转换公式
三角函数转换公式

6、积化和差
sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]
cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]
sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]
tan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanα
sin〔π-α〕=sinαcos〔π-α〕=-cosα
tan〔π-α〕=-tanαcot〔π-α〕=-cotα
sin〔π+α〕=-sinαcos〔π+α〕=-cosα
tan〔π+α〕=tanαcot〔π+α〕=cotα
sin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinα
cos〔α-β〕=cosαcosβ+sinαsinβ
tanα+tanβ
tan〔α+β〕=——————
1-tanα·tanβ
tanα-tanβ
tan〔α-β〕=——————
1+tanα·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
三角函数转换公式
1、诱导公式:
sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;
10进制转换16进制公式

10进制转换16进制公式一、整数部分转换。
1. 方法:除16取余法。
- 将十进制数除以16,取余数作为转换后16进制数的最低位数字。
- 然后将商继续除以16,再取余数作为次低位数字,以此类推,直到商为0。
- 最后将所得余数从右到左排列,得到16进制数。
- 例如,将十进制数255转换为16进制:- 255÷16 = 15·s·s15(在16进制中,10 - 15分别用A - F表示,这里余数15用F表示)- 15÷16=0·s·s15- 所以,255转换为16进制是FF。
二、小数部分转换。
1. 方法:乘16取整法。
- 将十进制小数乘以16,取积的整数部分作为16进制小数的最高位数字。
- 然后将积的小数部分继续乘以16,再取整数部分作为次高位数字,以此类推,直到小数部分为0或者达到所需的精度为止。
- 例如,将十进制小数0.625转换为16进制:- 0.625×16 = 10(10在16进制中用A表示)- 所以,0.625转换为16进制是0.A。
三、综合示例。
1. 将十进制数300.125转换为16进制。
- 对于整数部分300:- 300÷16 = 18·s·s12(12用C表示) - 18÷16 = 1·s·s2- 1÷16=0·s·s1- 整数部分转换为16进制是12C。
- 对于小数部分0.125:- 0.125×16 = 2- 小数部分转换为16进制是0.2。
- 所以,300.125转换为16进制是12C.2。
三角函数转换公式大全

三角函数公式1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a)4、半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinα注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。
三年级数学所有公式换算

三年级数学所有公式换算三年级数学中有很多重要的公式,可以帮助我们进行数学计算和问题解决。
在这篇文章中,我将介绍一些三年级数学中常见的公式,包括加减法、乘除法、面积和周长等方面的公式。
第一节:加减法公式1. 加法公式:加法是指将两个或多个数相加的运算。
例如,2 + 3 = 5。
在加法中,我们可以使用进位法来计算两个多位数的和。
比如,345 + 678 = 1023。
2. 减法公式:减法是指将一个数减去另一个数的运算。
例如,7 - 4 = 3。
在减法中,我们可以使用借位法来计算两个多位数的差。
比如,1200 - 789 = 411。
第二节:乘除法公式1. 乘法公式:乘法是指将两个或多个数相乘的运算。
例如,3 × 4 = 12。
在乘法中,我们可以使用交换律和结合律来计算多个数的乘积。
比如,2 × 3 × 4 = 24。
2. 除法公式:除法是指将一个数除以另一个数的运算。
例如,10 ÷ 2 = 5。
在除法中,我们可以使用倍数法和试除法来计算除法的结果。
比如,100 ÷ 20 = 5。
第三节:面积和周长公式1. 长方形面积公式:长方形的面积等于长乘以宽。
例如,一个长为5厘米,宽为3厘米的长方形的面积为15平方厘米。
2. 正方形面积公式:正方形的面积等于边长的平方。
例如,一个边长为4厘米的正方形的面积为16平方厘米。
3. 圆的面积公式:圆的面积等于半径的平方乘以π。
例如,一个半径为2厘米的圆的面积为4π平方厘米。
4. 三角形周长公式:三角形的周长等于三条边的长度之和。
例如,一个三角形的三条边长分别为3厘米、4厘米和5厘米,那么它的周长为12厘米。
第四节:其他公式1. 十进制数转换公式:十进制数转换为分数的公式是将数的分子写在分数线的上方,分母写在分数线的下方。
例如,0.5可以转换为1/2。
2. 数字的序数公式:数字的序数表示它在一系列数字中的位置。
例如,1的序数是第一,2的序数是第二,以此类推。
三角函数转换公式

三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
各类转换公式范文

各类转换公式范文在数学中,转换公式是用来将一种形式的表达式转换成另一种形式的数学等式或恒等式。
不同的转换公式适用于不同的情况。
下面是一些常见的转换公式:1.代数公式:- 二次方程的求根公式:对于方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来计算方程的根。
- 完全平方公式:对于一元二次方程ax^2 + bx + c = 0,可以使用完全平方公式(x + b/2a)^2 = (b^2 - 4ac)/4a来转换表达式。
