物理光学与应用光学习题解第六章
物理光学与应用光学第二版课件及课后习题答案63页PPT

37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
物理光学与应用光学第 二版课件及课后习题答
案
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不源自盲目。 ——马 克思谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
《应用光学》第六章作业与例题题解

作业:6-1解:(1)250度对应的视度为 SD = -2.5,而由于人眼近(远)视的程度都是用远点距离对应的视度表示的,即 SD = 1/ r 所以,人眼远点距离为 r = 1/ SD = 1/(-2.5)= - 0.4 (m )(2)f ′= r = -0.4m = -400 mm6-4.解:(1)依题意作图如右, l 1′- l 1 = 195mm ,而 β= l 1′/ l 1 所以 l 1′=βl 1 即 -40l 1 - l 1 = 195 解得 l 1 = - 4.76, l 1′= 190.24 又由高斯公式'11'1f l l =- 得 物镜焦距 )(64.424.19076.424.19076.4'''1111mm l l l l f ≈--⨯-=-= (2)光学筒长Δ由图可知 Δ= l 1′-f 物′= 190.24 – 4.64 = 185.6(mm )【或 1)由 Δ= d- f 物′-f 目′计算,而 d =195+ f 目′+ l 1 ,所以 Δ= 195+ f 目′+ l 1- f 物′-f 目′=195+ l 1- f 物′=195- 4.67 – 4.64 = 185.6(mm )2)由 β= -Δ/ f 物′ ,Δ= -βf 物′= 40×4.64 = 185.6(mm )】(3)⨯-≈⨯-=⋅=Γ60067.1625040'250目物总f β 例题:1:对正常人眼,如要观察2m 远的目标,需要调节多少视度?解:据 l SD 1= 有 5.0m 21 1-=-==l SD 2:一个年龄为50岁的人,近点距离为-0.4m ,远点距离为无限远。
试求他的眼睛的调节范围。
解:若以p 表示近点到眼睛物方主点的距离,以r 表示远点到眼睛物方主点的距离,其倒数分别表示近点和远点发散度(或会聚度)的屈光度数,它们的差以A 表示,即p r 11P -R A -==, 故: 5.2m4.01111P -R A =--∞=-==p r (屈光度) 3:如要求测微目镜的对准精度为0.001mm ,使用夹线对准精度为10〞,试问需采用多大焦目镜距的测微目镜?解:从题意可知,测微目镜的镜焦距的大小应 使夹线角对准精度为10〞,这就和测微目镜分划面上的线对准精度正好配合,如图所示。
北师大版八年级物理第六章《常见的光学仪器》知识点+测试试题和答案

北师大版物理八年级下册第六章知识点+测试题第六章:常见的光学仪器一.基本知识点归纳:1.凸透镜:有两个虚焦点。
1)外观:表面是球面的一部分,中间厚,边缘薄,由透明材料制成。
2)光学特点:对光线具有会聚作用①正确看待凸透镜对光线的会聚作用:光线经透镜折射后,折射光线相对于入射光线原来的传播方向,更靠近主轴。
②凸透镜越厚,它表面的弯曲程度越大,折光能力越强,其焦距越短。
3)成像规律及应用:①U>2f:f<V<2f,成倒立缩小的实像应用:照相机②U=2f:V=2f,成倒立等大的实像应用:——③2f>U>f:V>2f,成倒立放大的实像应用:幻灯机,投影仪④U<f:成正立放大的虚像应用:放大镜规律简化总结:①一倍焦距分虚实,两倍焦距分大小。
②成实像时:物远像近,物近像远,像近像小,像远像大。
③成虚像时:物远像远,物近像近,像近像小,像远像大。
④成实像时,像与物比较:上下,左右均相反;而成虚像时,像与物上下,左右均相同。
这点与平面镜有所区别!2.光学仪器的操作1)照相机的操作:①若要扩大照相范围,就要让像变小,具体操作方法是:增大照相机与被拍照物体的距离以增大物距,同时缩短暗箱长度以减小相距.②照相机镜头上沾有少量灰尘对成像效果影响不大,灰尘由于距离镜头太近,故它不会通过凸透镜成实像呈现在底片上。
但它会遮挡住部分射到镜头上的光,使像的亮度受到一定的影响。
2)幻灯机的操作:①由于物体通过幻灯机的镜头成的是倒立的像,故幻灯片要倒插。
②若觉得屏幕上的图像太小,则应该减小幻灯片到镜头的距离,同时增大镜头到屏幕的距离。
3)放大镜的操作:①要利用放大镜看到物体正立放大的虚像,必须保证物体到放大镜的距离小于一倍焦距。
若物体到放大镜的距离大于一倍焦距,则我们看到的就是倒立的实像了。
②如果要想将物体的像放大得更多一些,则应该稍稍增大物体到放大镜的距离,但要保证这个距离不能超过一倍焦距。
3.眼睛1)原理:U>2f,成倒立缩小的实像(与照相机相同)眼睛的晶状体相当于照相机的镜头,瞳孔相当于照相机的光圈,眼睑相当于照相机的快门,视网膜相当于照相机的底片。
物理光学与应用光学第二版课件及课后习题答案

