安徽建筑大学线性代数期末试题4
线性代数期末复习题及参考答案

线性代数期末复习题及参考答案复习题之判断题(√)1. 若行列式的每一行元素之和全为零,则行列式的值等于零. ( )2. 设A ,B 为n 阶矩阵,则22))((B A B A B A −=−+. (√)3. 方阵A 可逆的充要条件是A E ~.( )4. 若n 阶矩阵A 相似于对角矩阵,则A 必有n 个互不相同的特征值. (√)5. 二次型222123123(,,)4f x x x x x x =++是正定二次型. (√ )6. 若B A 、为n 阶方阵,则AB BA =. ( )7. 设A 为任意n 阶矩阵,则A —A T 为对称阵. ( )8. 若n 阶矩阵A 能对角化, 则A 必有n 个不同的特征值. (√)9. 实对称矩阵A 对应不同特征值的特征向量必正交. (√)10. 设AB=0,若A 为列满秩矩阵,则B=0.( )11. 对于任何矩阵Amxn ,不能经过有限次初等列变换把它变为列阶梯形矩阵和列最简形矩阵.( )12. 奇排列变成标准排列的对换次数为偶数.( )13. 在秩是r 的矩阵中,存在等于0的r-1阶子式,但是不存在等于0的r+1阶子式.复习题之填空题1.设向量()1,0,3,Tαλ=−,()4,2,0,1Tβ=−−,若α与β正交,则λ= - 4 . 2. 当A 为任意的n 阶矩阵时,下列矩阵A A T +;T A A −;T AA ;A A T 中, 对称矩阵是T T T A A AA A A +,,,反对称矩阵是T A A −. 3. 设00B A C⎛⎫=⎪⎝⎭,B ,C 均为可逆矩阵,则1A −=1100C B−−⎛⎫⎪⎝⎭.4.设A 是n 阶矩阵(2n ≥),且A 的行列式det 2A =, 则它的伴随矩阵*A 的行列式*det A =12n −5.矩阵⎪⎪⎪⎭⎫⎝⎛−−−=466353331A 的所有特征值之和等于0.6. 设,A B 为n 阶对称矩阵,则AB 是对称矩阵的充分必要条件AB=BA.7.设向量11,,0,132Tα⎛⎫=−− ⎪⎝⎭,()3,2,1,1T β=−−,则α与β的内积为 1 .8.设方阵A 满足2240A A E −+=,且A E +可逆,则1()A E −+=37A E−−. 9. 设n 阶矩阵A 的伴随矩阵为*A ,若0A =,则*A =0.10.设向量()1,2,0,1T α=−,()3,1,1,2Tβ=−−,则α与β的内积为 -1 . 11.设方阵A 满足220A A E −−=,且A 可逆,则1A −=2A E−.12.矩阵⎪⎪⎪⎭⎫ ⎝⎛−−−=269643932A 的所有特征值之和等于0 .13.2103111113423122−−−−的代数余子式之和31323334-2A A A A ++= -33 ___ .14. 设n 阶矩阵A 满足0322=+−E A A ,则()12−−E A=3A −15. 若4阶方阵A 的行列式A =3, *A 是A 的伴随矩阵,则*A = 27 ___ . 16 向量α=()1,1,1,5T−−−与()4,2,1,Tβλ=−−正交,则λ=-1.17. 二次型2221231231223(,,)4324f x x x x x x x x x x =−+−+−对应的对称矩阵是110142023A −⎛⎫ ⎪=− ⎪ ⎪−−⎝⎭_________________.18.3023111110560122−−−−−的代数余子式之和31323334A A A A +++= 0 .19. 设n 阶矩阵A 满足02A 2=−−E A ,则1)3(A −−E =2A E +−.20. 设A 是4阶方阵,4A =−,则*A =-64.21. 向量(2,2,3),(3,3,)T T t αβ=−=−−与正交,则t = 0 .22. 二次型22123131223(,,)224f x x x x x x x x x =++−对应的对称矩阵是110102022A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.复习题之计算题1a .设3111131111311113A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 122212221B ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.(1)计算矩阵A 的行列式.(2)求矩阵B 的逆. 1a.(1)解:=D 31111311113111136111631161316113=11111311611311113=11110200600200002==48.(2).解:()122100************A E ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭122100036210063201⎛⎫⎪→−−− ⎪ ⎪−−−⎝⎭122100036210009221⎛⎫ ⎪→−−− ⎪ ⎪−⎝⎭12211021012033221001999⎛⎫ ⎪⎪→− ⎪⎪ ⎪−⎝⎭122100999212010999221001999⎛⎫⎪ ⎪→− ⎪ ⎪ ⎪−⎝⎭ 从而有112212129221A −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭。
