第16讲 干道信号协调控制基本知识
干线信号协调工作原理

干线信号协调工作原理
干线信号协调是指在城市道路干线上,通过信号灯的控制,使车辆在道路上有序通行的一种交通管理方式。
干线信号协调的目的是提高道路通行能力,缓解交通拥堵,减少交通事故的发生。
干线信号协调的工作原理是基于交通流量的变化来进行信号灯的控制。
在干线上设置一系列的信号灯,通过信号灯的变化来控制车辆的通行。
信号灯的变化是根据交通流量的变化来进行调整的,当交通流量较大时,信号灯的绿灯时间会相应地延长,以便更多的车辆通过;当交通流量较小时,信号灯的绿灯时间会相应地缩短,以避免车辆等待时间过长。
干线信号协调的工作原理还包括交通信号控制系统的配合。
交通信号控制系统是指通过计算机技术来控制信号灯的变化,以达到最优的交通流量控制效果。
交通信号控制系统可以根据实时的交通流量数据来进行信号灯的控制,以达到最优的交通流量控制效果。
干线信号协调的工作原理还包括交通信号灯的设置。
交通信号灯的设置是根据道路的交通流量和车辆通行速度来进行的。
在交通流量较大的路段,应设置多个信号灯,以便更好地控制交通流量;在车辆通行速度较快的路段,应设置较长的绿灯时间,以便车辆能够顺畅通过。
干线信号协调是一种有效的交通管理方式,可以提高道路通行能力,
缓解交通拥堵,减少交通事故的发生。
干线信号协调的工作原理是基于交通流量的变化来进行信号灯的控制,同时还需要交通信号控制系统的配合和交通信号灯的设置。
干道信号协调控制基本知识(课堂PPT)

三、连接方式
1.无缆连接 (2)用时基协调器联结 用一个叫做时基协调器的十分精确的数字计时和控制设施,
把各控制机的配时方案连接起来,实现各机间的时间上的协调。 时基协调器可用在多时段配时的线控系统中。在配时方案有
改变时,也必须由人工到现场逐一对各控制机进行调整。 (3)用石英钟连接 在信号控制机内装有准时的石英钟和校时设施,设定在线控
三、连接方式
➢ 无缆连接 ➢ 有缆连接
17
三、连接方式
1.无缆连接 是指在线控系统中,各信号控制机配时方案间的连接,
不用电缆作信息传输的介体。 (1)靠同步电动机或电源频率连接 从第一个控制机开始,按先后次序逐一把各机的配时
方案,由人工根据各控制机间的计算时差,设置到信号控 制机中。时差关系靠控制机中的同步电动机或电源的频率 来保持。只限用于只有一种配时方案的系统。
系统各控制机的配时方案就靠各机内的石英钟联结协调。
19
三、连接方式
2.有缆连接 是指在线控系统中,各信号控制机配时方案间的连接,
用电缆作信息传输的介体。 (1)用主控制机的控制系统 在一个用定时信号控制机的线控系统中,设一台主控制机
每周期发送一个同步脉冲信号通过电缆传输给各下位机,时差 被预先设定在各下位机内,各下位机均在各自的时差上转换周期 ,所以下位机从主控机接到同步脉冲信号后会在各自的时差点上 转换周期,因此可保持各控制机间正确的时差关系。
(3)续进式干道协调控制 根据道路上的要求车速与交叉口的间距,确定合适的相位
差,用以协调干道各相邻交叉口绿灯的启亮时刻,使在上游 交叉口绿灯启亮后驶出的车辆,以适当的车速行驶,可正好 在下游交叉口绿灯期间到达。包括以下类型:
①简单续进式干道协调控制系统 ②多方案续进式干道协调控制系统
干道交通协调控制方案课件

• 干道交通协调控制方案概述 • 干道交通协调控制方案实施步骤 • 干道交通协调控制方案关键技术
• 干道交通协调控制方案案例分析 • 干道交通协调控制方案未来展望
01 干道交通协调控制方案概述
定义与目标
定义
干道交通协调控制方案是一种针对城 市干道交通流量的管理和控制策略, 旨在提高干道交通的流畅性和安全性 ,缓解交通拥堵,减少交通事故。
目标
通过协调控制干道交通流量,优化交 通信号灯配时,提高道路通行效率, 保障交通安全,提升城市交通运行水 平。
方案的重要性
01
02
03
缓解交通拥堵
通过合理的交通协调控制 ,有效疏导交通流量,缓 解城市干道拥堵现象。
