空间向量与立体几何(1)s
空间向量在立体几何中的应用和习题(含答案)[1]
![空间向量在立体几何中的应用和习题(含答案)[1]](https://img.taocdn.com/s3/m/2fd760159b89680202d82545.png)
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量在立体几何中的应用sxz

一.平行问题
Db
(一)证明两直线平行
A ,B a;C ,D b,A BC D a∥
C
A
b
a
B
方法思路:在两分 直别 线取 上不同的
得到两向量,转明 化两 为向 证量平行
知 A ( x 1 B ,y 1 )C , ( x 2 D ,y 2 )则 ,x 1 y 2 x 有 2 y 1 a ∥ b
方 底法 线思 性路 表: 示证 (明 即方 内直 在向 存线 平向 在的 面量 一可 向用 量平 与组 相面 方基 等 的 向)一 向 e 1 e 2
则可得面内一直外线的与线面平 ,从行而证线面. 平行
(三)面面平行
1.不重合的两 与平 的面法向量 n
分别m是 和n, mn∥
方法思路:平 求面 出的 其法 中向 一法 量向 ,量 再与 证
的不共线的量 两积 向 ( 0 为 量 即的 都数 垂直两 )面 ,平 则
二.垂直问题
(一)证明两直线垂直
b
不 分重 别a合 为 和b的 , a和 直 则a直 线 有 bb线 的 0 方 a向 b 向b 量 a a
方法思路:找两直线 方的 向向量 (分别
| m|
方法思路:求出任 平一 面法 的向m(量 方程
组可求 ),在面内任取Q一与点点P得一向量
转化为 P Q在法向量的投影,的 套长 公度 式。
D
(二)求两异面直线的距离d
b
知a,b是两异面直线A,,Ba,C, Db,
B
aA
C
找一向量与两异面都 直垂 线直的向m量,
则两异面直线的距 d=离ACm
(二)证明线面垂直 l
2020_2021学年新教材高中数学第一章空间向量与立体几何1.4.1第1课时空间中点直线和平面的向

【对点训练】❶ 如图所示,在多面体A1B1D1DCBA中,四边形 AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的 平面交CD1于F,求平面A1DE、平面A1B1CD的一个法向量.
[分析] 先设出平面A1DE、平面A1B1CD的法向量,利用法向量与平 面内的两个向量的数量积为零,列出方程组求解.
直线和平面.
念.(数学抽象)
2.理解直线的方向向 2.能用向量语言表述线线、线面、面面的平行
量与平面的法向量. 关系.(直观想象)
3.能用向量语言表述 3.会用待定系数法求平面的法向量.(数学运算
直线与直线、直线与平 )
面、平面与平面的平行 4.熟练掌握用方向向量,法向量证明线线、线
关系.
面、面面间的平行关系.(数学运算、直观想象)
思考1:直线的方向向量是不是唯一的? 提示:直线的方向向量不是唯一的,它们都是共线向量.解题, 可以选取坐标最简的方向向量.
知识点3 空间中平面的向量表示式
1.平面 ABC 的向量表示式 空间一点 P 位于平面 ABC 内的充要条件是存在实数 x,y,使O→P=O→A +xA→B+yA→C.③ 我们把③式称为空间平面 ABC 的向量表示式.
取 x=1,得 y=-1,z=-1, ∴n=(1,-1,-1). ∵M→N·n=12,0,12·(1,-1,-1)=0,∴M→N⊥n. 又∵MN⊄平面 A1BD, ∴MN∥平面 A1BD.
[规律方法] 利用空间向量证明线面平行的方法 (1)利用共面向量法:证明直线的方向向量p与平面内的两个不共线 向量a,b是共面向量,即满足p=xa+yb(x,y∈R),则p,a,b共面,从 而可证直线与平面平行. (2)利用共线向量法:证明直线的方向向量p与该平面内的某一向量 共线,再结合线面平行的判定定理即可证明线面平行. (3)利用法向量法:求出直线的方向向量与平面的法向量,证明方向 向量与法向量垂直,从而证明直线与平面平行.