线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
2020-2021学年线性代数期末考试题(含答案)

线性代数20-21学年第二学期期末考试试卷一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每空3分,共15分)1.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 2.设A 是n 阶矩阵,秩(A )<n ,且A *≠0,则齐次线性方程组Ax=0的基础解系中所含解向量的个数为_____________________.3.若A ,B 均为3阶矩阵,且|A |=2,B =-3E ,则|AB |=_____________________. 4.设A 为n 阶矩阵,若行列式|5E -A |=0,则A 必有一特征值为__________________.5.二次型3223222122x x x x x +--的秩为_____________________. 1.若A ,B 为3阶矩阵,且|A |=3,B =-3E ,则|AB |=_____________________. 2.若向量组α1=(1,0,0),α2=(2,t,4),α3=(0,0,6)线性相关,则t=_____________. 3.设矩阵A =⎪⎪⎪⎭⎫⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,其中a i b i ≠0(i =1,2,3).则秩(A )=_______________. 4.设A 为n 阶矩阵,若齐次线性方程组Ax =0只有零解,则非齐次线性方程组Ax=b 的解的个数为_____________________.5.()()===⎪⎪⎪⎭⎫⎝⎛=A R A 则秩设,,3,2,1,321 αββα____________________()==A R A 则秩已知1101001100001100001100101 .1________________________.2224, 4., ,000200011132200233121232221是负定的二次型时取值为.当则相似与.已知矩阵x x x tx x x x f t y x y B x A ++---===⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=., ,222252322323121232221==+=+++++=b a y y f x bx x x x ax x x x f 则经正交变换化为标准形.已知二次型二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。
<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。
<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。
<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
线性代数期末试卷及解析(4套全)2019科大

线性代数期末试卷(一)一、填空题(每小题3分)(4)设12243311t -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,B 为3阶非零矩阵,=AB 0,则t =_________.解:3-.若||0≠A ,则A 可逆,由=AB 0知,=B 0,与B 为非零矩阵矛盾, 故 有||0=A . 122||0811(8)77117(3)077t t t -==-=-⋅+⋅=+-A 行,所以 3t =-.二、选择题(每小题3分)(4)设111122232333,,a b c a b c a b c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,则三条直线1110a x b y c ++=2220a x b y c ++= (其中220,1,2,3i i a b i +≠=)3330a x b y c ++=交于一点的充要条件是(A )123,,ααα线性相关; (B )123,,ααα线性无关;(C )秩123(,,)r =ααα秩12(,)r αα; (D )123,,ααα线性相关,12,αα线性无关. 解:(D )正确.11221233(,)a b a b a b ⎛⎫⎪== ⎪ ⎪⎝⎭A αα,111222123333(,,)a b c a b c a b c -⎛⎫ ⎪=-=- ⎪ ⎪-⎝⎭A ααα 三条直线交于一点的充要条件是方程组3x y ⎛⎫=- ⎪⎝⎭A α有唯一解,当且仅当()()r r =A A ,且r n =时成立,即()()2r r ==A A ,这说明12,αα线性无关,123,,-ααα线性相关,也就是123,,ααα线性相关,12,αα线性无关,故选(D ).