提高交通安全
通过优化交通信号灯配时 ,减少交通事故发生的概 率,提高道路安全水平。
提升城市形象
良好的干道交通状况有助 于提升城市的形象和投资 环境,吸引更多的人才和 企业入驻。
方案的历史与发展
早期阶段
发展阶段
早期的干道交通协调控制方案主要依 赖于人工调度和简单的信号灯控制。
随着科技的发展,出现了智能交通系 统,通过计算机技术实现交通信号灯 的自动控制和协调。
当前阶段
目前,干道交通协调控制方案已经发 展到了较为成熟的阶段,各种先进的 智能交通技术和大数据分析被广泛应 用于方案的实施和管理。未来,随着 物联网、云计算等新技术的不断发展 ,干道交通协调控制方案将更加智能 化、精细化,为城市交通管理提供更 高效、更安全的服务。
应用前景展望
城市交通
01
干道交通协调控制方案将广泛应用于城市交通网络,提高道路
通行效率和交通安全水平。
高速公路
干道交通协调控制方案课件

通过实时监测区域内的交通状况,调 整交通流分配,将车辆引导到拥堵较 少的道路,以均衡区域内的交通负荷 。
干线交通协调控制
干线交通信号协调控制
对干线上的相邻路口的交通信号灯进行协调控制,以确保车辆在干线上的连续通行,减少车辆在路口的等待时间 和延误。
干线交通流诱导
通过发布干线上的实时交通信息和交通建议,引导车辆选择合适的行驶路线,以缓解干线上的交通压力。
VS
多模式交通流诱导
通过发布多模式交通流的信息和建议,引 导出行者选择合适的交通方式和路径,以 实现多模式交通流的协调和优化。
04
干道交通协调控制 的实践与应用
实际案例一
01
交通现状分析
该城市主干道交通压力大,高峰期交通拥堵严重,影响出行效率和交通
安全。
02 03
协调控制方案
采用智能交通信号控制技术,优化交通信号配时,提高道路通行能力; 设置公交优先道和公交优先信号,提高公共交通运行效率;加强交通宣 传教育,倡导绿色出行。
实施效果
通过以上措施,高速公路交通拥堵得到有效缓解,车辆行驶速度提高,交通安全事故减少 。
实际案例三
交通现状分析
该大型交通枢纽是城市多条轨道交通线路的交汇点,高峰期客流量巨大,换乘压力大。
协调控制方案
采用智能交通系统技术,实时监测客流量变化,优化轨道交通线路的班次和停靠站;加强现场引导和指示标志的设置 ,提高旅客换乘效率;增设临时疏散通道和应急出口,确保旅客安全疏散。
交通仿真与评估方法
交通仿真技术
利用计算机仿真技术,模拟交通运行状况,为交通规划和管 理提供决策支持。
评估方法
通过建立评估指标体系,对交通规划方案、信号灯控制方案 等进行评估和优化,以提高交通运行效率和质量。
干线区域交通控制

确定协调相位的最小绿灯时间
协调相位即是协调方向的相位。各交叉口协调相位所必须
保持的最小绿灯时间就是关键交叉口协调相位的绿灯显示时
间,为取整后所得:
tEGm
(Cm Lm)
ym Ym
(1-4)
式中:t EGm--关键交叉口协调相位的最小绿灯时间(s); C m --公共周期时长(s); L m --关键交叉口总损失时间(s); y m --关键交叉口协调相位关键车流的流量比; Y m --关键交叉口各相位关键车流流量比之和
14
确定非关键交叉口协调相位的有效绿灯时间
非协调相位的最小有效绿灯时间按式(1-6)确定以后,富 余有效绿灯时间全部调剂给协调相位,以便形成最大绿波带。
非关键交叉口协调相位的有效绿灯时间可按下式计算得到:
k
tEG Cm L tEGn n1
(1-6)
式中: t E G --非关键交叉口协调相位的有效绿灯时间(s); C m --线控系统公共周期时长(s); L --非关键交叉口总损失时间(S); t E G n --非关键交叉口非协调相位中第n相的最小有效绿灯时间(s); k --非关键交叉口非协调相位的相位总数。
时 间
到 最 大 绿 灯
时 间
是是
次路绿灯次路结绿束灯结束
次路检测流程图
主干道绿 主干道绿
主路检测流程图
次干道次绿干道绿
20
最短绿灯时间到?
