蜘蛛网对数螺线模型

合集下载

浅谈对数螺旋线

浅谈对数螺旋线

浅谈对数螺旋线(logarithmic spiral)摘要:我们常常可以在自然界中发现螺旋扩大的图形,比如:蜘蛛织的网、向日葵的花盘、鹦鹉螺外部切面等等。

这种图形叫做对数螺旋线。

本文,将从数学的视角,探讨对数螺旋线的来源、历史上数学家们对它的研究、如何建立模型、这种模型的性质和它在工业、农业、建筑业等方面的应用。

We often can find expanding spiral graphics in nature,such as:spider weaving a network, sunflower chrysanthemum,Nautilus external aspect and so on.This graph is called the logarithmic spiral.This article,from the perspective of mathematics to explore the source of logarithmic spiral,mathematicians in the history who studied it,how to build models,the nature of the models and the application it is in industry,agriculture,construction,etc.作者:陈红(200911233021)陈虹邑(200911233012)殷怡(200911233008)关键词:对数螺旋线、应用、蜗牛壳、对数螺旋线叶片二、螺旋线的来源1、在自然界中的踪影在自然界中对数螺旋线非常普遍,向日葵花盘上瘦果的对数螺旋线的弧形排列,这样就可以使果实排得最紧、数量最多、产生后代的效率也最高。

当我们观察着园蛛,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;蜘蛛在织网时,首先要在两地之间架“天索”,把丝固定在一定的地方,并在固定的丝上来回走几趟,使丝加粗。

蜘蛛网的对数螺旋线模型

蜘蛛网的对数螺旋线模型

. 装 = = = 、 . : \
设 k为对数螺线 围绕中心 旋转 的圈数, 则螺线长度 L : :
\ } , 、 \、 \ / \\ 牟 Z ×n 。 \ \ \\
r 、 < , \\ \
L 2 r 触 ( r 。 ) + r ’ i 1 =
蜘 蛛 网的对 数螺旋 线模 型
口 赵连坤 石珍珍 李柏锋 王 镁
0 1 0 0 2 1 )
( 内蒙古大学数学科学学院 内蒙古 ・ 呼和浩特

要: 针对蜘蛛 网结构进行研究, 建立 以对数螺线为核心的数学模型。通过计算 圆形蜘蛛网与对数螺线形蛛
网的覆 盖面积与长度 的关系, 得到在面积相同时, 对数螺线形蛛 网更节省蛛 丝的结论 ; 运用蒙特卡 洛方法 , 模拟 昆虫触 网的过程 , 得 出从概率 的角度来说 , 对数螺线更利于捕食 的结论 。 关键词 : 蜘蛛 网结构 对数螺旋线 蒙特卡洛方法
中图分类号 : 02 4 2 . 1 文献标识码 : A 文章编号 : 1 0 0 7 . 3 9 7 3 ( 2 0 1 3 ) 00 8 . 1 1 8 . O 2

l问题 背 景 在 自然 界 中 ,蜘 蛛 共 有约 4万 种 。虽 然 不是 所 有 的 蜘蛛
少越好。
为 了 能 更清 晰 的 了解 标 准 圆形 蜘 蛛 网与 对 数 螺 线 形 蜘蛛 网 的不 同 , 令 C=C : 一C . , 如图 3 。显 然 当 k< 1 7时 , C< 0 ; 参考文献: 1 】V o l l r a t h F , Do wn e s M & Kr a c k o w S . De s i g n v a r i a b i l i t y i n k> 1 7时, C> 0 , 即 圈数 。这说明当围绕圈数小于 1 7时, 圆 【