选择性必修一第一章空间向量与立体几何知识梳理

第一章空间向量与立体几何知识梳理㈠、空间向量与平面向量类比 x 三点共线定理:若A,B,C OC xOA =+122122x y 2a x =+a =——————————。
cos x θ=cos x θ=、㈡、空间向量解决立体几何问题1. 空间向量解决立体几何的平行垂直问题 ⑴平行①两直线12,l l 的方向向量分别为12,u u ,则1l ∥2l ⇔———————;②直线l 的方向向量为u ,平面α的法向量为n ,则l ∥α⇔———————;③平面α,β的法向量分别为n ,m ,则α∥β⇔———————。
⑵垂直①两直线12,l l 的方向向量分别为12,u u ,则1l ⊥2l ⇔———————;②直线l 的方向向量为u ,平面α的法向量为n ,则l ⊥α⇔———————。
;③平面α,β的法向量分别为n ,m ,则α⊥β⇔———————。
2.空间向量求角、距离。
⑴求距离 ①点P 到直线l 的距离d =———————,其中向量a PA =,点A 为直线l 上任一点,u 为直线l 的单位方向向量。
②点P 到平面α的距离d =———————,其中向量a PA =,点A 为平面α内任一点,向量n 平面α的法向量。
⑵求角 ①异面直线所成的角θ 0,2π⎛⎤∈ ⎥⎝⎦异面直线所成的角θ与两直线方向向量所成的角———————,故12cos cos ,u u θ=<>,其中12,u u 为两直线的方向向量。
②直线l 与平面α所成的角0,2πθ⎡⎤∈⎢⎥⎣⎦直线l 与平面α所成的角θ与方向向量u 与法向量n 所成的角———————,故sin cos ,u n θ=<>。
③二面角[]0,θπ∈二面角θ与两半平面的法向量,n m 所成的角———————,。
空间向量在立体几何中的应用

空间向量在立体几何中的应用ʏ贵州省仁怀市周林高中 尹伟云空间向量是高中数学的一个重要组成部分,在高考中具有较高的地位,是立体几何中的一个主要命题方向,往往以 证算并重 的方式进行考查㊂常以多面体为载体,考查用向量法确定空间点㊁线㊁面的位置关系,求解空间角㊁空间距离㊁立体几何中的动点探究性问题等㊂需要同学们借助向量的工具性作用,将空间几何量之间的位置关系转化为数量关系来求解㊂下面分类分析空间向量在立体几何中的应用㊂1.证明共线与共面问题图1例1 如图1,在长方体A B C D -A 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且|E D 1|=2|D E |,|B F |=2|F B 1|,线段E F 的中点为M ㊂求证:(1)点M 在长方体的对角线A C 1上;(2)点C 1在平面A E F 内㊂解析:证法1(利用向量的坐标运算)图2(1)以点C 1为坐标原点,分别以向量C 1D 1ң,C 1B 1ң,C 1C ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系C 1-x yz ,如图2所示㊂设|C 1D 1|=a ,|C 1B 1|=b ,|C 1C |=c ,则C 1(0,0,0),A (a ,b ,c ),E a ,0,2c 3,F 0,b ,c 3,Ma 2,b 2,c 2㊂从而C 1M ң=a 2,b 2,c 2,C 1A ң=(a ,b ,c ),故C 1M ң=12C 1A ң㊂又C 1Mң与C 1A ң有公共点C 1,所以点M 在长方体对角线A C 1上㊂(2)由(1)知,E A ң=0,b ,c 3=C 1F ң,所以A E ʊC 1F ,从而A ,E ,F ,C 1四点共面,故点C 1在平面A E F 内㊂证法2(利用向量的几何运算)(1)由向量的平行四边形法则及三角形法则,得C 1M ң=12(C 1E ң+C 1F ң)=12(C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң)=12(C 1A 1ң+B 1F ң+F B ң)=12(C 1A 1ң+A 1A ң)=12C 1A ң,即C 1M ң=12C 1A ң㊂所以点M 在长方体对角线A C 1上㊂(2)依题意,得C 1E ң+C 1F ң=C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң=C 