次路绿灯结束
感应式末 线控系统的三种类型
主干道绿
否
到最大绿 有 灯时间?
主干道有车吗?
是
无
否
次干道有车吗?
无 到最小绿 灯时间?
有
是
次干道绿
第七章_干线信号协调控制

定义:通过调节主干道路上各信号交叉口之间的相 位差,使干道上按规定车速行驶的车辆获得尽可能不 停顿的通行权,这种控制方式,称为干道信号系统的 协调控制。简称“线控制”,又称“绿波带”控制。
汽车与交通学院交通运输工程系
二、控制方式
2.双向干道协调控制 (1)同步式干道协调控制 在同步式协调系统中,连接在一个系统中的全部信
号,在同一时刻对干道车流显示相同的灯色。当相邻 交叉口的间距符合下式时,这些交叉口正好可以组成 同步式干道协调控制。
s nvC
式中: -C-信号交叉口周期时长(s)
--正n整数
Qingdao Technological University
汽车与交通学院交通运输工程系
二、控制方式
(2)交互式干道协调控制 与同步式协调控制相反,即连接在一个系统中的相邻交叉口干
道协调相位的信号灯在同一时刻显示相反的灯色。当相邻交叉口的 间距符合下式时,采用交互式干道协调控制。
s mvC 2
省级精品课程
第七章 干线信号协调控制
Qingdao Technological University
汽车与交通学院交通运输工程系
第一节 干道信号协调控制的基本知识
主要内容 基本概念 控制方式 连接方式
Qingdao Technological University
汽车与交通学院交通运输工程系
一、基本概念
干道信号协调控制相位差基本计算方法

.2干道信号协调控制相位差基本计算方法1917年,世界上第一个线控系统出现在美国的盐湖城,它是一个可同时控制6个交叉口的手动控制系统。
1922年德克萨斯州休斯顿市发展了可控制12个交叉口的瞬时交通信号系统,其控制特点是采用电子自动计时器对交叉口的交通信号进行协调控制。
1981年美国的J·D·C·Litter 和W·D·Brooks 等人利用最大绿波带相位差优化方法开发了最大绿波带交通信号设计优化程序(Maximal Bandwidth Traffic Signal Setting Optimization Program ,MAXBAND )。
总结以往的线控系统,相位差优化通常采用的两种设计思路是:(1)最大绿波带法;(2)最小延误法。
其中以最大绿波带为目标的相位差优化方法主要有图解法和数解法,本节主要介绍这两种相位差优化方法。
1.图解法图解法是确定线控系统相位差的一种传统方法,其基本思路是:通过几何作图的方法,利用反映车流运动的时间-距离图,初步建立交互式或同步式协调系统。
然后再对通过带速度和周期时长进行反复调整,从而确定相位差,最终获得一条理想的绿波带,即通过带。
下面以一个示例来说明图解法设计相位差的具体步骤。
如图8-2所示,连续五个交叉口)、、、、E D C B (A 纳入一个线控系统,假设系统通过带速度宜在36km /h 上下,相应的公用周期暂定为60s 。
图中横坐标反映各个信号交叉口间的距离,纵坐标反映车流前进的时间过程。
各竖线上的粗线段表示红灯时段,如A 交叉口竖线'AA 上的1~2、3~4、5~6段,细线表示绿灯时段。
选定第一个交叉口A 的信号作为基准信号,其绿灯时间起始位置为0。
在设计前首先要准备的资料包括:干道各交叉口道路的几何线形、交叉口的间距、交通流运行规则、交通流量及其变化规律以及平均车速等。
E 540D160C400B350A距离(m)图8-2相位差优化图解法示例(1)从A 点引一条斜线①,代表通过带速度推进线,其斜率等于车辆平均行驶车速(h km /36)的倒数。
