小学小升初数学专题讲解及训练2
小升初六年级数学比和比例专题讲解

小升初六年级数学比和比例专题讲解第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+xc):(b+xd)=a:b=c:d;(x 为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积) 正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例xaabybxy①;;;XXXxamxaxma②(其中m);;XXXxaxax ya bx ya b③。
ybx ya bx ya bxaxaycxac④,;x:y:zXXXcdadbc⑤x的等于y的,则x是y的,y是x的.abbcad三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照a:b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x axbx的比分别为a:a b和b:a b,以是甲分派到个,乙分派到个.a ba b⑵两组物体的数量比和数量差,求各个种别数量的问题ax比方:两个种别A、B,元素的数量比为a:b(这里a b),数量差为x,那么A的元素数量为,B的a bbx元素数量为,以是解题的关键是求出a b与a或b的比值.a b四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
小学奥数小升初常考题型植树问题例题讲解+练习,类型全

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。
路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。
六年级下册数学例题讲解与练习 小升初专题18列方程解应用题② 全国通用 无答案

六年级数学第 18 讲《列方程解应用题②》例1 化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?【变式练习】1.一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?3、师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?例2 有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?【变式练习】1.一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?2.甲乙两厂用同样的原料生产同样的产品,甲厂有720吨,乙厂有540吨,两厂同时生产并每天都用去20吨,多少天后甲厂所剩的原料是乙厂所剩原料的2倍?3.甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?例3 甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣组,问甲、乙两班原来各有多少人?【变式练习】1. 兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元?2.某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?例4 小明家买了一袋大米,第一周吃去9千克,第二把周吃去了40%,还剩下6千克。
这袋大米共多少千克?【变式练习】1.一桶油第一次用去20%,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?2.一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?例5 A、B两地相距490千米,一辆货车和一辆客车同时从两地出发,相向而行,货车的速度比客车的速度快25%,行驶2小时后,两车还相距130千米。
小升初数学试题--平均数例题讲解

小升初数学试题--平均数例题讲解2例题5 某班统计数学考试成绩,得平均成绩85.23分,事后复查,发现将小林的成绩96分误作69分计算了,给重新算后,该班数学平均成绩是85.77分,求这个班的学生有多少名?分析:将小林的成绩96分误作69分,少算了96 -69 =27(分),而平均成绩相差85.77 -85.23 =0.54(分),因此27分中包含多少个0.54分,该班就有多少名学生。
解:(96 -69)÷(85.77 -85.23)= 50(名)即时练习甲、乙、丙、丁四位同学,在一次考试中四人平均分为92分,可是乙在抄分时把自己的分数错抄成了85分,因此四人的平均分变成为89分。
乙这次考试得多少分?例题6 小雨期中考试数学、英语、自然的平均成绩是76分,语文成绩公布后,他的平均成绩提高了3分,小雨的语文成绩是多少分?分析:小雨期中考了4门功课,要求语文成绩。
可以用4科成绩的和减去其中3科成绩的和。
由于4科均分比3科的均分高3分,那么4科的均分就是76+3 =79(分)。
如果语文也考了76分,这样4科均分仍为76分,但实际均分高出了3分。
