激光技术复习资料
激光原理复习自整理资料

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。
含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。
谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。
激光原理复习知识点

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。
α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。
按上式定义的v∆称为谱线宽度。
3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。
4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。
5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。
定义p v P w Q ξπξ2==。
ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。
v 为腔内电磁场的振荡频率。
6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。
这种使激光器获得更窄得脉冲技术称为锁模。
8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。
9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。
(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。
激光技术与应用复习知识点

激光技术与应⽤复习知识点1、激光的定义激光是由受激发射的光放⼤产⽣的辐射。
2、激光的基本特性单⾊性,⽅向性,相⼲性,⾼亮度。
3、空间相⼲性与时间相⼲性波在空间不同区域可能具有不固定的相位差,只有在⼀定空间范围内的光波才有相对固定的位相差,使得只有⼀定空间内的光波才是相⼲的。
这种特性叫做波的空间相⼲性。
与波传播时间差有关的,由不确定的位相差导致的,只有传播时间差在⼀定范围内的波才具有相对固定的位相差从⽽相⼲的特性叫波的时间相⼲性。
4、光⼦简并度光⼦属于波⾊⼦,⼤量光⼦集合遵从波⾊-爱因斯坦统计规律,处于同态的光⼦数不受限制。
虽然处于同⼀光⼦态的光⼦数并⾮严格的不随时间的变化,但其平均光⼦数是可以确定的。
这种处于同⼀光⼦态的平均光⼦数成为光⼦简并度。
5、激光器的基本组成及其应⽤激光器⼀般包括三个部分。
激光器的基本结构由⼯作物质、泵浦源和光学谐振腔三部分组成。
激光技术是涉及到光、机、电、材料及检测等多门学科的⼀门综合技术,传统上看,它的研究范围⼀般可分为:激光焊接,激光切割,激光治疗,激光打标,激光打孔,激光热处理,激光快速成型,激光涂敷等。
6、⾃发辐射处于激发态的原⼦中,电⼦在激发态能级上只能停留⼀段很短的时间,就⾃发地跃迁到较低能级中去,同时辐射出⼀个光⼦,这种辐射叫做⾃发辐射。
7、受激辐射在组成物质的原⼦中,有不同数量的粒⼦(电⼦)分布在不同的能级上,在⾼能级上的粒⼦受到某种光⼦的激发,会从⾼能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,⽽且在某种状态下,能出现⼀个弱光激发出⼀个强光的现象。
8、受激吸收处于低能级的原⼦(l E ),受到外来光⼦的激励下,在满⾜能量恰好等于低、⾼两能级之差(E ?)时,该原⼦就吸收这部分能量,跃迁到⾼能级(h E ),即h l E E E ?=-。
受激吸收与受激辐射是互逆的过程。
9、激光产⽣的必要条件受激幅射是产⽣激光的⾸要条件,也是必要条件。
激光原理期末知识点总复习材料

激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。
1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。
其与常规光的最大区别在于具有相干性和能量集中性。
2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。
受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。
自发辐射是指原子或分子自发地从激发态返回基态所发射的光。
3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。
光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。
电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。
4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。
5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。
相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。
方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。
单色性是指激光具有非常狭窄的波长,具有很高的色纯度。
高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。
6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。
激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。
7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。
激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。
8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。
激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。
激光原理复习知识点

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。
α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。
按上式定义的v∆称为谱线宽度。
3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。
4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。
5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。
定义p v P w Q ξπξ2==。
ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。
v 为腔内电磁场的振荡频率。
6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,那么激光器输出的是一列时间间隔一定的超短脉冲。
这种使激光器获得更窄得脉冲技术称为锁模。
8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。
9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。
〔分为连续激光器的注入锁定和脉冲激光器的注入锁定〕。
激光技术与应用复习重点(名词解释)