干道交通协调控制.教学文案

(二)双向交通街道
双向交通定时式干道信号协调控制有3种控制方式: 1)同步式协调控制 在同步式协调系统中,连接在一个系统中的全部信号在同一时刻对干道车流显示完全相同的灯 色。 当相邻各交叉口的间距符合下面的关系式时,即车辆在相邻交叉口间的行驶时间等于信号周期 时长整数倍时,适宜将这些交叉口组成同步式协调系统。相邻交叉口间距满足:
感应式线控系统和计算机线控系统
2.交互式信号协调控制
在交互式协调系统中,连接在一个系统中相邻交 叉口的信号在同一时刻显示完全相反的灯色。 当相邻各交叉口的间距符合下面关系式时,即车辆在 相邻交叉口间的行驶时间等于信号周期时长一半的奇 数倍时,适宜将这些交叉口组成交互式协调系统。相 邻交叉口间距满足:
相位差 系统速度
在线控系统中,各个交叉口交通信号的绿信比是根据其各相 位交通流量比来确定的,因此各个交叉口交通信号的绿信比 不一定相同。
干道交通信号协调控制的基本概念
相位差
绿信比
相位差 系统速度
通常在干道上,会有一系列的交叉路口,为使车辆在干道上 能畅通运行,可使各交叉口绿灯有序开放,则从纵向来看, 这组交叉口信号灯产生了一个“时间差”,这就是相位差,以s 为单位或以占周期长的百分比表示。相 位 差是针对多个信号 灯而言的。
对各交叉口分别进行配时设计,然后从中选择最大的周期作 为线控系统的周期时长并把所需周期时长最大的这个交叉口 称之为关键交叉口。
一些交通量较小,周期时长接近最大周期时长一半的交叉口, 可以将周期时长设为系统周期时长的1/2,这种交叉口半称 为双周期交叉口。
干道交通信号协调控制的基本概念
周期时常 绿信比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在信号控制机内装有准时的石英钟和校时设施,设定在线控
系统各控制机的配时方案就靠各机内的石英钟联结协调。
三、连接方式
2.有缆连接 是指在线控系统中,各信号控制机配时方案间的连接,
用电缆作信息传输的介体。
(1)用主控制机的控制系统 在一个用定时信号控制机的线控系统中,设一台主控制机
每周期发送一个同步脉冲信号通过电缆传输给各下位机,时差
来保持。只限用于只有一种配时方案的系统。
三、连接方式
1.无缆连接 (2)用时基协调器联结 用一个叫做时基协调器的十分精确的数字计时和控制设施, 把各控制机的配时方案连接起来,实现各机间的时间上的协调。
时基协调器可用在多时段配时的线控系统中。在配时方案有
改变时,也必须由人工到现场逐一对各控制机进行调整。 (3)用石英钟连接
二、提高干道信号协调控制效益的辅助设施
3.可变车速指示标志与前置信号合并使用
据有关资料统计,采用前置信号与速度指示标志并用
的线控制系统可使在交叉口不停车通过的车55%提高
到70%~77%。
第九章 区域信号协调控制
一、区域信号控制的基本概念
区域信号控制的定义
狭义: 将关联性较强的若干个交叉口统一起来,进行相 互协调的信号控制方式。 广义: 在一个指挥控制中心的管理下,监控区域内的全
非关键交叉口绿灯显示时间计算 (1)确定线控系统中协调相位的最小绿灯显示时间 关键协调相位即协调方向的相位。各交叉口协调相位所必须 保持的最小绿灯时间就是关键交叉口协调相位的绿灯显示时间。 即先计算出关键交叉口协调相位的有效绿灯时间,再计算
出其绿灯显示时间。
tEGm
ym Cm Lm Ym
s O v
式中: --相邻交叉口的相位差(s) O
s
--相邻交叉口停车线间的距离(m)
v --线控系统中车辆可连续通行的车速(m/s)
二、控制方式