2.三角函数公式:- 和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B),cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)等等。
- 二倍角公式:sin(2A) = 2sin(A)cos(A),cos(2A) = cos^2(A) - sin^2(A)等等。
3.指数和对数公式:- 对数公式:log(ab) = log(a) + log(b),log(a/b) = log(a) - log(b)等等。
- 指数公式:a^x * a^y = a^(x+y),(a^x)^y = a^(xy)等等。
4.矩阵转换公式:- 转置公式:对于一个m×n的矩阵A,其转置矩阵记为A^T,其中(A^T)_ij = A_ji。
5.三角恒等式:- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C),其中a、b、c为三角形三边的边长,C为夹角C的余弦值。
- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c为三角形三边的边长,A、B、C为对应的夹角。
6.几何转换公式:-相似三角形公式:如果两个三角形的对应角相等,则它们的对应边成比例。
-圆的面积公式:圆的面积为πr^2,其中r为圆的半径。
三角函数转换公式大全
三角函数公式1、两角和公式sinA+B = sinAcosB+cosAsinBsinA-B = sinAcosB-cosAsinBcosA+B = cosAcosB-sinAsinBcosA-B = cosAcosB+sinAsinBtanA+B = tanA+tanB/1-tanAtanBtanA-B = tanA-tanB/1+tanAtanBcotA+B = cotAcotB-1/cotB+cotAcotA-B = cotAcotB+1/cotB-cotA2、倍角公式tan2A = 2tanA/1-tan^2 ASin2A=2SinA CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4sinA^3;cos3A = 4cosA^3 -3cosAtan3a = tan a tanπ/3+atanπ/3-a4、半角公式sinA/2 = √{1--cosA/2}cosA/2 = √{1+cosA/2}tanA/2 = √{1--cosA/1+cosA}cotA/2 = √{1+cosA/1-cosA}tanA/2 = 1--cosA/sinA=sinA/1+cosA5、和差化积sina+sinb = 2sina+b/2cosa-b/2sina-sinb = 2cosa+b/2sina-b/2cosa+cosb = 2cosa+b/2cosa-b/2cosa-cosb = -2sina+b/2sina-b/2tanA+tanB=sinA+B/cosAcosB6、积化和差sinasinb = -1/2cosa+b-cosa-bcosacosb = 1/2cosa+b+cosa-bsinacosb = 1/2sina+b+sina-bcosasinb = 1/2sina+b-sina-b7、诱导公式sin-a = -sinacos-a = cosasinπ/2-a = cosacosπ/2-a = sinasinπ/2+a = cosacosπ/2+a = -sinasinπ-a = sinacosπ-a = -cosasinπ+a = -sinacosπ+a = -cosatgA=tanA = sinA/cosA8、万能公式sina = 2tana/2 / {1+tana/2^2}cosa = {1-tana/2^2} / {1+tana/2^2}tana = 2tana/2/{1-tana/2^2}9、其它公式asina+bcosa = √a^2+b^2sina+c 其中,tanc=b/aasina-bcosa = √a^2+b^2cosa-c 其中,tanc=a/b1+sina = sina/2+cosa/2^2;1-sina = sina/2-cosa/2^2;;10、其他非重点三角函数csca = 1/sinaseca = 1/cosa11、双曲函数sinha = e^a-e^-a/2cosha = e^a+e^-a/2tg ha = sin ha/cos ha12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin2kπ+α= sinαcos2kπ+α= cosαtan2kπ+α= tanαcot2kπ+α= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α= -cosαtanπ+α= tanαcotπ+α= cotα14、公式三:任意角α与 -α的三角函数值之间的关系:sin-α= -sinαcos-α= cosαtan-α= -tanαcot-α= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α= -cosαtanπ-α= -tanαcotπ-α= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α= -sinαcos2π-α= cosαtan2π-α= -tanαcot2π-α= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sinπ/2+α= cosαcosπ/2+α= -sinα。
进制转换方法的公式
进制转换方法的公式进制转换,是将十进制、八进制、十六进制和二进制之间的数值进行转换的一种数学操作。
进制转换公式是将不同数字系统之间的数据转换成另一种数字系统的基本方法。
在数学上,进制转换是一个有效的方法,它可以帮助我们更好地理解数字系统之间的转换关系。
下面我们就来学习关于进制转换的公式。
首先要明确的是,不同进制之间是可以相互转换的。