显然语文成绩要高出原均分,并且高出的成绩正好分给每一科,使每一科各增加了3分,这样共多出了3 ×4 =12(分),所以语文成绩:76 +4× 3 =88(分)解:方法一:(76 +3)× 4 -76×3=88(分)方法二:76+ 4× 3 =88(分)即时练习小华在期末考试时英语成绩公布前,他的4门功课的平均成绩是90分。
英语成绩公布后,他的5门功课的平均分数下降了2分。
小华的英语考了多少分?例题7 7名裁判员给一位演员打分,平均分9.6分。
去掉一个最高分,平均分为9.55分;去掉一个最低分,平均分为9.7分。
如果最高分和最低分都去掉,这位演员平均得多少分?分析:7名裁判员所打的总分是9.6×7 =67.2(分),去掉一个最高分剩下6名裁判员的总分为9.55× 6 = 57.3(分)。
小升初总复习数学归类讲解及训练(下-含答案)[2]
![小升初总复习数学归类讲解及训练(下-含答案)[2]](https://img.taocdn.com/s3/m/f5cc0dfea76e58fafbb00311.png)
小升初总复习数学归类讲解及训练(下-含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小升初总复习数学归类讲解及训练(下-含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小升初总复习数学归类讲解及训练(下-含答案)(word版可编辑修改)的全部内容。
小学数学总复习专题讲解及训练(九)教学内容:期中复习及考前模拟复习要点:(一)数与代数1、百分数的应用百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一.要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。
通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识比例的知识有比例的意义、比例的基本性质和解比例。
这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断.根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识.2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。
这个内容安排在第三单元里,结合比例的知识进行教学.3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。
小升初数学《解方程》完整知识点讲解与专项练习题及答案

小升初《解方程》专题知识点整理+列方程解应用题专项训练《解方程》知识点列方程解应用题题型汇总练习1、0.3乘以14的积比这个数的3倍少0.6,求这个数是多少?2、甲数比乙数多34,甲数是乙数的3倍,甲乙各是多少?3、今年10月份,李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
平均每度电多少元?4、长方形养鸡场的栅栏长400米,长是宽的3倍,求养鸡场的面积是多少?5、鸡兔同笼,头共有20个,腿共有56条,鸡兔各有多少只?6、鸡兔数量相同,鸡腿比兔腿少30条,鸡兔各有多少只?7、爷爷比小明大52岁,今天爷爷的年龄是小明的5倍,爷爷和小明今年各是多少岁?8、甲乙两地相距360km,张三由甲地开往乙地,李四以45km/时的速度由乙地开往甲地,3个小时后,两人相距15km,张三的速度是多少千米?9、沈阳与北京相距约700km,土豆与地瓜分别从沈阳和北京出发,相向而行,土豆每小时行驶80km,地瓜每小时行驶70km。
土豆出发5个小时后,地瓜才出发,在经过多少小时才能相遇?10、长方形养鸡场的一个长面靠墙,栅栏长400米,长是宽的2倍,养鸡场的面积是多少?11、甲乙两人骑自行车,同时从相距65km的两地相向而行,甲车每小时行驶17.5km,1小时候,两人相距32.5km,乙车每小时行驶多少千米?12、一个三层书架共有书159本,第一层比第二层的4倍少2本,第三层比第二层的3倍多1本。
第三层书架有多少本书?13、土豆和地瓜同时分别从两地相向而行,8小时相遇。
如果他们每小时多行2.5km,那么就6小时相遇。
问两地相距多少千米?14、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本?15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时。
求甲乙两地的距离?16、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?17、三个连续的一位小数的和是1.5,这三个小数分别是多少?18、甲乙两个书架,若从甲书架取出8本放入乙书架,两个书架的本数就一样多;如果从乙书架取出13本放入甲书架,甲书架的书就是乙书架的2倍。
人教版_小升初总复习数学归类讲解及训练2
小学数学总复习专题训练(五)模拟试题一、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米(2)底面半径是3厘米,高是5厘米。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积1、选择题。