2574蜘蛛网的环形与螺旋结构解析

2574蜘蛛网的环形与螺旋结构解析

第五届“认证杯”数学中国数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。

我们的参赛队号为:参赛队员(签名) :队员1队员2:队员3:参赛队教练员(签名):参赛队伍组别:第五届“认证杯”数学中国数学建模网络挑战赛编号专用页参赛队伍的参赛队号:竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):题目蜘蛛网的环形与螺旋结构摘要蜘蛛网的结构是由n条横线和多条纵线组成的,各纵线之间的夹角θ相等,夹在相邻纵线之间的横线是一条直线段,并且相邻横线之间的距离d都相等。

本文针对蜘蛛网的环形结构建立数学模型一,考虑到蜘蛛网的受力情况,把模型一分为两种情形。

第一种情形是昆虫被悬挂在蜘蛛网上,第二种情形是昆虫在正常飞行时意外撞击网而被粘住的过程。

我们使用的求解工具是,使用的画图工具是和程序。

模型一具有稳定性强并节约材料的特点。

在模型一的基础上,本文提出了模型二,在模型二中蜘蛛网的横线构成螺旋结构。

螺旋结构中蜘蛛网同样拥有n条横线,在纵线上搭一条螺旋延伸向外的曲线,这条螺旋线的起点在距离网心的d1并在水平正方向的骨架开始围绕着网心盘旋延伸向外,夹在相邻纵线之间的螺旋线是一段弧,螺旋模型具有覆盖面积广和蜘蛛织网快速方便的特点,这就为蜘蛛捕食带来方便。

数学模型-市场经济中的蜘蛛网模型

数学模型-市场经济中的蜘蛛网模型

1
18
(9)、(10)与蛛网模型的(3)、(4)式是 一致的。
19
方程模型
在P0点附近用直线近似曲线
yk f ( xk )
yk y0 ( xk x0 ) ( 0) xk 1 x0 ( yk y0 ) ( 0)
xk 1 h( yk )
k x x ( ) ( x1 x0 ) xk 1 x0 ( xk x0 ) k 1 0
2
趋向平稳,有的则振幅越来越大导致经 济崩溃。当然政府会对后者采取干预手 段。
这一节我们先用图形方法建立所谓 “蛛网模型”,对上述现象进行分析, 讨论市场经济趋于稳定的条件。用分差 方程建模,对结果进行解释,并适当推 广。
3
7.1 市场经济中的蛛网模型
供大于求 价格下降
数量与价格在振荡 增加产量 价格上涨 供不应求
13
等因素有关。
一旦需求曲线和供应曲线被确 定下来,如何判断它们的交点—平 衡点P0得稳定性呢?从图8-1和图8-2 不难看出,当市场经济偏离P0点不大 (|x1 – x0|较小)时,P0点得稳定取决于f 和 g 在P0的斜率。 记f 在P0点斜率的绝对值(因为 它是下降的)为Kf , g 在P0点的斜率
(14)
31
当αβ > 8时显然有
( ) 2 8 2 4

4
从而,|λ2| > 2, λ2在单位圆外。下面设α
β < 8,可以算出
1, 2

2
(15)
32
由|λ2| < 1得到P0点稳定的条件为
αβ < 2
(16)
与原有模型中P0点稳定的条件(9) 式相比,保持经济稳定的参数α 、β 的范围放大了(α、β得含义未变)。 可以想到,这是生产经营者的生产 管理水平提高,对市场经济稳定起 着有利影响的必然结果。