仅123,,ααα线性相关,不足以保证()()r r =A A ,可能无解,故(A )不对. 123,,ααα线性无关,()2()3r r =<=A A ,无解,(B )不对.当12312(,,)(,)r r =ααααα,说明方程组有解,但无法确保解唯一,故(C )不对.七、(本题共2小题,第(1)题5分,第(2)题6分,满分11分)(1)设B 是秩为2的54⨯的矩阵,T T12(1,1,2,3),(1,2,4,1),==--αα T 3(5,1,8,9)=--α是齐次线性方程组=Bx 0的解向量,求x =B 0的解空间的一个标准正交基.解:因秩()2r =B ,故解空间的维数为422-=. 又 12,αα线性无关,故12,αα是解空间的基. 取 T11(1,1,2,3)==βα,2122111(,)(,)=-αββαβββT T 1(1,1,4,1)(1,1,2,3)3=---T 4210(,,,2)333=--,故T T 122,3),2,1,5,3)==--εε 即是所求的一个标准正交基.(2)已知111⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ是矩阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量.(i )试确定参数,a b 及特征向量ξ所对应的特征值;(ii )问A 是否相似于对角阵?说明理由. 解:(i )由2121()5310.121a b --⎛⎫⎛⎫ ⎪⎪-=---= ⎪⎪ ⎪⎪-+-⎝⎭⎝⎭I A ξλλλλ即 2120,530,120,a b -++=⎧⎪-+-+=⎨⎪---=⎩λλλ解得 3,0,1a b =-==-λ.(ii )由3212212533,||533(1),102102---⎛⎫⎪=--=-+-=+ ⎪ ⎪--+⎝⎭A I A λλλλλ 知1=-λ是A 的三重特征值.但 秩312()5232101r r --⎛⎫⎪--=--= ⎪ ⎪⎝⎭I A ,从而1=-λ对应的线性无关特征向量只有一个,故A 不能相似于对角阵.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1)证明B 可逆; (2)求1-AB .解 (1)因||0≠A 及||||0=-≠B A ,故B 可逆.(2)记ij E 是由n 阶单位矩阵的第i 行和第j 行对换后所得到的初等矩阵,则ij =B E A . 因而 11111()ij ij ij ij -----====ABA E A AA E E E .线性代数期末试卷(二)试卷(二)一、填空题(每小题3分)(5)已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)t =-==-ααα的秩为2,则t =__________. 解: 3 .13212111211045204522000422t t --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-⎝⎭⎝⎭⎝⎭行ααα121104520030t -⎛⎫ ⎪−−→-- ⎪ ⎪-⎝⎭行 由向量组123,,ααα秩为2,知3t =.三、(6)(本题满分5分)已知111011001-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,且2-=A AB I ,其中I 是三阶单位矩阵,求矩阵B .解:由2()-=-=A AB A A B I ,及||10=-≠A ,知1--=A B A ,即 1-=-B A A ,又 1112011001---⎛⎫ ⎪= ⎪ ⎪-⎝⎭A .从而 111112021011011000001001000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭B .四、(本题满分8分)λ取可值时,方程组12312312321,2,4551x x x x x x x x x +-=⎧⎪-+=⎨⎪=-=-⎩λλ无解,有唯一解或有无究多解?并在有无穷多解时写出方程组的通解.解法1 原方程组的系数行列式2211154(1)(54),455-∆=-=--=-+-λλλλλλ 故当1≠λ,且45≠-λ时,方程组有唯一解. 当1=λ原方程组为12312312321,2,455 1.x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=-⎩对其增广矩阵施行行初等变换:211103331112111245510999---⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭111201110000-⎛⎫⎪→-- ⎪ ⎪⎝⎭,因此,当1=λ时,原方程组有无穷多解,其通解为1231,1,().x x k x k k =⎧⎪=-+⎨⎪=⎩为任意实数[或T T T123(,,)(1,1,0)(0,1,1)x x x k =-+(k 为任意实数)].