由式(1-12)
2 所以有: ( E ) ) E
由式(1-16)得:
2
即 E 0
E 2 E 2 t
(1-17)
同理对式(1-15)两边 取旋度,得
2 2 D B E H ( D) 2 2 t t t t
即:
E E 2 t
2
(1-16)
利用矢量微分恒等式
2 ( A) ( A) A
有:
2 ( E ) ( E ) E
D 0
可知 E 0
同理,利用矢量微分恒等式,可得:
2 有以上两式得: H H 2 t
2
2 ( H ) H
(1-18)
v 令
1
可将式(1-17)式(1-18)变为:
2 1 2E 2 E 2 2 0 (1-19) 2 H 1 H 0 v t v 2 t 2
4.波动方程
麦克斯韦方程组描述了电磁现象的变化规律, 指出随时间变化的电场将在周围空间产生变化的磁 场,随时间变化的磁场将在周围空间产生变化的电 场,变化的电场和磁场之间相互联系,相互激发, 并且以一定速度向周围空间传播。因此,时变电磁 场就是在空间以一定速度由近及远传播的电磁波。
一、 电磁场波动方程:
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z
第六章习题解答及参考答案

①
M 为放大倍数。像的光强度分布为:
I i ( x3 , y3 ) = U i ( x3 , y3 ) ≈
2
②
上式表明的对比度是 2φ
α。 当相移点没有这种吸收时, 像的对比度是 2φ 。 又由于 α < 1 ,
故使用有吸收的相移点,能使像的对比度改善。 [6-7]用 CRT 记录一帧图像透明片,设扫描点之间的间隔为 0.2mm,图像最高空间频率为 10 线/mm。如欲完全去掉离散扫描点,得到一帧连续灰阶图像,那么空间滤波器的形状和尺寸 应 当 如 何 设 计 ? 输 出 图 像 的 分 辨 率 如 何 ? 设 傅 里 叶 变 换 物 镜 的 焦 距 f ' =1000mm ,
可见其频谱仍是点状结构,其位置由下式确定:
点状结构是高频成分,可采用低通滤波器将其滤掉。低通滤波器的孔径半径为:
r = x2 =
λf = 3.164 mm x0 sin θ r 1 = = = 5 线 mm λ λf x0 线 mm
能传递的最高空间频率为: ρ max =
高于此值的空间频率成分将被滤除,故输出图像的分辨率为 5
式中 f x =
x2 y , f y = 2 ;由上式可见,频谱面上能分辨的细节由 sinc (30 f x ,30 f y ) 决定。 λf λf 30∆f x = 1, 30∆f y = 1
将 sinc 函数由最大值降为零的宽度取为最小分辨单元,即令
遂有 ∆x2 = ∆y2 =
λf = 2.1µm 30
设系统的输入面位于透镜的前焦面,物透明片的复振幅分布为 f ( x1 , y1 ) ,考虑到系统孔径 有限,透镜后焦面上的场分布为:
x y U f ( f x , f y ) = F f ( x1 , y1 ) rect 1 , 1 = 900 F ( f x , f y )∗ sinc (30 f x ,30 f y ) 30 30
《物理光学与应用光学》习题及选解2