数学模型-市场经济中的蜘蛛网模型

数学模型-市场经济中的蜘蛛网模型

xk+1 = (-αβ)kx1+(1 - (-
(8)
17
由此可得,当k∞时xk x0 ,使得 P0稳定的条件是
αβ < 1 或 α <1
而k∞时,xk∞, 即P0点不是稳定 点的条件是
1
αβ < 1 或 α < 1
注意到(5)、(6)式中α、β的定义, 1 有Kf = α,kg= ,所以条件
23
即α固定时,β越小,供应曲线越陡, 表明生产者对价格的敏感程度越小(使 (9)式成立),越利于经济稳定。 反之,当α、β较大,表明消费者 对商品的需求和生产者对商品的价格 都很敏感,则会导致经济不稳定。
24
结果解释 结果解释
考察 , 的含义
xk~第k时段商品数量;yk~第k时段商品价格
1 ( 1 / )
xk x0 xk
P0稳定 K f K g P0不稳定 K f K g
1 ( 1 / )
方程模型与蛛网模型的一致
Kf
1/ K g
20
模型解释 首先考察α 、β得含义。需求函数f 的斜率 α(取绝对值)表示商品供应量减少1 个单位时价格的上涨幅度;供应函数h的斜率 β 表示价格上涨1个单位时(下一时期)商品 供应的增加量。
1
局面。在没有外面干预的情况下,这种现 象将如此循环下去。在完全自由竞争的市 场经济中上述现象通常是不可避免的。因 为商品的价格是由消费者的需求关系决定 的。商品数量越多价格越低。而下一时期 商品的数量由生产者的供求关系决定,商 品价格越低生产的数量就越少。这样的需 求和供应关系决定了市场经济中商品的价 格和数量必然是震荡的。在现实世界里这 样的震荡出现不同的形式,有的振幅渐小

蜘蛛的几何学

蜘蛛的几何学

蜘蛛的几何学作者:法布尔来源:《初中生·博览》2010年第11期当我们观察园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言各不相同,可这个规律适用于各种蜘蛛。

我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。

当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网。

即使用圆规、尺子之类的工具,也没有一个设计家能画出一个比这更规范的网来。

我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。

每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。

而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。

不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。

这种特性使我们想到数学家们所称的“对数螺线”。

这种曲线在科学领域是很著名的。

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。

即使用最精密的仪器,我们也看不到一根完全的对数螺线。

这种图形只存在于科学家的假想中。

可令人惊讶的是,小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线,而且做得很精确。

螺旋线还有一个特点。

如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会画成一个和原来的对数螺线相似的螺线,只是变换了一下位置。

这个定理是一位名叫雅各·伯努利的数学教授发现的。

他死后,人们把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。

那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?它究竟又有什么用呢?它不是偶然的巧合,它是普遍存在的,有许多动物的建筑都采取这一结构。

蛛网模型

蛛网模型
第二:这与消费者剩余有关。消费者剩余越多,航空公司的利 润就越少,所以为了实现利润的最大化,航空公司就采取机票 打折的方法。
需求弹性大,则税负转嫁就很困难,且向前转给消 费者的少,向后转给原供应者的多;需求弹性小, 则税负容易转嫁,且向前转给消费者的多,向后转 给原供应者的少;需求完全无弹性,税负可能全部 向前转嫁给消费者;需求完全有弹性,税负可能全 部向后转嫁给原供应者。需求弹性越大,转嫁的可 能性越小;需求弹性越小,转嫁的可能快越大,税 负转嫁与需求弹性成反比
如果商品的供给弹性大于需求弹性, 则政府对该种商品征税后,赋税将 主要由消费者负担。 例如:粮食
如果商品的供给弹性 小于需求弹性,则政府 对该种商品征税后,赋 税将主要由生产者自己 负担。 例如:钻石,黄金。
为什么飞机票经常打折,火车票却很少打折?
第一:这与价格弹性有关。飞机票价格下跌需求就增加,总的 利润就会提高,这是所谓的“薄利多销”。然而火车票却是供 不应求,即使涨价,也会有很多人愿意购买,因为火车成本低, 涨价也不会涨得太厉害。
谢谢观赏!
为什么飞机票打折而火车票不打折 呢?
总体来说,飞机票是供大于求,所以航空公司总 是会采取打折的办法以吸引客源。而火车票是供 不应求,所以火车有时候总是宁愿空跑也不愿打 折。火车是国有制机构,是国家专制机构操作, 而飞机是处在几大航运公司的竞争下的,所以竞 争之下必有经营的不同手段而导致机票打折的现 象出现。然而本来就供不应求的火车票是没有多 大必要打折的。所以飞机票总是出现打折而火车 票不愿打折。
模蛛 型网
Co Cobweb model
在经济学中
蛛网模型(Cobweb model)
运用弹性原理解释某些生 的商品在失去均衡时发生 的不同波动情况的一种动 态分析理论

