高考题分类线性规划
高考数学中的线性规划方法与应用

高考数学中的线性规划方法与应用随着社会的发展,人们的生活方式发生了改变,竞争压力也越
来越大。
在这样一个背景下,高考成为了每个学生追求的目标。
高考数学中,线性规划是一个重要的知识点,不仅在考试中会涉
及到,而且在现实生活中也有广泛的应用。
一、线性规划的概念与优化目标
线性规划是在一些约束条件下,寻求最大或最小值的一种优化
方法。
其优化目标是一种线性函数,约束条件可以是等式或不等式,且约束条件和目标函数都具有线性关系。
在高考数学中,线
性规划通常会考察如何列出约束条件和目标函数。
二、线性规划的解法
线性规划的解法有图像法、单纯形法和对偶理论法。
其中,单
纯形法是应用最广泛的一种解法,通过不断寻找相邻基的交点,
找出最优解。
三、线性规划在实际生活中的应用
线性规划在实际生活中有着广泛的应用。
比如,在物流领域中,通过线性规划可以优化物流路线和货物分配,从而降低成本和提
高效率。
在工业生产中,线性规划可以优化设备运行状态和员工
分配,实现生产效益的最大化。
在金融投资方面,线性规划可以
帮助投资者优化组合投资方案,最大化投资回报。
在航空运输方面,线性规划可以优化航线安排和机组人员分配,实现航空运输
的安全和效率。
以上仅是线性规划在实际生活中应用的一部分。
结语
高考数学中的线性规划知识点,虽然看起来有些枯燥,但是它
在实际生活中有着广泛的应用。
掌握线性规划的解法和应用场景,可以为学生的未来发展打下坚实的基础。
希望读者可以通过对线
性规划的学习,更好地了解这个领域的发展和应用。
高三数学线性规划试题

高三数学线性规划试题1.变量、满足线性约束条件,则目标函数的最大值为 .【答案】【解析】作出不等式组所表示的可行域如图所示,联立得,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划.2.设,满足约束条件且的最小值为7,则A.-5B.3C.-5或3D.5或-3【答案】B【解析】根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:,又由题中可知,当时,z有最小值:,则,解得:;当时,z无最小值.故选B【考点】线性规划的应用3.若、满足和,则的取值范围是________.【答案】【解析】不等式组表示的平面区域如图中,令,解方程组得,解方程组得,平移直线经过点使得取得最大值,即,当直线经过点使得取得最小值,即,故的取值范围是.【考点】不等式组表示的平面区域,求目标函数的最值,容易题.4.若变量、满足约束条件,则的最大值是()A.2B.4C.7D.8【答案】C【解析】不等式组表示的平面区域如图的四变形(包括边界),解方程组得点,令,平移直线经过点使得取得最大值,即.选C.【考点】不等式组表示的平面区域,求目标函数的最大值,容易题.5.已知α,β是三次函数f(x)=x3+ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在的区域面积S.【答案】【解析】解:由函数f(x)=x3+ax2+2bx(a,b∈R)可得,f′(x)=x2+ax+2b,由题意知α,β是方程x2+ax+2b=0的两个根,且α∈(0,1),β∈(1,2),因此得到可行域即,画出可行域如图.∴动点(a,b)所在的区域面积S=.6.设是不等式组表示的平面区域内的任意一点,向量,,若(为实数),则的最大值为()A.4B.3C.-1D.-2【答案】A【解析】解:设点的坐标为,则,所以所以由得此不等式组对应的平面区域如下图中的阴影部分所示:设,则,当变化时,它表示一组与平行的直线,在轴上的截距为,当直线在轴上的截距最小时最大,由图可知,当直线经过点时,直线在轴上的截距最小,从面取得最大值故选A.【考点】1、向量的坐标表示与坐标运算;2、线性规划.7. [2013·陕西高考]若点(x ,y)位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.【答案】-4 【解析】由题意知y =,作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A(-1,2)时,2x -y 取最小值-4.8. (2014·孝感模拟)已知实数x,y 满足若z=x 2+y 2,则z 的最大值为________.【答案】13【解析】画出可行域,z=x 2+y 2=()2,表示可行域内的点(x,y)和原点(0,0)距离的平方,可知点B(2,3)是最优解,z max =13.9. 已知函数在x 1处取得极大值,在x 2处取得极小值,且x 1∈(-1,1),x 2∈(1,2),则2a+b 的取值范围是( ) A .(-7,2) B .(-7,3) C .(2,3) D .(-1,2)【答案】B【解析】∵f′(x)= x 2+bx -a, ∴据题意知, f′(x 1)= f′(x 2)=0,又据二次函数知, f′(-1) >0 且f′(1)<0且f′(2)>0 即如图为(a,b)之可行域,A(1,0),B(2,-1),(-2,-3).