(1)一个圆锥体的体积是a 立方米,和它等底等高的圆柱体体积是( ) ①31a 立方米 ② 3a 立方米 ③ 9立方米(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米① 6立方米 ② 3立方米 ③ 2立方米2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍 ………( )(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………( )(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米………( )3、填空(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
2023年小升初数学专题复习(共33讲)(知识点+例题+练习含解析)
2023年小学六年级小升初数学专题复习(1)——整数四则混合运算¤¤知知识识归归纳纳总总结结一、整数的认识知识归纳1. 整数:像-2,-1,0,1,2这样的数称为整数在整数中,零和正整数统称为自然数.-1、-2、-3、…、-n、…(n为非零自然数)为负整数.则正整数、零与负整数构成整数.2. 整数分类:常考题型例:正数和负数都是整数.×.(判断题)分析:整数包括正整数、负整数、0.解:整数包括正整数、负整数、0.所以正数和负数都是整数,是错误的.故答案为:×.点评:根据整数的意义整数包括正整数、负整数、0,强调整数包括0.二、整数四则混合运算知识归纳1.加、减、乘、除四种运算统称四则运算.(1)加法的意义:把两个(或几个)数合并成一个数的运算叫做加法.(2)减法的意义:已知两个加数的和与其中的一个加数求另一个加数的运算叫做减法.减法中,已知的两个加数的和叫做被减数,其中一个加数叫做减数,求出的另一个加数叫差.(3)乘法的意义:一个数乘以整数,是求几个相同加数的和的简便运算,或是求这个数的几倍是多少.(4)除法的意义:已知两个因数的积与其中一个因数求另一个因数的运算叫做除法.在除法中,已知的两个因数的积叫做被除数,其中一个因数叫做除数,求出的另一个因数叫商.四则运算分为二级,加减法叫做第一级运算,乘除法叫做第二级运算.2.方法点拨:运算的顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算.在有括号的算式里,要先算括号里的,再算括号外的.例1:72-4×6÷3如果要先算减法,再算乘法,最后算除法,应选择()A、72-4×6÷3B、(72-4)×6÷3C、(72-4×6)÷3分析:72-4×6÷3的计算顺序是先算乘法,再算除法,最后算减法,要把减法提到第一步,需要只给减法加上小括号.解:72-4×6÷3如果要先算减法,再算乘法,最后算除法,应为:(72-4)×6÷3;故选:B.点评:本题考查了小括号改变运算顺序的作用,看清楚运算顺序,是把哪一种运算提前计算,在由此求解.例2:由56÷7=8,8+62=70,100-70=30组成的综合算式是()A、100-62+56÷7;B、100-(56÷7+62);C、不能组成分析:由于56÷7=8,8+62=70,则将两式合并成一个综合算式为56÷7+62=70,又100-70=30,则根据四则混合运算的运算顺序,将56÷7=8,8+62=70,100-70=30组成的综合算式是:100-(56÷7+62).解:根据四则混合运算的运算顺序可知,将56÷7=8,8+62=70,100-70=30组成的综合算式是:100-(56÷7+62).故选:B.点评:本题考查了学生根据分式及四则混合运算的运算顺序列出综合算式的能力.¤¤典典型型例例题题精精析析1.你能用两种方法表示出256这个数吗?【分析】明确数字在什么数位上和这个数的计数单位,它就表示几个这样的数字单位;可知:256表示由2个百、5个十和6个一组成;还表示256个一;由此解答即可.【解答】解:256表示由2个百、5个十和6个一组成;还表示256个一.【点评】此题考查了整数的认识,注意基础知识的积累.2.800可以看成个百,也可以看成个十,也可以看成个一.【分析】百位上是几,就表示有几个“百”,十位上是几,就表示有几个“十”,个位上是几,就表示有几个“一”,相邻的计数单位之间的进率是10,据此解答即可.【解答】解:800可以看成8个百,也可以看成80个十,也可以看成800个一.故答案为:8,80,800.【点评】掌握整数各个数位上的数表示的意义,是解答的关键.3.(1)一个计数器的最右边一位是个位.如果在这个计数器的右起第十位上拨9颗珠,拨出的数表示9个;(2)700400是由个万和个一组成的.(3)1枚1元硬币大约重6克,一万枚1元硬币大约重千克,一百万枚1元硬币大约重千克.【分析】(1)最右边是个位,从个位向左数9位,看第10位是什么位,进而可知表示的计数单位;(2)700400先分级可知这个数是七十万零四百,由70个万和400个一组成;(3)用6克乘上10000,就是一万枚硬币是多少克,然后换算成千克即可;1亿是1万个1万,用一万枚硬币的重量乘上10000就是一亿枚硬币的重量,然后再换算单位即可.【解答】解:(1)从右往左第10位是十亿位,上面的9表示9个十亿;(2)700400是由70个万和400个一组成的.