ ,则OC AB ⊥,OA BC ⊥,OB AC ⊥.O ∴是ABC ∆的垂心.故选D .13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心13.答案C14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.14.答案①②③④⑤解析对于①, 动点P 满足OP OA PB PC =++ ,∴AP PB PC =+,则点P 是ABC ∆的心,故①正确;对于②, 动点P 满足()(0)||||AB AC OP OA AB AC λλ=++>,∴(||ABAP AB λ=+||AC AC (0)λ>,又||||AB ACAB AC +在BAC ∠的平分线上,∴AP 与BAC ∠的平分线所在向量共线,ABC ∴∆的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++(0)λ>,∴()||sin ||sin AB ACAP AB B AC C λ=+,(0)λ>,过点A 作AD BC ⊥,垂足为D ,则||sin AB B = ||sin AC C AD =,()AP AB AC ADλ=+,向量AB AC + 与BC 边的中线共线,因此ABC ∆的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足()(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,(AP λ= ∴)(0)||cos ||cos AB AC AB B AC C λ+> ,∴()(||||cos ||cos AB ACAP BC BC BC AB B AC Cλλ=+=-||)0BC =,∴AP BC ⊥ ,ABC ∴∆的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP = ()(0)2||cos ||cos OB OC AB AC AB B AC C λλ+++> ,设2OB OC OE += ,则(||cos ABEP AB Bλ=+)||cos AC AC C ,由④知(0||cos ||cos AB ACBC AB B AC C+=,∴0EP BC = ,∴EP BC ⊥ ,P ∴点的轨迹为过E 的BC 的垂线,即BC 的中垂线;ABC ∴∆的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c-33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a =b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()A B C -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC →)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.1.答案4解析设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos 60°+32)=4.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.2.答案60°解析∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA→+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴三角形ABC 是等边三角形,则角B =60°.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵sin A ·GA +sin B ·GB +sin C ·GC =0,∴sin A =sin B =sin C ,∴三角形ABC 是等边三角形,则角B =60°.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.3.答案112解析设a ,b ,c 分别为角A ,B ,C 所对的边,由正弦定理得2a ·GA →+3b ·GB →+3c ·GC →=0,则2a ·GA →+3b ·GB →=-3c ·GC →=-3c (-GA →-GB →),即(2a -3c )GA →+(3b -3c )GB →=0.又GA →,GB →不共3c =0,-3c =0,由此得2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,∴2sin A=3sin B =3sin C ,∴2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.4.答案5解析如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴C (a ,0).∵AC →·AB →=-1-12,--12,-+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12(BA →+BC →)(4,0)=BO →·AC →5.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.5.答案35解析因为O 是重心,所以OA →+OB →+OC →=0,即OA →=-OB →-OC →,PC →=34AC →⇒OC →-OP →=34(OC →-OA →)⇒OP →=34OA →+14OC →=-34OB →-12OC →,QC →=nBC →⇒OC →-OQ →=n (OC →-OB →)⇒OQ →=nOB →+(1-n )OC →,因为P ,O ,Q 三点共线,所以OP →∥OQ →,所以-34(1-n )=-12n ,解得n =35.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .56.答案B解析∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.