勾股定理教学设计与反思(最新整理)
勾股定理优秀教学反思(精选5篇)

勾股定理教学反思作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?下面是小编为大家收集的勾股定理优秀教学反思(精选5篇),仅供参考,希望能够帮助到大家。
勾股定理教学反思1通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。
同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。
已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。
在上节课学习过程中,学生已经练习过。
但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。
因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。
另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。
其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。
可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。
因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。
同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。
解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。
在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。
另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
《勾股定理》教学反思(通用11篇)

《勾股定理》教学反思〔通用11篇〕《勾股定理》教学反思〔通用11篇〕《勾股定理》教学反思1新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与才能的培养置身于学生形式各异的探究经历中;关注学生探究过程中的情感体验,并开展理论才能及创新意识。
为学生的终身学习及可持续开展奠定坚实的根底。
为此我在教学设计中注重了以下几点:一、让学生主动想学上这节课前一个星期老师布置给学生任务:查有关勾股定理的资料〔可上网查,也可查阅报刊、书籍〕。
提早两三天由几位学生汇总〔老师可适当指导〕。
这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国教育,培养民族自豪感,鼓励他们发奋向上。
同时培养学生的自学才能及归类总结才能。
二、在课堂教学中,始终注重学生的自主探究首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜测、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步稳固进步。
表达了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的开展。
对于拼图验证,学生还没有接触过,所以在教学中老师给予学生适当指导与鼓励。
充分表达了老师是学生数学学习的组织者、引导者、合作者。
三、学生思维,培养学生多种才能课前查资料,培养学生的自学才能及归类总结才能;课上的探究培养学生的动手动脑的才能、观察才能、猜测归纳总结的才能、合作交流的才能……四、注重了数学应用意识的培养数学来于理论,而又应用于理论。
因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分表达了数学的应用价值。
整节课都是在生生互动、师生互动的和谐气氛中进展的,在老师的鼓励、引导下学生进展了自主学习。
学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真考虑的态度。
勾股定理教学反思(通用3篇)

勾股定理教学反思(通用3篇)勾股定理教学反思1 本节课的设计目的是培养学生准确地将实际问题转化为数学问题,建立几何模型(即直角三角形),能正确远用勾股定理解释生活中问题,通过运用勾股定理对实际问题的解释和应用,进一步加强培养学生注意从身边的事物中抽象出几何模型(直角三角形)的能力,使学生更加深刻地认识到数学的本质:“数学来源于生活,同时又能服务于生活”,激起广大学生对数学对生活的热爱。
这节课主要是围绕“课前预习?——设置问题——几何建模——解决问题——相应练习——拓展延伸”这一主线轴展开教学工作。
其中主要体现在:首先,创设情境,激发兴趣。
由教材中的实例引入,让学生猜一猜,梯的顶端下滑0.5米,问梯的底端将滑动多少米?也是滑动0.5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。
其次,注重学生自主探究,合作交流。
在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。
第三,创设机会,让学生学会思考,乐于思考、善于思考。
在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。
通过备课、上课后,虽然取得一定成功,但感到作为一位数学教师,要不断地及时学习新的知识,接受新信息;不断地及时充电、更新、常常使用诙谐幽默的语言;既要有领导者组织指导、调控能力,又要有被学生欣赏佩服的魅力;要让学生课堂上配合你、信任你、喜欢你,只要达到了这一高度,我们才能轻松自如地驾御课堂,高效、高质、高量地完成教学预设目标。
勾股定理教学反思2 这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:1、从生活出发的教学让学生感受到学习的快乐。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
《勾股定理》教学反思