比如十六进制和十进制之间可以进行转换,八进制和十进制之间也可以转换,二进制和十进制之间也可以转换等等。
例如,如果数字d=1011,有多少种表示方法?我们可以用下面的公式来转换:(1)十进制转换公式:十进制 = (d1 2^0) + (d2 2^1) + (d3 2^2) + (d4 2^3)(2)八进制转换公式:八进制 = (d1 8^0) + (d2 8^1) + (d3 8^2) + (d4 8^3)(3)十六进制转换公式:十六进制 = (d1 16^0) + (d2 16^1) + (d3 16^2) + (d4 16^3) 例如,上面提到的数字d=1011,它的十进制表示是11(d1=1,d2=0,d3=1,d4=1),八进制表示是13(d1=1,d2=3),十六进制表示是B(d1=B)。
在进制转换的公式中,也有一些特殊的情况,比如二进制转换公式。
由于二进制只有两个数字0和1,因此它的转换公式更加简单:二进制 = (d1 2^0) + (d2 2^1) + (d3 2^2) + (d4 2^3)通过这个公式,我们可以快速转换出1的任何进制的表示方法。
此外,进制转换的公式还可以用于进制转换计算。
例如,下面这个例子使用了进制转换计算:已知7 (八进制) = 7 (十进制)根据上述进制转换公式,我们可以推出:7 (八进制) = 7× 8^0 = 7×1 = 7 (十进制)从上面的例子中可以看出,进制转换的公式不仅可以帮助我们快速转换不同数的表示方法,还可以用于计算。
数学换算公式
数学换算公式数学换算公式是用来将不同单位的数值互相转换的数学公式。
在物理学、工程学、经济学等领域中,常常需要将不同单位的数值进行换算,以满足实际需求。
下面将介绍一些常见的数学换算公式及其应用。
1. 长度换算公式长度是常见的物理量之一。
常见的长度单位有米(m)、千米(km)、分米(dm)、厘米(cm)、毫米(mm)等。
下面是一些常见单位之间的换算公式:1 米 = 100 厘米 = 1000 毫米1 千米 = 1000 米1 厘米 = 0.01 米1 毫米 = 0.001 米2. 面积换算公式面积是指一个平面中所围成的空间的大小。
常见的面积单位有平方米(m²)、平方千米(km²)、平方厘米(cm²)、平方毫米(mm²)等。
下面是一些常见单位之间的换算公式:1 平方米 = 10,000 平方厘米 = 1,000,000 平方毫米1 平方千米 = 1,000,000 平方米3. 体积换算公式体积是指一个物体所占据的空间大小。
常见的体积单位有立方米(m³)、立方厘米(cm³)、立方毫米(mm³)等。
下面是一些常见单位之间的换算公式:1 立方米 = 1,000,000 立方厘米 = 1,000,000,000 立方毫米4. 温度换算公式温度是物体内部分子运动的一种表现形式。
常见的温度单位有摄氏度(℃)、华氏度(℉)、开尔文(K)等。
下面是一些常见单位之间的换算公式:摄氏度与华氏度之间的换算公式:℉ = ℃ * 1.8 + 32℃ = (℉ - 32)/ 1.8摄氏度与开尔文之间的换算公式:K = ℃ + 273.15℃ = K - 273.155. 重量换算公式重量是物体所受到的地球引力的作用力大小。
常见的重量单位有千克(kg)、克(g)、吨(t)等。
下面是一些常见单位之间的换算公式:1 千克 = 1000 克1 吨 = 1000 千克除了上述所提到的单位换算公式外,还有许多其他领域的计量单位换算公式。
三角函数转换公式
三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinB cos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2sinA•cosA cos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差1)圆心在极点,半径为常数a,圆的方程为ρ=a,2)圆心在极轴上,极点在圆上,半径为a,圆的方程为ρ=2acosθ,3) 圆心在极轴的反方向上,极点在圆上,半径为a,圆的方程为ρ=-2acosθ,4)圆心在过极点且垂直于极轴的直线(上头的射线)上,极点在圆上,半径为a,圆的方程为ρ=2asinθ,5) 圆心在过极点且垂直于极轴的直线(下头的射线)上,极点在圆上,半径为a,圆的方程为ρ=-2asi nθ,6) 圆的一般方程:设圆心的极坐标为﹙ρ0,θ0﹚,半径为r,则圆的方程为r²=ρ²+ρ0²-2ρρ0cos ﹙θ-θ0﹚.(其中,圆上的动点的坐标是(ρ,θ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.约定本文中所列的转换公式都基于椭球体a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)-- 纵直角坐标, -- 横直角坐标,单位米(M)2.椭球体参数我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”):需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京19 54“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。
3.墨卡托(Mercator)投影3.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mer cator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
基准纬线取至整度或整分。
3.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
3.3 墨卡托投影正反解公式墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度0,原点经度L0墨卡托投影反解公式:(X,Y) →(B,L),标准纬度B0,原点纬度0,原点经度L0公式中EXP为自然对数底,纬度B通过迭代计算很快就收敛了。