(3)6×10000=60000(克);60000克=60千克;1亿里面有10000个一万;60×10000=600000(千克);600000千克=600吨.故答案为:十亿,70,400;60,600.【点评】本题考查了计数单位和数位,要熟记数位和计数单位,知道计数单位之间的进率.4.在说的对的同学下面的()里面“√”.【分析】根据题意对各选项进行依次分析、进而判断即可.【解答】解:3030中两个3所在的数位不同,所以表示的意义就不同;1899后面的一个数1900,不是2000;8个十和7个千组成的数是7080,不是7800;故答案为:【点评】此题考查了整数的认识,注意平时基础知识的积累.5.一家银行的保险柜上的密码锁是四位数,千位上的数字比个位上的数字大3,百位上的数字比十位上的数字小3,四个数字都不相同,四个数字的和比25大,这个密码是多少?【分析】已知这四个数字都不相同,四个数字的和比25大,其中千位上的数字比个位上的数字大3,百位上的数字比十位上的数字小3,当千位数字是9时,个位数字是9﹣3=6,此时若十位上的数字是8,则百位数字是8﹣3=5,由于9+5+8+6=28>25,符合题意,所以四位数9586可能是密码;若此时十位上的数字是7,则百位数字是7﹣3=4,由于9+4+7+6=26>25,符合题意,所以四位数9746可能是密码;当千位数字是8时,个位数字是8﹣3=5,此时若十位上的数字是9,则百位数字是9﹣3=6,由于8+6+9+65=28>25,符合题意,所以四位数8695可能是密码;当千位数字是7时,个位数字是7﹣3=4,此时若十位上的数字是9,则百位数字是9﹣3=6,由于7+6+9+4=26>25,符合题意,所以四位数7694可能是密码;据此解答.【解答】解:根据题意,当千位数字是9时,个位数字是9﹣3=6,此时若十位上的数字是8,则百位数字是8﹣3=5,由于9+5+8+6=28>25,符合题意,所以四位数9586可能是密码;若此时十位上的数字是7,则百位数字是7﹣3=4,由于9+4+7+6=26>25,符合题意,所以四位数9746可能是密码;当千位数字是8时,个位数字是8﹣3=5,此时若十位上的数字是9,则百位数字是9﹣3=6,由于8+6+9+65=28>25,符合题意,所以四位数8695可能是密码;当千位数字是7时,个位数字是7﹣3=4,此时若十位上的数字是9,则百位数字是9﹣3=6,由于7+6+9+4=26>25,符合题意,所以四位数7694可能是密码;所以这个密码可能是9586或9476或8695或7694,答:这个密码是9586或9476或8695或7694.【点评】此题解答关键是求出这四个数字的平均数,进而确定各位上的数字.6.在□里填上合适的数.1÷□+0÷28+28÷1+□×28=□+28=29【分析】1÷□+0÷28+28÷1+□×28是先同时计算三个除法和乘法,再算加法,先把能够计算出结果的部分进行计算,再进一步求解.【解答】解:1÷□+0÷28+28÷1+□×28=1÷□+28+□×28=□+28所以1÷□=□,那么第一个□应是1,即1÷1=1;□×28=0,所以第二个□应是0,即0×28=0;这时算式就是1÷1+0÷28+28÷1+0×28=1÷1+28+0×28=1+28=29故答案为:1,0,1.【点评】解决本题先计算出已知的部分,再根据算式的结果进一步推算.7.森林医生,(将不对的改正过来)126﹣96÷3=30+3=10381+120﹣272=400﹣272=128【分析】①先算除法,再算减法;②先算加法,再算减法.【解答】解:126﹣96÷3=30+3=10 (×)改正:126﹣96÷3=126﹣32=94②381+120﹣272=400﹣272=128(×)改正:381+120﹣272=501﹣272=229【点评】此题考查整数四则混合运算顺序,分析数据找到正确的计算方法.8.脱式计算.(能简算的要简算)29+12÷45+38;813÷7+17×613;2﹣613÷926﹣23;125×(56+34 )+45.【分析】(1)先算除法,再按照从左向右的顺序进行计算;(2)先算除法和乘法,再算加法;(3)先算除法,再按照从左向右的顺序进行计算;(4)先算小括号里面的加法,再算乘法,最后算括号外面的加法.【解答】解:(1)29+12÷45+38=29++38=29+38=67;(2)813÷7+17×613=116+10421=10537;(3)2﹣613÷926﹣23=2﹣﹣23=﹣1﹣23=﹣24;(4)125×(56+34 )+45=125×90+45=11250+45=11295.【点评】考查了整数和分数四则混合运算,注意运算顺序和运算法则,然后再进一步计算.9.列式计算(1)96减去35的差,乘63与25的和,积是多少?(2)480除以6的商,加上20,再除以25,得多少?【分析】(1)最后求得是积,一个因数是96减去35的差,另一个因数是63与25的和;(2)先求480除以6的商,加上20求得和,再用和除以25得出答案即可.【解答】解:(1)(96﹣35)×(63+25)=61×88=5368答:积是5368.(2)(480÷6+20)÷25=(80+20)÷25=100÷25=4答:得4.【点评】列式计算的关键是理解语言叙述的运算顺序,正确理解题意,列式计算即可.10.小明把一个数乘6看错了,结果把这个数除以6,接着他想再加上19,却又减去了19,出了这样的差错后,得数就变成36.假设小明不出错,正确的得数应该是多少?【分析】逆着结果向前推出原来的数:36加上19,是原数除以6得到,乘6得原数,再进一步列出正确算式计算即可.【解答】解:(36+19)×6=55×6=330;330×6+19=1980+9=1999;答:正确的得数应该是1999.【点评】此题考查混合运算的顺序是计算准确的前提,注意运算过程中的数字和运算符号.11.有一个四位数,个位上的数是7,和个位相邻的数位上的数字比个位上的数字少3,百位上的数字是十位上的数字的2倍,千位数字和个位数字的积是35。