1D 1ң+F B ң+C 1F ң=C 1D 1ң+C 1B ң=C 1A ң,即C 1A ң=C 1E ң+C 1F ң㊂由向量共面的充要条件知,点C 1在平面A E F 内㊂评注:空间向量兼具代数与几何的双重特征,证明多点共线或多线共面问题也是从这两个方面入手,关键是掌握空间向量的线性运算法则和共线㊁共面的充要条件㊂具体方法是:要证明三点共线,可以证明任意两点构成的一组向量共线且共点;要证明四点共面,可以利用向量共面的充要条件,即以其中一点A 为起点,分别以另三点B ,C ,D 为终点得到向量A B ң,A C ң,A D ң,证明存在唯一的实数对(λ,μ),使A B ң=λA C ң+μA D ң成立即可;要证明两条直线共面,可以证明两条直线平行或相交,从而转化为两条直线的方向向量共不共线的问题,即若存在实数λ,使两条直线的方向向量a ,b 满足b =λa ,则两条直线平行,若不存在实数λ满足b =λa ,则两条直线相交㊂2.证明线㊁面的平行与垂直关系例2 如图3所示,在直二面角D -A B -E 中,四边形A B C D 是边长为2的正方形,|A E |=|E B |,F 为C E 上的点,且B F ʅ平面A C E ,G 为C E 的中点㊂解题篇 经典题突破方法 高二数学 2023年5月图3求证:(1)A E ʊ平面B D G ;(2)A E ʅ平面BC E ;(3)平面BD F ʅ平面A B C D ㊂解析:因为A B C D 为正方形,所以B C ʅA B ㊂因为二面角D -A B -E 为直二面角,平面D A B ɘ平面A B E =A B ,所以B C ʅ平面A E B ㊂设线段A B 的中点为O ,连接O E ㊂因为|A E |=|E B |,所以A B ʅO E ㊂图4故以O 为坐标原点,分别以向量O E ң,O B ң,A D ң的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -x yz ,如图4所示㊂则A (0,-1,0),B (0,1,0),C (0,1,2),D (0,-1,2)㊂设E (x 0,0,0)(x 0>0),则E C ң=(-x 0,1,2)㊂因为F 为C E 上的点,所以设E F ң=λE C=(-λx 0,λ,2λ),0ɤλɤ1,得F ((1-λ)x 0,λ,2λ),则B F ң=((1-λ)x 0,λ-1,2λ)㊂又A C ң=(0,2,2),A E ң=(x 0,1,0),B F ʅ平面A C E ,所以B F ң㊃A C ң=2(λ-1)+4λ=0,且B F ң㊃A E ң=(1-λ)x 20+λ-1=0,解得x 0=1,λ=13㊂所以E (1,0,0),F23,13,23,G 12,12,1㊂(1)方法1:设A C 与B D 相交于H ,则H (0,0,1),所以H G ң=12,12,0㊂可得A E ң=(1,1,0)=2H G ң㊂又A E ⊄平面B D G ,H G ⊂平面B D G ,所以A E ʊ平面B D G ㊂方法2:易知B D ң=(0,-2,2),B G ң=12,-12,1㊂设平面B D G 的一个法向量为k =(a ,b ,c ),则k ㊃B D ң=0,k ㊃B G ң=0,所以-2b +2c =0,12a -12b +c =0㊂取c =1,得k =(-1,1,1)㊂因此,k ㊃A E ң=(-1,1,1)㊃(1,1,0)=0㊂又A E ⊄平面B D G ,故A E ʊ平面B D G ㊂(2)方法1:因为A E ң=(1,1,0),B E ң=(1,-1,0),B C ң=(0,0,2),所以A E ң㊃B E ң=0,A E ң㊃B C ң=0,则A E ʅB E ,A E ʅB C ㊂又B E ɘB C =B ,所以A E ʅ平面B C E ㊂方法2:易知B E ң=(1,-1,0),B C ң=(0,0,2)㊂设平面B C E 的一个法向量为n =(x 1,y 1,z 1),由n ㊃B E ң=0,n ㊃B C ң=0,得x 1-y 1=0,2z 1=0㊂取y 1=1,得n =(1,1,0)㊂又A E ң=(1,1,0)=n ,故A E ңʊn ,A E ʅ平面B C E ㊂(3)由题意知,O E