激光技术与应用一、名词解释 20′(4×5′)1.驰豫振荡一般固体脉冲激光器所输出的并不是一个平滑的光脉冲,而是一群宽度只有微秒量级的短脉冲序列,即所谓“尖峰”序列。
激励越强,则短脉冲之间的时间间隔越小。
这种现象称为激光器驰豫振荡。
产生驰豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的反转粒子数超过阈值条件时,即产生激光振荡,腔内光子数密度增加,并发射激光。
随着激光的发射,上能级粒子数大量被消耗,导致反转粒子数降低,当低于阈值时,激光振荡就停止。
这时,由于泵浦光的继续抽运,上能级反转粒子数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦停止才结束。
2.模式竞争在均匀加宽激光介质中,通过增益饱和效应,某一模式逐渐把其他的模式振荡抑制下去,最后只剩下一个纵模振荡的现象,叫做模式竞争。
竞争的结果通常是最靠近中心频率ν0的一个纵模取胜,形成稳定的激光振荡,其他纵模都被抑制而熄灭。
因此,理想情况下,均匀加宽稳态激光器的输出模式是单纵模,单纵模的频率总是位于谱线中心频率附近。
3.同步泵浦锁模同步泵浦锁模激光器采用一台主动锁模激光器的脉冲序列去泵浦另一台激光器,通过调制腔内增益的方法获得锁模,这种方式就是同步泵浦锁模。
4.频率复现性把在不同地点、时间、环境下稳定频率的偏差量与它们的平均频率的比值称之为频率的复现性,表示为Rν=δν(τ)ν式中,ν 为被测激光器系列的平均频率或同一台激光器的标准频率(或原始工作频率),δν为频率的偏差量。
5.锁模振荡未经锁模的自由运转激光器的输出一般包括若干个超过阈值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则的叠加结果,是一种时间平均的统计值。
如果采用适当的措施使这些各自独立的纵模在时间上同步,即把它们的相位相互关联起来,使之有一确定的关系(φq+1−φq=常数),那么就会出现一种与上述情况有质的区别而有趣的现象:激光器输出的将是脉宽极窄、峰值功率很高的光脉冲。
激光原理问答题复习资料全

一、概念题:1.光子简并度:处于同一光子态的光子数称为光子简并度-n 。
(光子简并度具有以下几种相同的含义,同态光子数、同一模式的光子数、处于相干体积的光子数、处于同一相格的光子数。
)2.集居数反转:把处于基态的原子大量激发到亚稳态E2,处于高能级E2的原子数就可以大大超过处于低能级E1的原子数,从而使之产生激光。
称为集居数反转(也可称为粒子数反转)。
3.光源的亮度:单位截面和单位立体角发射的光功率。
4.光源的单色亮度:单位截面、单位频带宽度和单位立体角发射的光功率。
5.模的基本特征:主要指的是每一个摸的电磁场分布,特别是在腔的横截面的场分布;模的谐振频率;每一个模在腔往返一次经受的相对功率损耗;与每一个模 相对应的激光束的发散角。
6.几何偏折损耗:光线在腔往返传播时,可能从腔的侧面偏折出去,这种损耗为几何偏折损耗。
(其大小首先取决于腔的类型和几何尺寸,其次几何损耗的高低依模式的不同而异。
)7.衍射损耗:由于腔的反射镜片通常具有有限大小的孔径,当光在镜面上发生衍射时所造成一部分能量损失。
(衍射损耗的大小与腔的菲涅耳数 N =2a /L λ有关,与腔的几何参数g 有关,而且不同横模的衍射损耗也将各不相同。
)8.自再现模:光束在谐振腔经过多次反射,光束的横向场分布趋于稳定,场分布在腔往返传播一次后再现出来,反射只改变光的强度大小,而不改变光的强度分布。
9.开腔的自再现模或横模:把开腔镜面上的经一次往返能再现的稳态场分布称为开腔的自再现模或横模。
10.自再现变换:如果一个高斯光束通过透镜后其结构不发生变化,即参数ω。
或f 不变,则称这种变换为自再现变换。
11.光束衍射倍率因子2M 定义:实际光束的腰半径与远场发射角的乘积与基模高斯光束的腰半径与远场发散角的乘积的比。
12.均匀加宽:如果引起加宽的物理因素对每个原子都是等同的,则这种加宽称作均匀加宽。
(均匀加宽,每个发光原子都以整个线型发射,不能把线型函数上的某一特定频率和某些特定原子联系起来,或者说,每一发光原子对光谱线任一频率都有贡献。
激光技术与应用复习重点(名词解释+简答)