当45=-λ时,原方程组的同解方程组为 12312312310455,45510,4551,x x x x x x x x x --=⎧⎪+-=-⎨⎪+-=-⎩对其增广矩阵施行行初等变换:1045510455455104551045510009----⎛⎫⎛⎫⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 由此可知当45=-λ时,原方程组无解.解法2 对原方程组的增广矩阵施行行初等变换:2112111122103455165506--⎛⎫⎛⎫ ⎪ ⎪-→+-→ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭λλλλλλ211210354009-⎛⎫ ⎪+- ⎪ ⎪+⎝⎭λλλλ.于是,当45=-λ时,原方程组无解,当1≠λ且45≠-λ时,原方程组有唯一解,因此,当1=λ时,原方程组有无穷多解,其通解为1231,1,().x x k x k k =⎧⎪=-+⎨⎪=⎩为任意实数[或T T T123(,,)(1,1,0)(0,1,1)x x x k =-+(k 为任意实数)].线性代数期末试卷(三)一、填空题(每小题3分)(4)若二次型2221231231223(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是__________.二次型的矩阵为210112012t t ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 1阶顺序主子式为1, 2阶顺序主子式为2110,311=>阶顺序主子式为21021111022201122tt tt =2202t -=>,故220t ->,即t <<二、选择题(每小题3分)(3)设向量组123,,ααα线性无关,则下列向量组中,线性无关的是 (A )122331,,++-αααααα (B )1223123,,2++++ααααααα (C )1223212,2,3+++αααααα(D )123123123,2322,355++-++-ααααααααα解:(C )正确对于(A )向量组:考虑线性式112223331()()()k k k ++++-=αααααα0即 112233123(,,)k k k ⎛⎫ ⎪++-= ⎪ ⎪⎝⎭αααααα0112323101()110011k k k -⎛⎫⎛⎫ ⎪⎪++= ⎪⎪ ⎪⎪⎝⎭⎝⎭ααα0因为123,,ααα线性无关,所以123101110011k k k -⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭0.因为101110011-⎛⎫ ⎪⎪ ⎪⎝⎭不可逆,故上式有非零解,故(A )向量组线性相关,故(A )不正确. 因此向量组是否线性无关由对应的矩阵是否可逆而定,对于(B )有1223123(,,2)++++=ααααααα123101(,,)112011⎛⎫ ⎪ ⎪ ⎪⎝⎭ααα,因为101112011⎛⎫⎪⎪ ⎪⎝⎭不可逆,故(B )向量组线性相关. 对于(C )有122321(2,2,3)+++=αααααα 123101(,,)220033⎛⎫ ⎪⎪ ⎪⎝⎭ααα,对于(D )有123123123(,2322,355)++-++-=ααααααααα 123123(,,)1351225⎛⎫ ⎪- ⎪ ⎪-⎝⎭ααα. 因为(D )中矩阵1231351225⎛⎫⎪- ⎪⎪-⎝⎭不可逆,而(C )中矩阵101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭是可逆阵,故(C )正确. (4)设,A B 为同阶可逆矩阵,则(A )=AB BA ;(B )存在可逆矩阵P ,使1-=P AP B ; (C )存在可逆矩阵C ,使T=C AC B ; (D )存在可逆矩阵P 和Q ,使=PAQ B . 解:(D )正确因为,A B 是同阶可逆矩阵,不妨设阶数为n ,于是它们都与n 阶单位阵E 等价,故A 与B 等价. (A )说的是,A B 可交换; (B )说的是,A B 相似 (C )说的是,A B 合同显然,A B 同阶且可逆不能保证上述三种结论成立. (D )说的恰是,A B 等价,故选(D ).九、(本题满分6分)设A 为n 除非奇异矩阵,α为n 维列向量,b 为常数,记分块矩阵 T *T 0,,||b ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭IA P Q AA ααα 其中*A 是矩阵A 的伴随矩阵,I 为n 阶单位矩阵。
安徽建筑大学线性代数习题册

1. 填空题
1111
(1)设
x x2
a a2
b b2
c c2
0, 其中 a, b, c 互不相等,则 x=
.
x3 a3 b3 c3
(2)已知 4 阶行列式 D 的第 3 行的元素依次为-1, 0, 2, 4,第 4 行的余子式依次为 10, 5, a, 2,
则 a=
.
x1 x2 x3
(3)将行列式 y1 y2 y3 按第三列展开为
.
0230
11 02
(4)计算
=
.