ң=(1,0,0)为平面A B -C D 的一个法向量,设平面B D F 的一个法向量为m =(x 2,y 2,z 2)㊂由(1)知,B F ң=23,-23,23,B D ң=(0,-2,2),所以m ㊃B F ң=23x 2-23y 2+23z 2=0,且m ㊃B D ң=-2y 2+2z 2=0㊂取z 2=1,则y 2=1,x 2=0,所以m =(0,1,1)㊂因m ㊃O E ң=0,故m ʅO E ң㊂因此,平面B D F ʅ平面A B C D ㊂评注:利用向量法证线面平行,一般有三个思路:一是用向量共面的充要条件,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量概念和直线在平面外,得线面平行;二是先求出平面的法向量,再证明法向量与直线的方向向量垂直;三是证明已知直线与平面内的一条直线平行,也就是将其转化为证明线线平行的问题,再根据线面平行的判断定理得证㊂证面面平行,一般有两个思路:一是利用向量证明一个平面内两条相交直线平行于另一个平面,根据面面平行的判定定理得证;二是求出两个平面的法向量,证明这两个法向量平行,则这两个平面平行㊂证线线垂直,可转化为两条直线的方向向量垂直,即证明两条直线方向向量的数量积为0㊂证线面垂直有两个思路:一是证平面的法向量与直线的方向向量平行;二是证直线与平面内两条相交直线垂直,再用线面垂直判定定理证明㊂证面面垂直,先求出两个平面的法向量,通过证明这两个平面的法向量垂直即可㊂解题篇 经典题突破方法高二数学 2023年5月以上思路大多要用到平面的法向量,当题中出现线面垂直时,则该直线的方向向量就是该平面的一个法向量,为减少计算量,无需另求法向量㊂3.解决平行或垂直的探索性问题图5例3 如图5所示,在四棱柱A B C D -A 1B 1C 1D 1中,A 1D ʅ平面A B C D ,底面A B C D 是边长为1的正方形,侧棱|A 1A |=2㊂(1)在棱A 1B 上是否存在一点M ,使得A 1D ʊ平面A C M(2)在棱A 1A 上是否存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1图6解析:如图6,分别以D A ,D C ,D A 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系㊂则由题中数据,得D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),B 1(0,1,3),C 1(-1,1,3)㊂从而D A 1ң=(0,0,3),B A 1ң=(-1,-1,3),A C 1ң=(-2,1,3),C 1B 1ң=(1,0,0),A A 1ң=(-1,0,3)㊂(1)假设线段A 1B 上存在一点M (a 1,b 1,c 1),使得A 1D ʊ平面A C M ㊂设B M ң=λB A 1ң(0<λ<1),即(a 1-1,b 1-1,c 1)=λ(-1,-1,3)㊂则a 1-1=-λ,b 1-1=-λ,c 1=3λ㊂解得M (1-λ,1-λ,3λ)㊂从而A M ң=(-λ,1-λ,3λ),C M ң=(1-λ,-λ,3λ)㊂设平面A C M 的一个法向量为m =(a 2,b 2,c 2),则m ㊃A M ң=0,m ㊃C M ң=0,即-λa 2+(1-λ)b 2+3λc 2=0,(1-λ)a 2-λb 2+3λc 2=0㊂两式相减,得a 2-b 2=0㊂令a 2=1,得m =1,1,2λ-13λ㊂由D A 1ң㊃m =0,得3㊃(2λ-1)3λ=0,解得λ=12,此时M 12,12,32,M 为线段A 1B 的中点㊂所以线段A 1B 上存在一点M ,使得A 1D ʊ平面A C M ㊂(2)假设棱A 1A 上存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1㊂设A P ң=μA A 1ң,0<μɤ1,则P (1-μ,0,3μ),从而B 1P ң=(1-μ,-1,3(μ-1))㊂设平面A B 1C 1的一个法向量为n 1=(x 1,y 1,z 1),由n 1㊃C 1B 1ң=0,n 1㊃A C 1ң=0, 得x 1=0,-2x 1+y 1+3z 1=0㊂ 令z 1=3,则n 