把A,B,C 三点坐标代入2a+b 得2,3,-7所以2a+b 的范围为(-7,3)10.若,满足约束条件,则的最大值为.【答案】【解析】画出可行域,如图所示,将目标函数变形为,当直线经过点时,目标函数取到最大值为.【考点】线性规划.11.若变量满足约束条件,则目标函数z=2x+3y的最大值为________.【答案】14【解析】如图所示,画出可行域,目标函数变形为,当取最大值时,纵截距最大,故将直线向上平移到E时,目标函数z=2x+3y取到最大值,此时.【考点】线性规划.12.设z=kx+y,其中实数x、y满足,若z的最大值为12,则实数k= .【答案】2【解析】由得.作出不等式组表示的区域如图所示.由图可知,若,则当或时最大,且最大值不超过4. 若,则当时最大,由得.【考点】线性规划.13.已知实数满足,则的最小值是.【答案】4【解析】因为实数满足,如图所示,令=k,所以.由于当k<0时抛物线的开口向下,所以不合条件.所以k>0,有两种情况当k取最小值即抛物线过点.所以的最小值是.当抛物线与直线相切的情况,,即的最小值是4.【考点】1.线性规划问题.2.抛物线的问题.3.分类归纳的思想.4.构建数形结合解题的思想.14.若实数满足,则的值域是 .【答案】[1,9]【解析】首先画出可行域(如图),直线,平移直线知,过时,最小值为0,过点时,的最大值为2;根据指数函数是单调增函数,即可得到的值域为[1,9].【考点】简单线性规划的应用,函数的值域.15.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲.地去乙地的旅客人数不超过900的概率为p(1)求p的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+02σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)(2)某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最辆.若每天要以不小于p小,那么应配备A型车、B型车各多少辆?【答案】(1) 0.977 2 (2)配备A型车5辆、B型车12辆【解析】解:(1)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.954 4.由正态分布的对称性,可得p=P(X≤900)=P(X≤800)+P(800<X≤900)=+P(700<X≤900)=0.977 2. (2)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1 600x+2 400y. 依题意,x,y还需满足x+y≤21,y≤x+7,P(X≤36x+60y)≥p.由(1)知,p0=P(X≤900),故P(X≤36x+60y)≥p等价于36x+60y≥900.于是原问题等价于求满足约束条件且使目标函数z=1 600x+2 400y达到最小的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1 600x+2 400y经过可行域的点P时,直线z=1 600x+2 400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆、B型车12辆.16.已知z="2x" +y,其中x,y满足且z的最大值是最小值的4倍,则a的值是【答案】【解析】画出可行域,可知目标函数在取最小值,在取最大值,故.【考点】线性规划.17.若函数图像上存在点满足约束条件,则实数的最大值为 .【答案】2【解析】作出不等式组表示的平面区域,得到如图所示的图形(阴影),为使函数图像上存在点在阴影部分内,由得,所以,实数的最大值为2.【考点】简单线性规划的应用18.已知中心为O的正方形ABCD的边长为2,点M,N分别为线段BC,CD上的两个不同点,且||=1,则的取值范围是.【答案】【解析】设M(2,b),N(a,2).由,可得,即(a﹣2)2+(b﹣2)2=1.且1≤a≤2,1≤b≤2.如图所示,建立平面直角坐标系.又=(1,b﹣1)•(a﹣1,1)=a+b﹣2.作出可行域,即可得出答案.如图所示,建立平面直角坐标系.设M(2,b),N(a,2).∵,∴,即(a﹣2)2+(b﹣2)2=1.且1≤a≤2,1≤b≤2.又O(1,1),∴=(1,b﹣1)•(a﹣1,1)=a+b﹣2.令a+b﹣2=t,则目标函数b=﹣a+2+t,作出可行域,如图2,其可行域是圆弧.①当目标函数与圆弧相切与点P时,,解得t=2﹣取得最小值;②当目标函数经过点EF时,t=2+1﹣2=1取得最大值.∴.即为的取值范围.故答案为.【考点】平面向量数量积的运算点评:本题综合考查了向量的模的计算公式、线性规划等基础知识,及数形结合思想方法.熟练掌握是解题的关键.19.已知x、y满足约束条件的取值范围为【答案】[-1,2]【解析】根据二元一次不等式组画出可行域,目标函数几何意义z为直线z=x-y的纵截距相反数,平移目标函数观察z取值范围解:①如图可行域,②令z=0得直线y=x平移直线可知当直线过(0,1)时,z有最小值z=0-1=-1,直线过(2,0)时,z有最大值z=2-0=2;所以z的取值范围为[-1,2];故答案[-1,2]。