2.双向干道协调控制 (1)同步式干道协调控制 在同步式协调系统中,连接在一个系统中的全部信号, 在同一时刻对干道车流显示相同的灯色。当相邻交叉
口的间距符合下式时,这些交叉口正好可以组成同步
部交叉口,是对单个孤立交叉口、干道多个交叉口和
关联性较强的交叉口群进行综合性地信号控制。
信号系统类型
①整体监视控制 ②因地制宜地选 用合适的控制方 法 ③有效经济地使 用设备
二、区域信号控制系统分类
控制策略
控制方式
控制结构
TRANSYT系统
SCAT系统
——联机自适应控制系统
SCOOT系统
二、控制方式
有四种情况: 单向干道协调控制 双向干道协调控制 • 同步式干道协调控制 • 交互式干道协调控制
• 续进式干道协调控制
二、控制方式
1.单向干道协调控制 是以单方向交通流为优化对象的线控方式。常用于 单向交通、变向交通或两个方向交通量相差悬殊的道路。 相邻各交叉口的相位差可按下式确定:
三、连接方式
无缆连接 有缆连接
三、连接方式
1.无缆连接 是指在线控系统中,各信号控制机配时方案间的连接, 不用电缆作信息传输的介体。 (1)靠同步电动机或电源频率连接
从第一个控制机开始,按先后次序逐一把各机的配时
方案,由人工根据各控制机间的计算时差,设置到信号控 制机中。时差关系靠控制机中的同步电动机或电源的频率
非关键交叉口绿灯显示时间计算 (4)确定各交叉口各个相位的绿灯显示时间
tGi tEGi tLi tYi
若把黄灯时间全部看成有效绿灯时间,则公式可变为
tGi tEGi tFLi tYi
二、线控的配时步骤
3.计算相位差 主要介绍以最大绿波带为目标的相位差优化
方法:图解法和数解法。
6 7(相位差)
30/-30 -30
+5/-45 25
+3/-67 65
12/-38 75
40/-20 -30
40/-30 15
影响干道信号协调控制效果的因素
一、干道信号协调控制的影响因素
二、提高干道信号协调控制效益的辅助设施
一、干道信号协调控制的影响因素
1、车队离散现象对干道协调控制效果的影响
一、所需资料
干道资料 干线交通状况 干线交叉口的相位、相序安排
二、线控的配时步骤
1.计算线控系统的公用周期时长
取所有交叉口中最大周期时长为公用周期时长,周期最
大的交叉口为关键交叉口。
2.计算线控系统中各交叉口的绿灯时间
关键交叉口的计算与单点配时方法一样。 重点算非关键交叉口绿灯显示时间。
二、线控的配时步骤
1.前置信号
在主要交叉口前几十米的地方设置交通信号灯,
可以使交通流在信号控制下集中,放行后在交叉口处 不停止地通过,从而可使交叉口上的绿灯时间得到有
效利用,提高交叉口的通行能力。
二、提高干道信号协调控制效益的辅助设施
2.可变车速指示标志
在交叉口前一个或几个地方设置速度标志,指示驾驶 人以标志速度行驶,通过交叉口。可变车速标志上速 度指示的数值,同交叉口信号的显示灯色与时间有关, 且受交叉口信号控制机的控制。
在线控系统中,常常使用绝对相位差的概念。
一、基本概念
(2)相对相位差 是指相邻交叉口主干道协调方向的信号绿灯(红灯)的起点 或终点之间的时间之差。相对相位差等于两个交叉口的绝对 相位差之差。比如:OCB=OC-OB
一、基本概念
4、时间距离图
以时间(即信号配时)为纵坐标,干道上交叉口间距为横坐标。
Purdy 法计算相位差
已知条件:速度v=13.44m/s,周期时长C=60s。
Purdy 法计算相位差
Purdy 法绿波带计算结果(%)
行号
A 1 2 3 4 5 0 0 60 30/-30 30/-30 B 30 -20 50 25/-25 +5/-45
交叉口编号