【高中数学】对数螺线与蜘蛛网

【高中数学】对数螺线与蜘蛛网

【高中数学】对数螺线与蜘蛛网曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。

摆下八卦阵,只等飞来将。

”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。

我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。

而且,结网是它的本能,并不需要学习。

你见过蜘蛛网吗?它用什么工具织出这么精致的网?你脑子里有一系列问题吗?好吧,让我慢慢地告诉你。

在网的过程中,最突出的优点是它的腿。

首先,它用腿从喷丝头上抽出一些丝绸,然后把它固定在角落的一侧或树枝上。

然后,吐出一些丝,勾勒出整个蜘蛛网的轮廓,并用一种特殊的丝固定轮廓。

搭建脚手架继续穿线。

每次它拔出一根铁丝,都会小心地沿着脚手架走。

当它到达中心时,它会拉紧金属丝,并将多余的部分聚集到中心。

在从中心向侧面攀爬的过程中,在正确的位置添加几根辐条。

为了保持蜘蛛网的平衡,在另一侧添加几个对称辐条。

一般来说,不同种类的蜘蛛会产生不同数量的辐条。

丝蜘蛛,最多42只;第二位是32只带皮带的蜘蛛;有角蜘蛛的数量至少有21只。

同一物种的蜘蛛通常不会改变辐条的数量。

到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的。

现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。

蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。

这是一条辅助的丝。

然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。

在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。

这样半径上就有许多小球。

从外面看上去,就是许多个小点。

好了,一个完美的蜘蛛网就结成了。

让我们好好看看这个精灵的杰作:从外环到中心的螺旋。

离中心越近,每周之间的距离就越近,直到它被打断。

只有中心部分的辅助线与中心紧密缠绕。

elf绘制的曲线在几何学上称为对数螺线。

对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。

我们的参赛队号为:参赛队员(签名) :队员1:队员2:队员3:参赛队教练员(签名):参赛队伍组别:数学建模网络挑战赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年第五届“认证杯”数学中国数学建模网络挑战赛题目对数螺线型蜘蛛网状的结构分析关键词蜘蛛网对数螺线蒙特卡洛方法 ANSYS分析法摘要本文针对蜘蛛网合适结构的问题,考虑吐丝量一定,外界环境较理想条件下,建立以对数螺线为核心的数学模型,追求蜘蛛网结构最优。

运用蒙特卡洛方法,模拟昆虫触网的过程,考虑了在蜘蛛丝长度一定的条件下,对数螺旋比圆围成的面积大,但疏而不漏,应用随机过程近似昆虫触网的过程,得出了对数螺线更利于捕食的结论。

另一方面,也对对数螺线型面联接理论和联接界面强度进行了分析与计算,利用ANSYS进行接触分析,得出了对数螺线型面联接的接触应力和接触强度条件的表达式。

采用随机数产生算法,利用MATLAB 7.0.1和C++编程,分别对模型进行求解,并对所得结果进行分析比较,以此来帮助设计最有蜘蛛网结构。

参赛队号 2138 所选题目 A 参赛密码(由组委会填写)AbstractOur article aims to study the question about the best structure of the spider webs ,it is on the condition of certain output of the spinning the and quite ideal conditions ,establish mathematical model in the core of the logarithmic spiral to find the best way of the spider webs .We also analyze Logarithm of solenoid type surface connection theory, Interface connection strength and ANSYS to get the expression.we apply Monte Carlo method to simulate the process about Net insert and adopt the Random number produce algorithm ,we also use the software of Matlab 7.0.1 、Mathematica and Microsoft Visual C++ 6.0 to give the answer to the question about the model and analyze about the result from model ,so we establish the best structure of the spider webs by means of these datas.一、问题重述世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。