0275
0400
2. 判断题 (1)行列式是一个算式. (2)在行列式中,当 n=1 时, | a11 | 与 a11 的绝对值有相同的意义. (3)四阶及四阶以上的行列式没有对角线法则.
124
6 (4)
5
2 是 4 阶行列式.
11 0
327
a11 a12
(5)
.
z1 z2 z3
3 9 61
(4)设 D 2 1
4 2
6 0
8 3
,则
A41
2A42
3A44
.
5436
2. 判断题 (1)任意高阶行列式都可转化为低阶行列式. (2)行列式的值等于它一行元素与其余子式乘积之和. (3)代数余子式等于负的余子式.
3. 计算下列各行列式.
1 234 2 3 41 (1) 341 2 41 23
次对换后变为排列 inin1 i2i1 .
本
(4)已知全排列1r46s97t3为奇排列,则 r =
(5) (312)
; (132)
.
;s=
;t =
.
线性代数期末考试题库及答案

2、n2, 当 n 为偶数时为偶排列,当 n 为奇数时为奇排列. 4、29.
1、12.
2、 x2 y2 .
4
∑ 3、 x = 0 或 − ai . i =1
4、 λ = ±1, 2 .
三、证明题
证明提示: 由于 f(x)是关于 x 的二次多项式,在[0,1]中可导,又可计算出 f (0) = f (1) = 0 ,
3、解方程 D4( x) =
a1 a1
a1 + x
a2 a2 a2 + x a2
a3 a3 + x
a3 a3
a4 + x a4 = 0 . a4 a4
4、已知下列齐次线性方程组有非零解,求参数λ的值。
(5
− λ)x1 −6 x1
−4 x2 +(7 − λ )x2
−7 x3 +11x3
=0 =0
6 x1
(B)若 AX=0有非零解,则 AX=b有无穷多解;
(C)若 AX=b有无穷多个解,则 AX=0仅有零解;
(D)若 AX=b有无穷多个解,则 AX=0有非零解。
(7)非齐次线性方程组 AX=b中未知量个数为 n,方程个数为 m,系数矩阵 A的秩为 r,则
()
(A)r=m时,方程组 AX=b有解; (B)r=n时,方程组 AX=b有唯一解;
《线性代数》补充练习二
一、选择题:
(1)设 n阶方阵 A的秩 r<n,则在 A的 n个行向量中( )
(A)必有 r个行向量线性无关; (B)任意 r个行向量均可构成极大无关组;
(C)任意 r个行向量均线性无关;(D)任一个行向量均可由其他 r个行向量线性表示
(2)若向量组α,β,γ线性无关;α,β,δ线性相关,则( )
《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C) 是其对应齐次方程组的解向量(D) 是其对应齐次方程组的解向量
5、设 为 阶可逆矩阵, 为 的伴随矩阵,则
(A) (B) (C) (D)
二、填空题(每小题3分,共15分)
1、已知 ,则
2、设 线性相Байду номын сангаас,则t=.
3、设四阶方阵A的4个特征值为3,1,1,2,则行列式
八、(本题5分)设 , , 是一组 维向量,已知 维单位坐标向量 能由它们线性表示,证明 , , 线性无关.
一、单项选择题(每小题3分,共15分)
1、已知向量组 , , , ,则该向量组
的秩为
(A)1;(B)2;(C)3;(D)4.
2、设 是 阶方阵,则必有
(A) ;(B) ;
(C) ;(D)
3、设 元齐次线性方程组 的系数矩阵 的秩为 ,则 有非零解的充分必要条件是
(A) ;(B) ;(C) ;(D)
4、若 是某非齐次线性方程组两个解向量,则
4、二次型 的矩阵是
5、在线性空间 中给出两组基 ;
,则由基 到基 过渡矩阵 =
三、(本题10分)计算行列式:
四、(本题10分)设 , ,求 ,
.
五、(本题15分)求齐次线性方程组 的基础解系与通解
六、(本题15分)问 取何值时,线性方程组 ,
(1)有惟一解;(2)无解;(3)有无穷多个解?
七、(本题15分)设 ,求一个正交阵 ,使 为对角阵.