连接AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →),即AB→+AC →=3AM →,∴m =3,故选B .7.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .237.答案A解析∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,于是S △OBC =13S △ABC .∵AB →·AC →=2,∴|AB →|·|AC →|·cos ∠BAC =2,∵∠BAC =60˚,∴|AB →|·|AC →|=4.又S △ABC =12|AB →|·|AC →|sin ∠BAC =3,∴△OBC的面积为33,故选A .8.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.8.答案(-2,0)解析依题意,设OP →=λOC →(0<λ<1),由OA →+OB →+OC →=0,知OC →=-(OA →+OB →),所以OP →=-λOA →-λOB →,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°9.答案B 解析由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .610.答案A解析作OS ⊥AB ,OT ⊥AC ∵O 为△ABC 的外接圆圆心.∴S 、T 为AB ,AC 的中点,且AS →·SO→=0,AT →·TO →=0,AO →=AS →+SO →,AO →=AT →+TO →,∴AO →·(AB →+AC →)=AO →·AB →+AO →·AC →=(AS →+SO →)·AB →+(AT →+TO →)·AC →=AS →·AB →+SO →·AB →+AT →·AC →+TO →·AC →=12AB →·AB →+12AC →·AC →=12|AB →|2+12|AC →|2=8+2=10.故选A .优解:不妨设∠A =90°,建立如图所示平面直角坐标系.设B (4,0),C (0,2),则O 为BC 的中点O (2,1),∴AB →+AC →=2AO →,∴AO →·(AB →+AC →)=2|AO →|2=2(4+1)=10.故选A .11.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .111.答案C 解析设AB 的中点为D ,则PA →+PB →=2PD →.因为PA →+PB →+λPC →=0,所以2PD →+λPC →=0,所以向量PD →,PC →共线.又P 是△ABC 的外心,所以PA =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而PA →+PB →=2PD →=PC →,所以2PD →+λPC →=PC →+λPC →=0,所以λ=-1,故选C .12.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2312.答案C解析∵OA →+AB →+OC →=0,∴OB →=-OC →,故点O 是BC 的中点,且△ABC 为直角三角形,又△ABC 的外接圆的半径为1,|OA →|=|AB →|,∴BC =2,AB =1,CA =3,∠BCA =30°,∴CA →·CB →=|CA →||CB →|·cos 30°=3×2×32=3.13.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π313.答案B 解析设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .由题意可得12bc sin A =3,bc cos A=2,∴tan A =3.又A ∈(0,π),∴A =π3.∴bc cos π3=2,即bc =4.由余弦定理可得a 2=b 2+c 2-2bc cosA =b 2+c 2-bc ≥bc =4,即a ≥2.又由正弦定理得asin A=2R (R 为△ABC 外接圆的半径),∴2R sin A =a ≥2,即3R ≥2,∴R 2≥43,∴三角形外接圆面积的最小值为4π3.14.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 114.解析:选D如图,分别取AB ,AC 的中点,为D ,E ,并连接OD ,OE ,根据条件有OD ⊥AB ,OE⊥AC ,∴AO →·AB →=12|AB ―→|2=92,AO →·AC →=12|AC ―→|2=6,∴AO →·AB →=(xAB →+yAC →)·AB →=9x +63y ·cos ∠BAC =92,①,AO →·AC →=(xAB →+yAC →)·AC →=63x cos ∠BAC+12y =6,②,又9x +12y =8,③,∴由①②③解得cos ∠BAC =33-78.由余弦定理得,BC =9+12-2×3×23×33-78=15+3212.∴BC >AC >AB .在△ABC 中,由大边对大角得,∠BAC >∠ABC >∠ACB ,∴∠BOC >∠AOC >∠AOB ,∵|OA →|=|OB →|=|OC →|,且余弦函数在(0,π)上为减函数,∴OB →·OC →<OA →·OC →<OA →·OB →,即I 2<I 3<I 1.15.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]15.答案B解析由题意∠C =45°,所以∠AOB =90°,以OA ,OB 为x ,y 轴建立平面直角坐标系,如图,不妨设A (1,0),B (0,1),则C 在圆O 的优弧AB 上,设C (cos α,sin α),则α显然OC →=cos αOA →+sin αOB →,即m =cos α,n =sin α,m +n =cos α+sin α=2sinαα+π4∈∈-1m +n ∈[-2,1),故选B .16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大。