通过对蜘蛛网所形成的结构的分析,通过建立模型,设计一种更为合适的蜘蛛网结构。

二、问题分析题目中主要研究的是:蜘蛛网织成怎样的结构才是最合适的。

因此我们通过查阅资料,了解蜘蛛网的结构等方面内容,根据结构形状的不同,蛛网可以分为片网、不规则网和圆网等几种类型。

由于圆网在蛛网进化上的地位特殊,且结构简单、规则。

因此,到目前为止对蛛网的研究大都集中在圆网上。

圆网并不是标准的圆,而是近似于数学上的螺旋线。

所谓合适的蜘蛛网结构就是利于蜘蛛捕食、防御、繁殖。

根据题目的要求,我们提出以下几个问题:1、为什么蜘蛛网是螺旋线状,而不是标准的同心圆;2、对数螺线型面联接理论和联接界面强度分析与计算。

三、符号说明ρ:模拟对数螺线的极径θ:模拟对数螺线的极角Φ:对数螺线型型面轴旋转角σ:面轴上接触应力pl:轴孔之间的轴向配合长度σ与极径ρ之间的夹角γ:P点接触应力pf:轴孔之间的摩擦系数T:扭矩S:面积就是最大圆的面积1L:四圈的长度为1四、模型假设:1、假设蜘蛛网是规则的对数螺线;2、不考虑蜘蛛网受到风雨等天气情况的影响;3、假设昆虫飞向蜘蛛网时,落在网内每点的概率相同;五、模型建立与求解:蜘蛛网的中心和圆周之间呈辐射状的半径线,自外向里是螺旋线,愈近中心,每圈间的距离也愈小,直到不可辨认的地步,这正符合数学上的对数螺线的情况。

因此,我们建立对数螺线的模型,近似代替蜘蛛网,研究其性质。

图1㈠ 对数螺线的定义和性质数学上对数螺线定义如下:动点的运动方向始终与极径保持定角θ的动点轨迹,称为对数螺线。

如图1所示,其极坐标方程为:m ae θρ= (1)式中:,a m 为常数(()arctan 1/m λ=));θ为极角,ρ为极径。

图2 对数螺线对数螺线在渐屈、渐伸、垂迹、回光线等各种变换下的不变性质,体现出自身的高度和谐、对称和统一性。

㈡对数螺旋线与圆形蜘蛛网的比较将四个标准圆形与对数螺旋线放入同一坐标系中,如下图3图31、 四圈圆形蜘蛛网面积就是最大圆的面积:1S =28π=64⨯3.14=201.056 四圈的长度为: 1L =()21 3.6 5.88.2+++π=111.784 2、四圈螺旋线蜘蛛网该对数螺旋线的方程为:30.02e θρ=,08θ≤≤π面积:由于对数螺旋线是一条不封闭的曲线,所以用下图中最外面的曲线和一条线段组成的封闭图形表示该螺旋线所包围的面积。

通过数该封闭图形内的方格数估计面积,不足一格按半格记。

图4共有188个正方形,45个不足一格的,所以面积为198+22.5=220.5 长度:用Mathematica 计算该曲线长,输入 Integrate[0.02e^3x,{ x,0,8Pi}] , 得出结果L= 126.871 现将计算结果做表如下:周长面积面积周长圆 116.867 201.0561.720螺旋线126.871220.51.738结论:在蜘蛛丝长度一定的情况下,螺旋线所围成蜘蛛网的面积大。

这样更利于蜘蛛捕食。

蒙特卡罗方法:用蒙特卡罗方法模拟昆虫飞向蜘蛛网上的过程:假设昆虫飞向蜘蛛网时是一个随机过程,此过程中不考虑环境因素(风向、风速等)的影响编写C 语言程序,生成二维随机数。