高二数学线性规划试题

高二数学线性规划试题1.若x、y满足约束条件,则z=x+2y的取值范围()A.[2,6]B.[2,5]C.[3,6]D.(3,5]【答案】A【解析】作出可行域如图:,并作出,然后平移到过点A(2,0)时z取最小值为:,平移到过点C(2,2)时z取最大值为:,所以z的取值范围为:[2,6];故选A.【考点】线性规划.2.已知点P(x,y)在不等式组表示的平面区域上运动,则x-y的取值范围是( ). A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]【答案】C【解析】设,即,作出可行域和目标函数基准线;当直线过点时,最大,即取得最小值为-1;当直线过点时,最小,即取得最大值为2;即x-y的取值范围是.【考点】简单的线性规划.3.设变量x,y满足约束条件,则目标函数z=2x+y的最大值为.【答案】5【解析】约束条件表示一个三角形ABC及其内部,其中因此直线过点时,目标函数z=2x+y取最大值为5.【考点】线性规划4.已知实数满足条件,则的最大值为.【答案】10【解析】作出满足约束条件下的平面区域,如图所示.由图可知点目标函数经过点时取得最大值,且最大值为.【考点】简单的线性规划.5.若实数满足不等式组,则的最小值为。
【答案】【解析】由不等式组作可行域如图,可行域内点的横纵坐标均为非负值,且不同时为0,可知在点C(0,1)处去最小值,将点C 代入,可知最小值为-1.【考点】简单线性规划..6.若变量、满足约束条件,则的最大值为 .【答案】1【解析】可行域为如图所示三角形内部(包括边界)则【考点】线性规划问题7.某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?【答案】该厂每天安排生产甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124万元.【解析】根据已知条件列出线性约束条件,和目标函数。
高考数学常考题型:线性规划非线性目标破函数---绝对值型

高考数学常考题型:线性规划非线性目标函数---绝对值型典例1.已知实数,x y 满足:210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,221z x y =--,则z 的取值范围是( ) A .5[,5]3B .[0,5)C .[0,5]D .5[,5)31.B由约束条件作出可行域如图:()22,110x A x y =⎧⇒-⎨+-=⎩, 21012,1033x y B x y -+=⎧⎛⎫⇒⎨⎪+-=⎝⎭⎩. 令221u x y =--,变形可得12u y x +=-,平移目标函数线12u y x +=-使之经过可行域,当目标函数线过点()2,1A -时,纵截距最小,此时u 取得最大值,即()max 222115u =⨯-⨯--=.当目标函数线过点12,33B ⎛⎫ ⎪⎝⎭时,纵截距最大,此时u 取得最小值,即min 125221333u =⨯-⨯-=-. 因为点()2,1A -不在可行域内,所以553u -≤<,[)0,5z u ∴=∈.故B 正确.点评:有关线性规划的最值问题,数形结合是解决问题的关键。
求目标函数z ax by =+的最值,应先函数变为a z y x b b=-+,然后平移直线,求纵截距zb 的最值,进而可得z 的最值。
变式题1.若x,y 满足约束条件220130x y y x y -+≤⎧⎪≥⎨⎪+-≤⎩,则4312z x y =+-的最小值为( )A .53B .1C .2D .35典例2.已知点(),P x y 满足10100x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩,2628x y y x +-+-+的取值范围是__________.4.画出不等式组表示的可行域如图阴影部分所示.∵2628x y y x +-+-+=+=,∴2628x y y x +-+-+表示可行域内的点到直线260x y +-=和280x y --=2628x y y x +-+-+无最大值.由28010x y x y --=⎧⎨+-=⎩解得32x y =⎧⎨=-⎩,所以点A 的坐标为()3,2-.此时26282x y y x +-+-+=.由26010x y x y +-=⎧⎨+-=⎩解得54x y =⎧⎨=-⎩,所以点A 的坐标为()5,4-. 此时26286x y y x +-+-+=. ∴2628x y y x +-+-+的最小值为2,故得2628x y y x +-+-+的取值范围为[)2,+∞.