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。

高考专题:平面向量中的三角形“四心”问题题型总结

高考专题:平面向量中的三角形“四心”问题题型总结

专题:平面对量中三角形“四心”问题题型总结在三角形中,“四心”是一组特别的点,它们的向量表达形式具有很多重要的性质,在近年高考试题中,总会出现一些新奇新颖的问题,不仅考查了向量等学问点,而且培育了考生分析问题、解决问题的实力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA+GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内随意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.(2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心. (3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的肯定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满意OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹肯定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),依据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特别线段所在直线重合,这可从已知等式动身,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满意关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积, 所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0非常类似,因此我们通过添加协助线,构造一个三角形,使点O 成为协助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满意关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2,对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则 AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0, 因为|OC |=|OB |,所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不肯定垂直,所以只有当m =1时,上式恒成立.所以OH =OA +OB +OC ,从而OG =13OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[引申推广]重心G 与垂心H 的关系:HG =13(HA +HB +HC ). [点评] 这是闻名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +4MA +5MA =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 依据三角形中的“四心”学问,可知在△ABC 中满意MA +MB +MC =0的点只有重心一点,利用类比的数学思想,可知满意本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的具体解答过程如下:对于空间两点A,B来说,满意MA+MB=0的点M是线段AB的中点;对于空间三点A,B,C来说,满意MA+MB+MC=0,可认为是先取AB的中点G,再连接CG,在CG上取点M,使MC=2MG,则M满意条件,且唯一;对于空间四点A,B,C,D来说,满意MA+MB+MC +MD=0,可先取△ABC的重心G,再连接GD,在GD上取点M,使DM=3MG,则M满意条件,且唯一,不妨也称为重心G;与此类似,对于空间五点A,B,C,D,E来说,满意MA+MB+MC +MD+ME=0,可先取空间四边形ABCD的重心G,再连接GE,在GE上取点M,使EM=4MG,则M满意条件,且唯一.。

第6章平面向量专题5 三角形四心问题-新教材高中数学必修(第二册)常考题型专题练习

第6章平面向量专题5 三角形四心问题-新教材高中数学必修(第二册)常考题型专题练习

【分析】如图所示,建立直角坐标系. BC 10 .由直角三角形的内切圆的性质可得:四边

AEDF
为正方形,可得内切圆的半径
r
6
8
10
2
.设
BD
m AB
n AC
,利用平面向
2
量基本定理即可得出.
【解答】解:如图所示,建立直角坐标系.
BC 62 82 10 .
由直角三角形的内切圆的性质可得:四边形 AEDF 为正方形, 内切圆的半径 r 6 8 10 2 .
1
时,否则
CO
CB
,由图可知是不可能的.
可化为
m
2 2(
n
1
1
1
)
,代入
(*)
可得
8( )2 ( 1)2
( )2 ( 1)2
9,
化为18( ) 9 32 ,
利用重要不等式可得18( )
9
32(
)2

2
化为 8( )2 18( ) 9 0 ,
同理可得 PA BC , PC AB ,
P 是 ABC 的垂心.
故选: D .
【点评】本小题主要考查向量的数量积的运算法则、三角形垂心等基础知识,考查运算求解
能力,考查数形结合思想、化归与转化思想.属于基础题
12 . O 为 ABC 平 面 内 一 定 点 , 该 平 面 内 一 动 点 P 满 足
9.已知 ABC ,角 ABC 的三边分别为 a 、 b 、 c , P 为三角形所在平面上的一点,且点 P
满足: aPA bPB cPC 0 ,则 P 点为三角形 (
)
A.外心
B.内心
C.重心
D.垂心

平面向量题型三-三角形“四心”与向量结合

平面向量题型三-三角形“四心”与向量结合

题型三 三角形“四心”与向量结合 (一)平面向量与三角形内心1、O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足+=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心2、已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+•=,则P 是三角形的( )A 外心 B 内心 C 重心 D 垂心3、在三角形ABC 中,动点P 满足:CP AB CB CA •-=222,则P 点轨迹一定通过△ABC 的: ( )A 外心 B 内心 C 重心 D 垂心)(二)平面向量与三角形垂心 “垂心定理”H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.证明:由⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略))4、已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足: 0PA PC PA PB PB PC •+•+•=,则P 点为三角形的 ( )A 外心 B 内心 C 重心 D 垂心 [5、点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的 ( )(A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点6、在同一个平面上有ABC ∆及一点O满足关系式: 2O A +2BC =2OB +2CA =2OC +2AB ,则O为ABC ∆的 ( )A 外心 B 内心 C 重心 D 垂心(三)平面向量与三角形重心 “重心定理”G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. (证明 图中GE GC GB =+ 连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得+=0⇒2-=-=,故G 是△ABC 的重心.(反之亦然(证略))P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=.证明+=+=+=⇒)()(3+++++=∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3由此可得)(31PC PB PA PG ++=.(反之亦然(证略))7、已知O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:)(AC AB OA OP ++=λ,则P 的轨迹一定通过△ABC 的 ( )A 外心 B 内心 C 重心 D 垂心*8、已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足 =31 (21+21+2),则点P 一定为三角形ABC 的 ( )边中线的中点 边中线的三等分点(非重心) C.重心 边的中点(四)平面向量与三角形外心9、若O 为ABC ∆内一点,OA OB OC==,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心10、ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =:(五)平面向量与三角形四心11、已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1, 求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题)12、在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。