4.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影4.1 高斯-克吕格投影与UTM投影异同高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。
从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬8 0度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。
从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。
从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。
此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。
4.2 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。
设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。
然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。
高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。
高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。
由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。
通常按经差6度或3度分为六度带或三度带。
六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。
三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第1、2…120带。
我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。
我国大于等于50万的大中比例尺地形图多采用六度带高斯-克吕格投影,三度带高斯-克吕格投影多用于大比例尺测图,如城建坐标多采用三度带的高斯-克吕格投影。
4.3 UTM投影简介UTM投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。
UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。
与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。
UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。
我国的卫星影像资料常采用UTM投影。
4.4 高斯-克吕格投影与UTM投影坐标系高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。
以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。
为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。
由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4 231898m,21655933m),其中21即为带号。
4.5 高斯-克吕格投影与UTM投影正反解公式高斯-克吕格投影和UTM投影公式从目前公开出版的教材、文献及网上我看到好几种版本,可归结为下列两组,我把原来教科书及国内文献上常见的一套公式列作高斯-克吕格投影公式,POSC(国际石油技术软件开放公司)及国外文献上见到的另一套公式列作UTM投影公式。
常常能看到两套投影公式混用的文献资料,文中谈论的是UTM投影,但列出的公式却是国内教材上的高斯-克吕格投影公式,让我很困惑。
为此,我设定比例因子都为1,用下列两组公式分别进行了同点的投影计算,计算结果在中高纬度时两套公式差异很小,小数后6位都是一致的;在低纬度时,投影结果差异拉大,横轴在小数第三位开始出现差异。
假如精确到厘米级,上述试验说明两套公式混用应该没问题。
不过,有可能会有其它极端的情况,毕竟是不同的投影公式。
高斯-克吕格投影正解公式:(B,L)→(X,Y),原点纬度0,中央经度L0上面公式中东纬偏移FE = 500000米+ 带号* 1000000;高斯-克吕格投影比例因子k0 = 1UTM投影正解公式:(B,L)→(X,Y),原点纬度0,中央经度L0上面公式中东纬偏移FE= 500000米;北纬偏移FN北半球= 0,FN南半球= 10000000米;UTM投影比例因子k0 = 0.9996,其它参数同高斯-克吕格投影正解公式高斯-克吕格投影反解公式:(X,Y) →(B,L),原点纬度0,中央经度L0UTM投影反解公式:(X,Y) →(B,L),原点纬度0,中央经度L0式中参数同高斯-克吕格投影反解公式5.兰勃特等角投影(Lambert Conformal Conic);5.1 兰勃特等角投影简介兰勃特等角投影,在双标准纬线下是一“等角正轴割圆锥投影”,由德国数学家兰勃特(J.H. Lambert)在1772年拟定。
设想用一个正圆锥割于球面两标准纬线,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开,即为兰勃特投影平面。
兰勃特等角投影后纬线为同心圆弧,经线为同心圆半径。
前面已经介绍的墨卡托(Mercator)投影是它的一个极端特例。
兰勃特投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:a) 角度没有变形;b) 两条标准纬线上没有任何变形;c) 等变形线和纬线一致,即同一条纬线上的变形处处相等;d) 在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间为负变形(长度比小于1)。