激光技术与应用一、名词解释 20′(4×5′)1.驰豫振荡一般固体脉冲激光器所输出的并不是一个平滑的光脉冲,而是一群宽度只有微秒量级的短脉冲序列,即所谓“尖峰”序列。
激励越强,则短脉冲之间的时间间隔越小。
这种现象称为激光器驰豫振荡。
产生驰豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的反转粒子数超过阈值条件时,即产生激光振荡,腔内光子数密度增加,并发射激光。
随着激光的发射,上能级粒子数大量被消耗,导致反转粒子数降低,当低于阈值时,激光振荡就停止。
这时,由于泵浦光的继续抽运,上能级反转粒子数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦停止才结束。
2.模式竞争在均匀加宽激光介质中,通过增益饱和效应,某一模式逐渐把其他的模式振荡抑制下去,最后只剩下一个纵模振荡的现象,叫做模式竞争。
竞争的结果通常是最靠近中心频率ν0的一个纵模取胜,形成稳定的激光振荡,其他纵模都被抑制而熄灭。
因此,理想情况下,均匀加宽稳态激光器的输出模式是单纵模,单纵模的频率总是位于谱线中心频率附近。
3.同步泵浦锁模同步泵浦锁模激光器采用一台主动锁模激光器的脉冲序列去泵浦另一台激光器,通过调制腔内增益的方法获得锁模,这种方式就是同步泵浦锁模。
4.频率复现性把在不同地点、时间、环境下稳定频率的偏差量与它们的平均频率的比值称之为频率的复现性,表示为Rν=δν(τ)ν式中,ν 为被测激光器系列的平均频率或同一台激光器的标准频率(或原始工作频率),δν为频率的偏差量。
5.锁模振荡未经锁模的自由运转激光器的输出一般包括若干个超过阈值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则的叠加结果,是一种时间平均的统计值。
如果采用适当的措施使这些各自独立的纵模在时间上同步,即把它们的相位相互关联起来,使之有一确定的关系(φq+1−φq=常数),那么就会出现一种与上述情况有质的区别而有趣的现象:激光器输出的将是脉宽极窄、峰值功率很高的光脉冲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光技术复习资料
一、名词解释
1、 自锁模(138)
在激光腔内利用激光介质本身的非线性效应实现锁模。
2、 自注入再生放大(180)
利用一台激光器本身产生的“种子”信号自注入到腔内来实现再生放大。
3、 模式光点扫描法(217)
利用光点扫描记录出光强分布曲线,从曲线上找出对应的横模。
二、问答题
4、 拍频原理(244)
激光的相干性好,当两束光叠加在一起时,初相位的差值是暂时稳定的或缓慢变化的,因而会产生干涉现象。
两束光波之间的可相干性,有助于测量频率的稳定性。
当差频信号低于光电探测器的截至频率时,即有光电流输出为[]t A A i c c p )(2cos 2121υυπ-=,可以看出差频信号电流的频率随两束光的频率成比例地变化。
5、实现调Q 时激光器的基本要求是什么?(79)
(1)工作物质必须能在强泵浦下工作,即抗损伤阈值要高,且工作物质上能级必须有较长的寿命。
(2)光泵的泵浦速率必须快于激光上能级的自发辐射速率。
(3)谐振腔的Q 值改变要快,一般应与谐振腔建立激光振荡的时间相比拟。
6、什么是被动锁模?(128)
在激光谐振腔中插入可饱和和吸收染料来调节腔内的损耗,当满足锁模条件时,就可得一系列的锁模脉冲。
7、解释一下横模测量中的直接观测法原理?(216)
不同横模的光强在横截面上有不同的分布。
对于连续的可见光波段的中、小功率激光器,只需要在输出激光的通路上放置一个屏,就可以在屏上用眼睛直接观测激光的横摸图样(光斑);对中等功率的红外激光,可采用烧蚀法;对于近红外激光,可采用转换材料,将近红外光转换成可见光;对于中、小功率的红外激光器,还可以采用变像管或CCD 摄像机观测横模。
8、主动稳频有哪几种方法?(227)
主动稳频的方法大致可以分为两类:一类是利用原子跃迁谱线中心频率作为鉴别器进行稳频,如兰姆凹陷稳频法;另一类是利用外界参考频率作为鉴别器标准进行稳频,如饱和吸收稳频法。
(1)兰姆凹陷稳频(2)塞曼效应稳频(3)饱和吸收稳频
9、自注入放大技术是种子激光注入到腔内实现放大,请画出自注入放大装置配置的原理图?(180,4.5-3)
10、复合腔选模技术的基本原理是什么?复合腔选模的频率是如何决定的?请画出Fox-Smith 复合腔选模激光器的结构示意图。
(214,5.3-8,b )
基本原理:用一个反射干涉仪系统取代谐振腔中的一个反射镜,则其组合反射率是光波长(频率)的函数。