平面向量中的四心问题总结

平面向量中的四心问题总结

平面向量中的四心问题总结平面向量中的四心问题是一个数学问题,涉及到平面上的四种特殊点,分别是三角形的重心、外心、内心和垂心。

这四个点在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

首先,三角形的重心是由三角形的三个顶点所确定的三条中线的交点,它的坐标可以表示为三个顶点坐标的平均值。

重心在平面向量中有着重要的作用,它可以表示为三个顶点向量的和的1/3。

重心是三角形的一个重要特征点,具有平衡的作用,对于平面向量的运算和性质有着重要的影响。

其次,三角形的外心是三条外接圆的交点,它的坐标可以表示为三个顶点坐标的中点。

外心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和的一半。

外心是三角形外接圆的圆心,对于三角形的外接圆方程和性质有着重要的作用。

再次,三角形的内心是三条内切圆的交点,它的坐标可以表示为三个顶点坐标的加权平均。

内心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

内心是三角形内切圆的圆心,对于三角形的内切圆方程和性质有着重要的作用。

最后,三角形的垂心是三条高的交点,它的坐标可以表示为三个顶点坐标的加权平均。

垂心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

垂心是三角形的一个重要特征点,对于三角形的高、垂心连线等性质有着重要的影响。

综上所述,平面向量中的四心问题涉及到三角形的重心、外心、内心和垂心,它们在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

这些特殊的点和它们的性质不仅在数学理论中有着重要的应用,也在实际问题中有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.已知非零向量
A→B