C 68 +18 70 35/-35 53/-17 D 87 -13 50 25/-25 12/-38 E 110 +10 60 30/-30 40/-20 F 115 +5 70 35/-35 40/-30
m --奇数
二、控制方式
(3)续进式干道协调控制 根据道路上的要求车速与交叉口的间距,确定合适的相位 差,用以协调干道各相邻交叉口绿灯的启亮时刻,使在上游
交叉口绿灯启亮后驶出的车辆,以适当的车速行驶,可正好
在下游交叉口绿灯期间到达。包括以下类型:
①简单续进式干道协调控制系统
②多方案续进式干道协调控制系统
闽江学院交通工程专业
第8章 干道信号协调控制
第一节 干道信号协调控制的基本知识
主要内容 基本概念
控制方式
连接方式
一、基本概念
在线控中要考虑三个最基本的参数:公用周期长度、 绿信比和相位差
1、公用周期长度
确定方法:先按单点定时信号配时方法计算出各交叉口 所需周期长度,然后从中选出最大的周期作为这个线控系统 的公用周期时长。周期时长最大的这个交叉口为关键交叉口。 在近代的控制系统中,对有些交通量较小的交叉口,实际 需要周期时长接近于系统周期时长的一半,可把这些交叉口的 信号周期定成系统周期时长的一半,这样的交叉口叫做双周期 交叉口。
机逐一连接。开始运转时,当第一交叉口绿灯启亮时,发一个信号
传给下一个交叉口的控制机;第二个控制机接到信号后,按先置的 时差推迟若干秒改亮绿灯,再按预置显示绿灯时间改变灯色,并发
一个信号传给下一个交叉口的控制机,这样依次把信号逐个传递到
最后一个控制机。
干道信号协调控制配时设计
主要内容 所需资料
配时步骤
距离(m)
一、基本概念
时间距离图中的几个概念:
①通过带。图中所绘的两条平行的车辆行驶轨迹线之间
的空间,也称绿波带。 ②通过带宽。两根平行轨迹纵坐标之差即为通过带宽度, 它表示可供车辆使用以通过交叉口的时间。 ③通过带速度。即车辆行驶轨迹的余切,它表示沿交通 干道可以顺利通过各交叉口的车辆的平均行驶速度。 简称带速。
被预先设定在各下位机内,各下位机均在各自的时差上转换周期 ,所以下位机从主控机接到同步脉冲信号后会在各自的时差点上 转换周期,因此可保持各控制机间正确的时差关系。 其特点是主控机每个周期都自动地对各下位机进行时间协调。 可执行多时段的配时方案。
三、连接方式
2.有缆连接 (2)逐机传递式系统 在逐机传递式系统内各控制机中设有时差控制设施,对各控制 机分别预先设定各机的配时方案及时差,用电缆将系统中各控制
2、公交协调控制对干道协调控制效果的影响
3、转弯车流对干道协调控制效果的影响 4、影响干道协调控制效果的其他因素 1)交叉口间距 2)车队平均行驶速度 3)交叉口相位、相序设计 4)交通量随时间的波动
1、车队离散现象对干道协调控制效果的影响
1、车队离散现象对干道协调控制效果的影响
扩散绿波带图
2、公交协调控制对干道协调控制效果的影响
一、基本概念
2、绿信比 确定方法:根据各交叉口各方向的交通流量比来确定。
因此,各交叉口信号的绿信比不一定相同。
一、基本概念
3、相位差 又叫时差或绿时差。通常用O表示, 有绝对相位差和相对相位差之分。 (1)绝对相位差
是指各个交叉口主干道协调方向的信号绿灯(红灯)的起点
或终点相对于某一个交叉口(一般为关键交叉口)主干道 协调方向的信号绿灯(红灯)的起点终点的时间之差。
2、公交协调控制对干道协调控制效果的影响
2、公交协调控制对干道协调控制效果的影响
2、公交协调控制对干道协调控制效果的影响
2、公交协调控制对干道协调控制效果的影响
3、转弯车流对干道协调控制效果的影响
3、转弯车流对干道协调控制效果的影响