点评:线性规划中的目标函数中若含有绝对值,则解题时可根据点到直线的距离公式求解,在求解过程中需要注意对目标函数进行相应的变形,使之变为距离的形式,如ax by c ++=变式题2.变量,x y 满足约束条件220240,10x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则目标函数231z x y =--的取值范围是___. 闯关题:1.已知221log 2()220xx f x x xx ⎧≤≤⎪=⎨⎪--≤⎩,若1111a b -≤≤⎧⎨-≤≤⎩,且方程2[()]()0f x af x b -+=有5________ 2.若实数,x y 满足方程228x y +=,则|2||6||6|x y x y x y +-++++--的最大值为( ) A .12 B .14C .18D .24参考答案变式题1.A将目标函数变形为431255x y z +-=⨯,即“目标函数表示可行域内的点到直线43120x y +-=的距离的5倍”.画出可行域如下图所示,由图可知,点A 到直线43120x y +-=最短,联立22030x y x y -+=⎧⎨+-=⎩,解得45,33A ⎛⎫⎪⎝⎭最短距离为16151213353+-=,乘以5得53,故选A.变式题2.[]1,3-不等式组对应的可行域如下图所示,当x≥0,0≤y≤1时,23(1)233z x y x y =--=+-,此时2333z y x +=-+,直线的纵截距越大,z 越大,纵截距越小,z 越小. 当直线经过点B(0,1)时,z 最小=0+3-3=0,当直线经过点D 3(,1)2时,z 最大=3+3-3=3,所以此时z 的范围为[0,3]当x≥0,y >1时,23(1)233z x y x y =--=-+,此时2333z z x -=+,直线的纵截距越大,z 越小,纵截距越小,z 越大. 当直线经过点A(1,2)时,z 最小=2-6+3=-1,当直线经过点D 3(,1)2时,z 最大=3-3+3=3,所以此时z 的范围为[-1,3]综合得z 的取值范围为:[]1,3-故答案为:[]1,3- 闯关题:1.作出函数()y f x =的图象如下图所示:设()t f x =,则方程()()20f x af x b -+=⎡⎤⎣⎦有5个不同根转化二次方程20t at b -+=的两根101t <<,20t <,构造函数()2g t t at b =-+,可得不等式()()0010g g ⎧<⎪⎨>⎪⎩,即010b a b <⎧⎨-+>⎩,结合1111a b -≤≤⎧⎨-≤≤⎩,作出图形如下图所示,不等式组1111a b -≤≤⎧⎨-≤≤⎩表示的平面区域为边长为2的正方形ABCD ,不等式组0101111b a b a b <⎧⎪-+>⎪⎨-≤≤⎪⎪-≤≤⎩表示的区域为下图中的阴影部分(不包括a 轴),视为可行域中的点(),a b 到直线210a b -+=的距离,当点(),a b 与点()1,0E==的取值范围是0,5⎡⎫⎪⎢⎪⎣⎭,故答案为:0,5⎡⎢⎣⎭. 2.C 令t x y =+,则4sin [4,4]4t πθθθ⎛⎫=+=+∈- ⎪⎝⎭, 于是|2|[0,6]t -∈,60t +>,60t ->,从而|2||6||6||2||6||6||2|12[12,18]x y x y x y t t t t +-++++--=-+++-=++∈,故选:C.。
高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
近三年高考中的线性规划问题赏析

2 +1 0 — 的距 离减 去半 径
1易 验证 D 上 A 而 D , A B, A
一
B一 ,) (0分 厂 f专专 , 0) 别 _ \ O ,, l U
代入 z= z+ 2 , z 。 y得 一
—
√, P 5 故 Q的最小值为√ 5
1 答 案选 A. ,
∈
误差 . 2 2 距 离 型 问题 .
知 识点 的考查 以截 距 型背景 为 主. 考查 难 度上 , 各
省市表 现并 不均衡 , 部分 省市 ( 大 如北 京 、 天津 、 辽
宁等 ) 试题 比较 简单平 和 , 北京 、 海 、 江 、 的 而 上 浙 山东等 省市 的试题 曾 以压 轴 题 的形 式 出现 过 , 考
图 2
0 答 案选 A , .
图 1
・
2 ・ 4
中学数 学月刊
21 0 0年第 4 期
评注 在线 性 约 束 条 件 下 , 于 形 如 z一 对
系. z 中, 已知平 面 区域 A 一 { , ( )I z+ y≤ 1 且 z≥ 0 ≥ 0 , , , }则平 面 区域 B一 {-+Y z ( z , — )l z )∈ A)的面积 为( (, ) .
一
1
』- + c y ≤o 的 值范 是( ) r ’ 则 取 围
.
去(-b, n ) 代人集合 A,
厶
\ l 一
1 > 0, z
易得 a+b≥ 0 a—b 0 a , ≥ ,
/ Ba o \ 一
图5
( ( ,) A)0 1 ( ) 1 + 。) c ( , 。
A
) .