A→C
满足(
A→B |A→B|

A→C |A→C|
)·B→C
=0且
|AA→→BB|·|AA→ →CC|=12,则△ABC为(
)
A.三边均不相等的三角形 B.直角三角形
C.等腰非等边三角形
D.等边三角形
答案 D
解析 由|O→A|=|O→B|=|O→C|知,O是三角形的外心,排除 答案A,B.
由N→A+N→B+N→C=0得出N必然为重心. ∵P→A·P→B=P→B·P→C,∴(P→A-P→C)·P→B=0. ∴C→A·P→B=0,∴CA⊥PB,同理,AP⊥BC. ∴P为△ABC的垂心,故选C.
3.在△ABC中,若动点P满足C→A2=C→B2-2A→B·C→P ,则
2.三角形各心的向量表示 (1)O 是△ABC 的重心⇔O→A+O→B+O→C=0; (2)O 是△ABC 的垂心⇔O→A·O→B=O→B·O→C=O→C·O→A; (3)O 是△ABC 的外心⇔|O→A|=|O→B|=|O→C|(或O→A2=O→B2 =O→C2);
(4)O 是△ABC 的内心⇔O→A·(|AA→→BB|-|AA→ →CC|)=O→B·(|BB→→AA|-|BB→ →CC|) =O→C·(|CC→→AA|-|CC→ →BB|)=0.
B.内心
C.重心
D.垂心
答案 D
2.已知O,N,P在△ABC所在平面内,且|O→A|=|O→B|= |O→C|,N→A+N→B+N→C=0,P→A·P→B=P→B·P→C=P→C·P→A,则点O, N,P依次是△ABC的( )
A.重心、外心、垂心 B.重心、外心、内心 C.外心、重心、垂心 D.外心、重心、内心 答案 C
P点轨迹一定通过△ABC的( )
A.外心
B.内心
C.重心
D.垂心
答案 A
解析 2 A→B·C→P = C→B 2-C→A 2=( C→B - C→A )·( C→B +C→A )= A→B·(C→B+C→A),即2A→B·C→P=A→B·(C→B+C→A),∴A→B·(2C→P-C→B -C→A)=A→B·(B→P+A→P)=0.∴以B→P,A→P为邻边的平行四边形 的对角线互相垂直.∴点P在线段AB的中垂线上,故选A.
题型二 将平面向量与三角形垂心结合考查
例 2 点 P 是△ABC 所在平面上一点,若P→A·P→B=P→B·P→C
=P→C·P→A,则点 P 是△ABC 的( )
A.外心
B.内心
C.重心
D.垂心
【解析】 由P→A·P→B=P→B·P→C,得P→A·P→B-P→B·P→C=0, 即P→B·(P→A-P→C)=0,即P→B·C→A=0,则PB⊥CA.
题型四 将平面向量与三角形重心结合考查 例 4 点 P 是△ABC 所在平面内任一点.G 是△ABC 的 重心⇔P→G=13(P→A+P→B+P→C).
【证明】 ∵P→G=P→A+A→G=P→B+B→G=P→C+C→G, ∴3P→G=(A→G+B→G+C→G)+(P→A+P→B+P→C). ∵点G是△ABC的重心,∴G→A+G→B+G→C=0. ∴A→G+B→G+C→G=0,即3P→G=P→A+P→B+P→C. 由此得P→G=13(P→A+P→B+P→C). 反之亦然(证略).
平面向量与三角形的“心”
三角形的“心”的向量表示及应用 1.三角形各心的概念介绍 重心:三角形的三条中线的交点; 垂心:三角形的三条高线的交点; 内心:三角形的三个内角角平分线的交点(三角形内切圆 的圆心); 外心:三角形的三条边的垂直平分线的交点(三角形外接 圆的圆心).
根据概念,可知各心的特征条件.比如:重心将中线长 度分成2∶1;垂线与对应边垂直;角平分线上的任意点到角 两边的距离相等;外心到三角形各顶点的距离相等.
同理O→P2·O→P3=O→P3·O→P1=-12. ∴|P→1P2|=|P→2P3|=|P→3P1|= 3. 从而△P1P2P3是正三角形.
对点训练
1.若O为空间中一定点,动点P在A,B,C三点确定的
平面内且满足(O→P-O→A)·(A→B-A→C)=0,则点P的轨迹一定过
△ABC的( )
A.外心
A.外心 C.重心
B.内心 D.垂心
【解析】 因为|AA→→BB|是向量A→B的单位向量,设A→B与A→C 方向上的单位向量分别为e1和e2,又O→P -O→A =A→P,则原式 可化为 A→P =λ(e1+e2),由菱形的基本性质可知AP平分∠ BAC,那么在△ABC中,AP平分∠BAC,故选B.
注意 向量 λ(|AA→→BB|+|AA→ →CC|)(λ≠0)所在直线过△ABC 的内 心(是∠BAC 的角平分线所在直线)
题型一 将平面向量与三角形外心结合考查
例 1 若 O 为△ABC 内一点,|O→A|=|O→B|=|O→C|,则 O
是△ABC 的( )
A.内心
B.外心
C.垂心
D.重心
【解析】 由向量模的定义知O到△ABC的三顶点距离相 等,故O是△ABC的外心,故选B.
同理PA⊥BC,PC⊥AB,所以P为△ABC的垂心.故选 D.
【点评】 本题考查平面向量有关运算,及“数量积为 零,则两向量所在直线垂直”、三角形的垂心的定义等相关 知识.将三角形的垂心的定义与平面向量有关运算及“数量 积为零,则两向量所在直线垂直”等相关知识巧妙结合.
题型三 将平面向量与三角形内心结合考查 例 3 O 是平面上一定点,A,B, 是平面上不共线的 三个点,动点 P 满足O→P=O→A+λ(|AA→→BB|+|AA→ →CC|),λ∈(0,+∞), 则点 P 的轨迹一定通过△ABC 的( )
题型五 将平面向量与三角形四心结合考查 例 5 已知向量O→P1,O→P2,O→P3满足条件O→P1+O→P2+O→P3 =0,|O→P1|=|O→P2|=|O→P3|=1,求证:△P1P2P3 是正三角形.
【证明】 由已知条件可得O→P1+O→P2=-O→P3,两边平 方,得O→P1·O→P2=-12.
相关文档
最新文档