Fox-Smith 干涉仪式复合腔。
两个子腔的谐振频率分别为
[]{}i i q l L n c )(2/21+=υ
及 []{}j j q l l L n c )(2/122++=υ
于是复合腔的谐振频率必须同时满足上面两式,即
j i 21υυυ==
这种情况下,从B 镜输出的光强为零,干涉仪对谐振腔中光束具有最大反射率。
在选择适当的1l 和2l ,使υ∆与增益线宽能相比拟时,即可获得单纵模输出。
11、同步泵浦锁模(134)
同步泵浦锁模激光器采用一台锁模激光器的脉冲序列去泵浦另一台激光器,通过调制腔内增益的方法获得锁模。
12、外注入再生放大(178)
这种放大技术是由一个激光器(称为主振荡器)产生性能优良的较弱光信号并注入到另一个激光器(称为从动振荡器)获得光放大。
13、兰姆凹陷稳频(229)
兰姆凹陷稳频法是以增益曲线中心频率0υ作为参考标准频率,通过电子伺服系统驱动压电陶瓷环来控制激光器腔长,使频率稳定于0υ处。
14、简述一下激光调Q 的基本原理。
(77)
调Q 技术就是通过某种方法使腔的Q 值随时间按一定程序变化的技术。
在泵浦开始时,使腔处于低Q 值状态,即提高振荡阈值使振荡不能形成,上能级的反转粒子数就可以大量积累,能量可以存储的时间决定于激光上能级的寿命;当积累到最大值时,突然使腔的损耗减小,Q 值突增,激光振荡迅速建立起来,在极短的时间内上能级的反转粒子数被消耗,转变为腔内的光能量,从腔的输出端以单一脉冲形式释放出来,于是获得峰值功率很高的巨脉冲。
15、什么是主动锁模?请简述模式选择技术的基本方法(120)
主动锁模采用周期性调制谐振腔参量的方法,即在激光谐振腔内插入一个受外部信号控制的调制器,用一定的调制频率周期性地改变谐振腔内振荡模的振幅或相位。
当选择的调制频率与纵模间隔相等时,对各个模的调制会产生边频,其频率与两个相邻纵模的频率一致。
由于模之间的相互作用,所有的模在足够的调制下达到同步,形成锁模序列脉冲。
横模选择的方法:
横模选择方法可分为两类:一类是改变谐振腔的结构和参数以获得各膜衍射损耗的较大差别,提高谐振腔的选模性能;另一类是在一定的谐振腔内插入附加的选模元件来提高选模性能。
(1)谐振腔参数g 和N 的选择法(2)小孔光阑法选模(3)腔内插入透镜选横模(4)非稳腔选模
纵模选择的方法:
(1)色散腔粗选频率(2)短腔法(3)F-P 标准具法(4)复合腔法
16、影响激光频率的主要因素有哪些?(224)
(1)温度变化的影响(2)大气变化的影响(3)机械振动的影响(4)磁场的影响
17、注入锁定技术可以利用一个低功率的激光器来控制高功率的激光器,请画出其主从振荡器的结构示意图。
(179)
18、锁模技术中被动锁模的工作原理是什么?被动锁模的物理过程有几个阶段,分别是什么?请画出被动锁模固定激光器的谐振腔的基本结构(128)
在激光谐振腔中插入可饱和吸收染料来调节腔内的损耗,当满足锁模条件时,就可获得一系
列锁模脉冲。
根据锁模形成过程的机理和特点,被动锁模分为固体激光器的被动锁模和染料激光器的被动锁模两种类型。
工作原理:由于染料具有可饱和吸收的特性,弱信号的透过率小,而强信号的透过率大,且其损耗可通过工作物质的放大得到补偿。
通过染料吸收体的非线性吸收和激光介质的放大作用,从涨落的噪声背景中选择出强涨落峰值,然后通过可饱和吸收体和激光介质饱和状态的联合作用,最终形成超短脉冲。
(1)线性放大阶段。
(2)非线性吸收阶段。
(3)非线性放大阶段。
19、相位调制锁模(124)
在激光腔内插入一个电光调制器,当调制器介质折射率按外加调制信号而周期性改变时,光波在不同的时刻通过介质,便有不同的相位延迟,这就是相位调制。
相位调制器的作用可理解为一种频移,使光波的频率发生向大(或小)的方向移动。
脉冲每经过调制器一次,就发生一次频移,最后移动到增益曲线之外,这部分光波就从腔内消失掉。
只有那些与相位变化的极值点相对应的时刻,通过调制器的光信号,其频率不发生移动,才能在腔内保存下来,不断得到放大,从而形成周期为2L/c的脉冲序列。
20、设计激光放大器应考虑的几个问题(172)
(1)放大器工作物质的选择
(2)放大器工作物质端面反馈的消除
(3)级间去耦问题
(4)级间孔径匹配问题
(5)各级泵浦时间的匹配
(6)不均匀性影响的消除
三、选择题
21、稳频系统和多普勒效应会导致光谱加宽。
22、混频法光矢相位差
23、激光加工利用了激光的热效应,DNA技术利用了光压。
25、白光全息体光栅
26、泵浦脉冲宽度
27、级间去耦(173)
28、兰姆凹陷稳频法是以增益曲线中心频率作为参考标准频率。
(229)
29、双频外插干涉法
30、复指数变化–ax
31、全息记录记录的是相位。