《勾股定理》教学反思导言勾股定理是数学中的基础知识之一,也是几何学中最重要的定理之一。
在教学过程中,如何有效地让学生掌握勾股定理,并理解其本质和应用,是我们教师需要思考和反思的问题。
本文将从教学方法、教学资源和教学评估等方面对《勾股定理》的教学进行反思,并探讨如何优化教学过程,提升教学效果。
一、教学方法在教学《勾股定理》这一内容时,我们可以采用多种不同的教学方法,以满足不同类型学生的学习需求。
例如,可以运用常规的讲解式教学,通过演示和解析勾股定理的推导过程,让学生在理论中得到认识。
但仅仅停留在理论层面的教学往往难以引起学生的兴趣和主动学习的积极性。
因此,我们也可以采用问题驱动的教学方法,通过提出一些有趣的问题,让学生在解题的过程中体验到勾股定理的妙处。
同时,我们还可以引导学生进行探究式学习,在小组合作中发现并应用勾股定理,从而培养学生的自主学习和解决问题的能力。
二、教学资源教学资源对于教学效果的影响不可忽视。
在教学《勾股定理》时,我们可以充分利用各类资源,创设丰富多样的教学环境,提供互动性和操作性的学习材料。
例如,可以运用多媒体教学工具展示勾股定理的几何画面,帮助学生直观地理解定理的含义。
此外,还可以利用网上公开的习题数据库,为学生提供丰富的练习题目,以 consolida勾股定理的应用能力。
除了利用现有的教学资源,我们还可以积极借鉴教育技术的优势,如采用虚拟实验室等创新教学手段。
虚拟实验室可以帮助学生进行“零风险”的实验,通过模拟实验场景,让学生观察和验证勾股定理的成立过程,从而增强学生对定理的理解和记忆。
三、教学评估教学评估是教学过程中的一个重要环节,可以帮助教师了解学生的学习状况,并及时调整和改进教学策略。
在教学《勾股定理》时,我们可以设计一系列的测验和练习,以检查学生对勾股定理的掌握程度。
例如,可以设计填空题、选择题等形式的题目,考查学生对勾股定理的理解和应用能力。
此外,我们还可以引入讨论和实操的环节,通过小组讨论或实际问题解决的形式,观察学生的表现和努力程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
名称勾股定理
执教者广平县南阳堡中学贾少敏课时1
基本信息
所属教材目录八年级数学第十七章第三节第一课时
教材分析这节课是九年制义务教育教科书(冀教版)八年级第十七章“特殊三角形”第三节第一课时的内容:勾股定理。
它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它是解决直角三角形相关问题的主要依据之一。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占重要地位,学好本节至关重要。
学情分析学生此前学习了三角形的有关知识,初步认识了等腰三角形,等边三角形,直角三角形的概念,又学习了它们的性质,在此基础上学习勾股定理,可以加深学生对图形的认识,提高学生对数形结合的应用和理解。
知识与能力目
标
经历勾股定理的探索过程,发展合情推理能力,
体会数形结合思想。
过程与方法目
标
1.经历“测量-猜想-归纳-验证”等一系列过程,
体会数学定理发现的过程
2.体会数形结合和从特殊到一般及化归的思想
方法。
教学目标
情感态度与价值观目标1.感受数学文化,激发学习热情.
2.在探究活动中,让学生获得参加数学活动成功的经验。
重点勾股定理的证明与运用
教学重难点
难点用面积法等方法证明勾股定理
教学策略与设计说明
整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程.
在本节学习中教师要有组织、有目的、有针对性的引导学生并加入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能
4.在Rt△ABC中,∠C=90°,a:c=3:5,b=8,
则a= c= .
课堂小结2分钟1.通过今天的探究学习,你的收获?
小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。
运用“勾股定理”应注意什么问题?
布置作业1分钟课本第152页习题A组第1题(全体做),第2题(1-15号做)。
板书设计17.3.1勾股定理
一、测量观察图形
二、猜想探索勾股定理
在直角三角形中,两条直角边的平方和等于斜边的平方。
三、证明并验证勾股定理
如果直角三角形两直角边分别为a,b,斜边为a,那么a2+b2=c2.
教学反思勾股定理在数学发展中起过重
要的作用,在现实世界中也有着广
泛的应用。
同时,勾股定理的发现、
验证和应用蕴涵着丰富的文化价
值。
因此,勾股定理是初中几何教
学中的重要内容。
我对本节课的教学过程是这样设
计的:
1、创设情境,激发兴趣
通过欣赏1955年希腊发行的
邮票,激发学生学习兴趣,引入课
题。
2、设计5个活动环节证明并验
证定理。
先让学生利用学具自己剪拼图
形,后利用图形面积关系进行证明。
不论拼图还是证明难度都比较大,
组织学生开展小组合作学习时。
需要老师巡回辅导,给予学生必要的帮助。
整节课以自主探索知识,小组讨论交流为主,学生通过自己的活动得出结论,使创新精神和实践能力得到了发展。
我认为这节课存在着两个方面的不足:
1.新课标下“数学教学活动是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”的教学,本节课在小组验证勾股定理时,组内交往互动不足。
2.整堂课学生有主动参与,但在证明定理环节数学语言组织欠妥,说明设计的问题对学生的引导力度不够。