最新小升初总复习数学归类讲解及训练大全
最新小升初总复习数学归类讲解及训练大全最新小升初总复习数学归类讲解及训练大全随着小学毕业考试的临近,小升初总复习成为了学生们关注的焦点。
为了帮助大家更好地准备考试,本文将详细讲解小升初总复习数学中的各类知识点,并提供相应的训练题目,以期提高学生的数学能力和应试水平。
一、数的认识在数的认识这一知识点中,我们需要掌握整数、小数和分数的概念。
整数包括正整数、零和负整数,小数包括有限小数、无限循环小数和无限不循环小数,分数则是指正分数和负分数。
同时,还要熟悉各种数位、计数单位及相互之间的转换方法。
典型例题:1、请将下列分数化为小数: (1) 1/10 (2) 3/4 (3) 7/82、请将下列小数化为分数: (1) 0.25 (2) 0.5 (3) 0.75二、运算顺序在掌握各种数的基本概念后,还需要掌握加减乘除及括号的运算顺序。
在遇到复杂的算式时,应先计算括号内的内容,再依次计算乘除和加减。
典型例题:计算下列各题: (1) 2+4×5-3 (2) (3+6)/2×4 (3) (2+4-6)×5 三、面积与周长在几何学中,我们还需要掌握常见图形的面积和周长的计算方法。
例如,长方形、正方形、三角形、平行四边形和圆的面积及周长的计算公式。
同时,还需要了解图形拼接、分割等变换的原理和方法。
典型例题:1、求下列各图形的面积: (1) 长3cm,宽2cm的长方形 (2) 边长为4cm的正方形 (3) 底边长为5cm,高为3cm的三角形2、求下列各图形的周长: (1) 长3cm,宽2cm的长方形 (2) 边长为4cm的正方形 (3) 底边长为5cm,高为3cm的三角形四、应用题应用题是小升初考试中常见的一种题型,主要考察学生解决实际问题的能力。
在解题时,需要理解题意,找出其中的数量关系,进而运用所学知识求解。
常见的应用题类型包括:行程问题、工程问题、百分比问题等。
典型例题:某商店以每件a元的价格进货,以每件b元的价格出售,售出件数为c,求该商店的利润。
小升初总复习 数学专题讲解及训练(含答案)
小学数学总复习专题讲解及训练教学内容:期中复习及考前模拟复习要点:(一)数与代数1、百分数的应用百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。
要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。
通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识比例的知识有比例的意义、比例的基本性质和解比例。
这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。
根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。
2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。
这个内容安排在第三单元里,结合比例的知识进行教学。
3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。
知识点梳理(一)数与代数1、百分数的应用(1)求一个数比另一个数多(少)百分之几的实际问题①要点:一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?男生比女生多的人数÷女生人数= 百分之几(180 - 160)÷160 = 12.5%女生比男生少的人数÷男生人数= 百分之几(180 - 160)÷180 ≈11.1%(2)纳税问题①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入×税率②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?(1400 - 800)×14% = 84(元)(3)利息问题①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲解及训练(二)
主要内容
正比例和反比例
考点分析
1、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:
x
y
= K (一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。
对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题
例1、(正比例的意义)一列火车行驶的时间和路程如下表。
这两种量有什么关系?