《物理光学与应⽤光学》习题及选解2《物理光学与应⽤光学》习题及选解第⼀章习题1-1. ⼀个线偏振光在玻璃中传播时,表⽰为:i E ))65.0(10cos(10152t cz-??=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单⾊平⾯光波的频率为z H 1014=ν,在z = 0 平⾯上相位线性增加的情况如图所⽰。
求f x , f y , f z 。
1-3. 试确定下列各组光波表⽰式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹⾓为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为?。
求证:?αcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988µm 波长光的折射率为n = 1.52546,11m 1026.1/--?-=µλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下⾯两种⾊散规律的群速度(表⽰式中的v 表⽰是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满⾊散介质()(ωεε=,)(ωµµ=)的直波导管中的电磁波,222/a c c v p -=εµωω,其中c 真空中的光速,a 是与波导管截⾯有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
⼊射光是⾃然光,⼊射⾓分别为?0,?20,?45,0456'?,? 90。
1-8. 若⼊射光是线偏振的,在全反射的情况下,⼊射⾓应为多⼤⽅能使在⼊射⾯内振动和垂直⼊射⾯振动的两反射光间的相位差为极⼤?这个极⼤值等于多少?=501θ,n 1 = 1,n 2 = 1.5,则反射光的光⽮量与⼊射⾯成多⼤的⾓度?若?=601θ时,该⾓度⼜为多1-2题⽤图⼤?1-10. 若要使光经红宝⽯(n = 1.76)表⾯反射后成为完全偏振光,⼊射⾓应等于多少?求在此⼊射⾓的情况下,折射光的偏振度P t 。
物理光学与应用光学第二版第六章

第 6 章 光的吸收、色散和散射
若将 n~表示成实部和虚部的形式,n~ni, 则 有
n ~ 2 ( n i) 2 ( n 2 2 ) i2 n (6.1-13)
将(6.1-13)式与(6.1-12)式进行比较,可得
n2
2
1
Ne2
0m
(02
02 2 2)2
l=1/K时,光强减少为原来的1/e。若引入消光系数η描述光强
的衰减,则吸收系数K与消光系数η有如下关系:
K 4
由此,朗伯定律可表示为
(6.2-3)
4 l
I I0e
(6.2-4)
各种介质的吸收系数差别很大,对于可见光,金属的
K≈106cm-1,玻璃的K≈10-2cm-1,而一个大气压下空气的K≈105cm-1。这就表明,非常薄的金属片就能吸收掉通过它的全部 光能,因此金属片是不透明的,而光在空气中传播时, 很少
同时,由于电偶极矩随时间变化,这个电偶极子将辐射次波。
利用这种极化和辐射过程, 可以描述光的吸收、色散和散射。
为简单起见,假设在所研究的均匀色散介质中,只有一种
分子,并且不计分子间的相互作用,每个分子内只有一个电子
作强迫振动, 所构成电偶极子的电偶极矩大小为
p=-er
(6.1-2)
式中,e是电子电荷;r是电子离开平衡位置的距离(位移)。如 果单位体积中有N个分子,则单位体积中的平均电偶极矩(极化 强度)为
式
P(02
Ne2 m
2)i
E~(z)eit
(6.1-8)
由电磁场理论, 极化强度与电场的关系为
P0E
(6.1-9)
第 6 章 光的吸收、色散和散射
应用光学总复习与习题解答