( √ A) 5— 1
高考专题练习: 二元一次不等式(组)及简单的线性规划问题

1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
线性规划常见题型及解法例析

品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20
6
8
5
10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .
由
图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =
1
×(
2+3)×2=5,
2
图3
1
S梯 形OMAC = × (
1+3)×2=4.
2
所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划
1. (安徽11)若满足约束条件:;则的取值范围为
【解析】的取值范围为
约束条件对应边际及内的区域:
则
2. 北京2.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是
(A)(B)(C)(D)
【解析】题目中表示的区域如图正方形所示,而动点D
可以存在的位置为正方形面积减去四分之一圆的面积部分,因此
,故选D。
【答案】D
3.福建9.若直线上存在点满足约束条件,则实数的最
大值为()
A. B.1 C. D.2
考点:线性规划。
难度:中。
分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像。
解答:可行域如下:
所以,若直线上存在点满足约束条件,
则,即。
4.广东
5. 已知变量满足约束条件,则的最大值为( )
【解析】选约束条件对应边际及内的区域:
则
5.江苏14.(2012年江苏省5分)已知正数满足:
则的取值范围是▲.
【答案】。
【考点】可行域。
【解析】条件可化为:。
设,则题目转化为:
已知满足,求的取值范围。
作出()所在平面区域(如图)。
求出的切
线的斜率,设过切点的切线为,
则,要使它最小,须。
∴的最小值在处,为。
此时,点在上之间。
当()对应点时,,
∴的最大值在处,为7。
∴的取值范围为,即的取值范围是。
6.江西8.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元
韭菜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()
A.50,0 B.30,20 C.20,30 D.0,50
8.B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,则目标函数为
.线性约束条件为即作出不等式组
表示的可行域,易求得点.
平移直线,可知当直线经过点,即
时,z取得最大值,且(万元).故选B.
【点评】解答线性规划应用题的一般步骤可归纳为:
(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么?
(2)转化——设元.写出约束条件和目标函数;
(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;
(4)作答——就应用题提出的问题作出回答.
体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.
7辽宁8. 设变量满足,则
的最大值为
A.20 B.35 C.45 D.55
【命题意图】本题主要考查简单线性规划,是中档题.
【解析】作出可行域如图中阴影部分所示,由图知目标函数过点时,的最大值为55,故选D.
8.全国卷大纲版13.若满足约束条件,则的最小值为。
答案:
【命题意图】本试题考查了线性规划最优解的求解的运用。
常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值。
【解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点时,目标函数最大,当目标函数过点时最小为。
]
9山东
解析:作出可行域,直线,将直线平移至点处有最大值,
点处有最小值,即.答案应选A。
10陕西14. 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为.
【答案】2
【解析】当时,,,∴曲线在点处的切线为
则根据题意可画出可行域D如右图:
目标函数,
当,时,z取得最大值2
11四川9、某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()
A、1800元
B、2400元
C、2800元
D、3100元
[答案]C
[解析]设公司每天生产甲种产品X桶,乙种产品Y桶,公司共可获得利润为Z元/天,则由已知,得 Z=300X+400Y
且
画可行域如图所示,
目标函数Z=300X+400Y可变形为
Y=这是随Z变化的一族平行直线
解方程组即A(4,4)
[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).
1
12新课标(14) 设满足约束条件:;则的取值范围为
【解析】的取值范围为
约束条件对应四边形边际及内的区域:
则
13浙江21.(本小题满分14分)已知a>0,b R,函数.(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数的最大值为|2a-b|﹢a;
(ⅱ) +|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤≤1对x[0,1]恒成立,求a+b的取值范围.
【解析】本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力。
(Ⅰ) (ⅰ).
当b≤0时,>0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,
此时的最大值为:
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证+|2a-b|﹢a≥0,即证=﹣≤|2a-b|﹢a.
亦即证在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵,∴令.
当b≤0时,<0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b<0时,在0≤x≤1上的正负性不能判断,
≤|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即+|2a-b|﹢a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,
且函数在0≤x≤1上的最小值比﹣(|2a-b|﹢a)要大.
∵﹣1≤≤1对x[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴.
则可行域为:和,目标函数为z=a+b.
作图如下:
由图易得:当目标函数为z=a+b过P(1,2)时,有.
∴所求a+b的取值范围为:.
【答案】(Ⅰ) 见解析;(Ⅱ).
14重庆10、设平面点集
,则所表示的平面图形的面积为
(A)(B)(C)(D)【解析】选由对称性:
围成的面积与
围成的面积相等得:所表示的平面图形的面积为
围成的面积既。