分析与解:
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看
一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,
用k表示它们的比值,正比例关系可以用这样的式子来表示:
x
y
= K (一定)。
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么? 分析与解:
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
(1)图中的点A表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。
请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
(3)根据图像判断,列车运行2分半钟时,行驶的路程是多少千米?行驶30千米大约需要几分钟?
1 2 3 4 5 6 7时间/分
分析与解:
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:
例5、(反比例的意义)
下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。
这两种量有什么关系?
分析与解:
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,
再看它们的乘积是否一定,进行判断。
不要省去任何一步。
如果用字母x和y分
别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来
表示:xy = K(一定)。
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
例7、(辨析)和一定,一个加数和另一个加数成反比例。
例8、(综合题1)
(1)长方形的面积一定,长和宽成反比例吗?为什么?
(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:
例9、(综合题2)
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:
小学数学总复习专题讲解及训练(2)
1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?
表格1
表格2
表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
2、用一批纸装订练习本,每本25页,可以装订400本。
如果要装订500本,每本有X页。
题中()量一定,关系式:()○()=()(一定),()和()成()比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。
如果改用边长0.4米的正
方形地砖,需要Y块。
题中()量一定,关系式:()○()=()(一定),()和()成()比例。
4、在圆柱的侧面积、底面周长、高这三种量中
当底面周长一定时,()与()成()比例;
当高一定时,()与()成()比例;
当侧面积一定时,()与()成()比例。
5、在被除数、除数、商这三种量中,
当()一定时,()与()成正比例;
当()一定时,()与()成反比例;
6、当a ×b =c(a、b、c 为三种量,且均不为0)。
( )一定,()与()成()比例;
()一定,()与()成()比例;
()一定,()与()成()比例;
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。
()
(2)、图上距离和实际距离成正比例。
()
(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。
()(4)、分数的大小一定,它的分子和分母成正比例。
()
(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。
()
(6)、两种相关联的量,不成正比例,就成反比例。
()
(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。
( )
(8)在400米赛跑中,跑步的速度和所用时间成反比例。
( )
(9)工作总量一定,已完成的量和未完成的量成反比例。
( )
(10)正方体的棱长和体积成正比例。
( )
(11)被除数一定,除数和商成反比例。
( )
(12)圆的周长和它的直径成正比例。
( )
8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数()。
(2)、正方形的边长和周长()。
(3)、水池的容积一定,水管每小时注水量和所用时间()。
(4)、房间面积一定,每块砖的面积和铺砖的块数()。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数()。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数()。
9、思考:明明三岁时体重12千克,十一岁时体重44千克。
于是小张就说:“明明的体重和
身高成正比例。
”你认为小张的说法对吗?为什么?
10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
(1)把下表填写完整。
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。
吨数/吨
1 2 3 4 5 6 7时间/时
(3)造纸吨数与造纸时间成正比例吗?为什么?
(4)根据图像判断, 5小时造纸多少吨?。