总复习第一章 几何光学的基本定律 返回内容提要有关光传播路径的定律是本章的主要问题。
折射定律(光学不变量)及其矢量形式反射定律(是折射定律当时的特殊情况)费马原理(极端光程定律),由费马原理导出折射定律和反射定律(实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例第二章 球面与球面系统 返回内容提要球面系统仅对细小平面以细光束成完善像基本公式:阿贝不变量放大率及其关系:拉氏不变量反射球面的有关公式由可得。
第三章 平面与平面系统返回内容提要平面镜成镜像夹角为 α 的双平面镜的二次像特征 平行平板引起的轴向位移反射棱镜的展开,结构常数,棱镜转像系统折射棱镜的最小偏角,光楔与双光楔关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。
第四章 理想光学系统返回内容提要主点、主平面,焦点、焦平面,节点、节平面的概念高斯公式与牛顿公式:当时化为,并有三种放大率,,拉氏不变量,,厚透镜:看成两光组组合。
++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。
--组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。
第五章 光学系统中的光束限制 返回内容提要本部分应与典型光学系统部分相结合进行复习。
孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴第六章 光能及其计算 返回内容提要本章重点在于光能有关概念、单位和像面照度计算。
辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失, 通过光学系统的光通量,像面照度总之,第七章 典型光学系统 返回内容提要本章需要熟练掌握各类典型光学系统的成像原理、放大倍率、光束限制、分辨本领以及显微镜与照明 系统、望远镜与转像系统的光瞳匹配关系,光学系统的外形尺寸计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章
● 习题
6-1. 有一均匀介质,其吸收系数K = 0.32 cm -1,求出射光强为入射光强的0.1、0.2、0.5时的介质厚度。
6-2. 一长为3.50 m 的玻璃管,内盛标准状态下的某种气体。
若吸收系数为0.165 m -1,求激光透过此玻璃管后的相对强度。
6-3. 一个︒60的棱镜由某种玻璃制成,其色散特性可用科希公式中的常数A = 1.416,B = 1.72×10-10 cm 2表示,棱镜的放置使它对0.6m μ波长的光产生最小偏向角,这个棱镜的角色散率(rad /m μ)为多大?
6-4. 光学玻璃对水银蓝光0.4358m μ和水银绿光0.5461m μ的折射率分别为n = 1.65250和1.62450。
用科希公式计算:
(1)此玻璃的A 和B ;
(2)它对钠黄光0.5890m μ的折射率;
(3)在此黄光处的色散。
6-5. 同时考虑吸收和散射损耗时,透射光强表示式为l h K e I I )(0+-=,若某介质的散射系数等于吸收系数的1 / 2,光通过一定厚度的这种介质,只透过20%的光强。
现若不考虑散射,其透过光强可增加多少?
6-6. 一长为35 cm 的玻璃管,由于管内细微烟粒的散射作用,使透过光强只为入射光强的65%。
待烟粒沉淀后,透过光强增为入射光强的88%。
试求该管对光的散射系数和吸收系数(假设烟粒对光只有散射而无吸收)。
6-7. 太阳光束由小孔射入暗室,室内的人沿着与光束垂直及成︒45的方向观察此光束时,见到由于瑞利散射所形成的光强之比等于多少?
6-8. 苯(C 6H 6)的喇曼散射中较强的谱线与入射光的波数差为607,992,1178,1568,3047,3062 cm -1。
今以氩离子激光m 4880.0μλ=为入射光,计算各斯托克斯及反斯托克斯线的波长。
● 部分习题解答
6-1. 解:由Kl e I I -=0/,在I / I 0 = 0.1、0.2、0.5时,解得l = 7.20 cm 、5.03 cm 、2.17 cm 。
6-3. 解:科希公式为42λλC B A n ++
=,在考虑波长范围不大时,可以用前两项表示,即2λ
B A n +=,由此解得464.11036.01072.1416.11214
=⨯⨯+=--n 。
对公式两端微分可得: 32λ
λB d dn -= (1)
棱镜顶角α,最小偏向角m δ和棱镜材料的折射率n 之间存在如下关系:
2
sin )(21sin αδαm n += 可以解得最小偏向角︒=1086.34m δ,对公式两端微分可得:
)(2
1cos 2sin 2m m dn d δαα
δ+= (2) 联立(1)(2)方程,可得角色散率: 36143)106.0(1072.122
1086.3460cos 30sin 22)(21cos 2sin 2--⨯⨯⨯⨯︒+︒︒⨯-=⋅+-=λδαα
λδB d d m m m rad/2338.0rad/m 102338.06μ-=⨯-=
6-6. 解:由公式l h K e I I )(0+-=,得方程组⎪⎩⎪⎨⎧==⨯-⨯+-88.065.035.035.0)(K h K e e ,解得吸收系数K = 0.36524 m -1,散射系数h = 0.86557 m -1。
6-7. 解:由瑞利散射公式)cos 1(12
40θλ+=CI I ,得3245cos 190cos 1224590=︒+︒+=︒︒I I 。