程序及运行结果见附录。

将这些随机数在下图5中描点,为处理简单,以第一象限为例,其他象限相同。

图5图5.1 图5.2 图5.3 图5.4 图5.5绘制表格:一 二 三 四 五 平均 螺旋线 9 8 6 5 6 6.8 圆6 6 36 7 5.6由此可见,昆虫更可能碰到对数螺线。

也就是说,对数螺线形的蜘蛛网更有利于捕食㈢、对数螺线型面联接理论和联接界面强度分析与计算 3.1对数螺线曲线以型面轴截面曲线为例, 选取三段对数螺线进行分析。

θ从0°到110°的一段曲线组成, 其中各段曲线之间用直线圆滑联接, 减弱了应力集中现象。

图6三段对数螺线型面轴截面 2.2对数螺线曲线参数的确定在图1所示对数螺线的方程m ae θρ=中, m 的大小取决于型面联接轴与孔之间受力时的压力角α, 因α在整个曲线上是常数, 当α选定时, m 为常数。

因此选择型面联接轴、孔截面形状时,可选定a 值的大小来定轴、孔的尺寸, 再定出压力角,即可确定式中m 值, 对数螺线形状也就随之确定, 同时型面轴、孔截形也就相应得到确定。

三段对数螺线组成的型面轴、孔有两个基本参数a 和α,其中m 主要影响曲线的形状,a 主要影响曲线的大小。

三段对数螺线型面联接如图7所示,这是一种有间隙的配合(图7-a),工作时通过一定量的相对旋转,间隙补偿,由于楔面的作用在接触面之间便产生正压力,并摩擦闭锁, 形成可靠的联接(见图7-b),其摩擦受力方向与运动方向所成角度a 的大小与参变量θ无关,即对数螺线的压力角a 在任何位置都是相同的。

( a ) ( b) 图7对数螺线型面联接3.2 型面轴孔接触初始位置确定设型面轴孔的截面廓形曲线方程分别为11m a e θρ=、22m a e θρ=。

假定固定轮毂,顺时针旋转型面轴Φ角后两者之间有初始接触,任取一接触点P ,则在P 点处有12ρρ=,即 ()12m m a e a e θθ+Φ=(2) 可得 211ln a m a ⎛⎫Φ= ⎪⎝⎭(3) 上式表明型面轴旋转角Φ仅与曲线的,a m 常数值有关,而与θ值无关,即与初始接触点P 的位置无关,即Φ为定值,说明轴孔工作表面之间同时发生接触,轴孔之间接触为面接触。

3.3利用ANSYS 进行接触分析由于ANSYS 对复杂曲面建模具有一定的局限性,为了分析的准确性,利用Pr /o E 强大的三维建模功能,在Pr /o E 中建成模型后,再利用Pr /o E ,ANSYS 之间的接口程序,将模型导入, ANSYS 中。

为了方便加载扭矩,在不影响分析结果性质的前提下,于轴中心建一半径为r 的圆形孔,在圆形孔边界节点处加载等效切向力F ,使得扭矩T=Fr ,如图8所示。

按照ANSYS 分析步骤设置属性、划分网格、加载、求解。

在后处理器POST1中查看有限元模型在纯扭矩T 作用下的节点应力云图,如图9所示。

图8有限元模型图9节点的应力云图图9表明在轴孔各段工作表面上除了两端(刚进入接触与刚脱离接触的很小的一个区域)应力比较大之外,其它的区域所受到的应力分布都非常均匀。

若在模型应力比较集中区域进行修磨处理,将各段曲线间联接用更圆滑的曲线过渡,可减少或消除应力集中现象。

由此,认为对数螺线型面联接接触应力均匀分布是符合实际情况的。

反复加载不同的扭矩对有限元模型进行分析求解,发现作用扭矩与接触应力之间成线性比例关系。

3.4接触应力计算假定在无间隙无过盈的理想配合状态下,轴上作用纯扭矩,如图5所示。

相关文档
最新文档