1=(0,-3,3)㊂设平面P B 1C 1的一个法向量为n 2=(x 2,y 2,z 2),由n 2㊃C 1B 1ң=0,n 2㊃B 1P ң=0,得x 2=0,(1-μ)x 2-y 2+3(μ-1)z 2=0㊂令z 2=3,得n 2=(0,3(μ-1),3)㊂由n 1㊃n 2=0,得-3ˑ3(μ-1)+3ˑ3=0,解得μ=43>1,不合题意,所以这样的点P 不存在㊂评注:涉及线段上的动点问题,先设出动点分线段的某个比值λ,根据两个向量共线的充要条件得数乘关系,从而用λ表示动点的坐标,再进行相关计算,这样可以减少未知量,简化过程㊂值得注意的是,应给出λ的取值范围㊂另外,建系时最好用右手直角坐标系且使几何元素尽量分布在坐标轴的正方向上㊂4.求解点面距离或几何体的体积例4 如图7,在三棱柱A B C -A 1B 1C 1中,棱A A 1ʅ侧面A B C ,A B ʅB C ,D 为A C 的中点,|A A 1|=|A B |=2,|B C |=3,求三 解题篇 经典题突破方法 高二数学 2023年5月图7棱锥A 1-B C 1D 的体积㊂解析:由题意知,B 1C 1,B 1B ,B 1A 1三条直线两两垂直,故以B 1为坐标原点,建立空间直角坐标系B 1-x yz ,如图8所示㊂图8则由题中数据,得B 1(0,0,0),B (0,2,0),C (3,2,0),C 1(3,0,0),A (0,2,2),A 1(0,0,2),D32,2,1,则C 1A 1ң=(-3,0,2),C 1B ң=(-3,2,0),B D ң=32,0,1㊂所以|C 1A 1ң|=(-3)2+02+22=13,|C 1B ң|=(-3)2+22+02=13,c o s øA 1C 1B =C 1A 1ң㊃C 1B ң|C 1A 1ң||C 1B ң|=-3ˑ(-3)13ˑ13=913㊂从而s i nøA 1C 1B =1-c o s 2øA 1C 1B=22213,所以S әA 1C 1B =12|C 1A 1ң|㊃|C 1B ң|s i n øA 1C 1B =12ˑ13ˑ13ˑ22213=22㊂设平面A 1C 1B 的一个法向量为n =(x ,y ,z ),则n ㊃C 1A 1ң=0,n ㊃C 1B ң=0,即-3x +2z =0,-3x +2y =0㊂令z =3,得x =2,y =3,即n =(2,3,3)㊂所以D 到平面A 1C 1B 的距离d =|n ㊃B D ң||n |=622,故V A 1-B C 1D =13S әA 1C 1B ㊃d =13ˑ22ˑ622=2㊂评注:求锥体或柱体的体积,关键是求底面积和高,对于底面积,如әA B C 的面积可由S =12|A B ң||A C ң|s i n A =12|A B ң||A C ң㊃1-c o s 2A =12(|A B ң||A C ң|)2-(A B ң㊃A C ң)2求解㊂高可以转化为空间两点间距离,又可看作是向量长度,即已知空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d =|P 1P 2ң|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,有时要用到|a |=a 2求解㊂高也可以看作是点到平面的距离,其数值等于斜线段对应的向量在平面法向量方向上的投影向量的模㊂如求点A 到平面α的距离,可在α内任取一点B ,则A 到平面α的距离d =||A B ң|c o s α|=|A B ң㊃n ||n |㊂另外,点面距离还可以转化为线面距离㊁两平行平面间的距离等㊂5.求空间角图9例5 如图9,在四棱锥P -A B C D 中,底面A B C D为矩形,P D ʅ底面A BC D ,|A B ||A D |=2,直线P A 与底面A B C D 成60ʎ角,点N 是P B的中点㊂(1)求异面直线D N 与B C 所成角的余弦值;(2)求直线P A 与平面P B C 所成角的正弦值;(3)求二面角P -N C -D 的余弦值㊂图10解析:依题意,以D 为原点,分别以向量D A ң,D C ң,D P ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系,如图10所示㊂设|A D |=1,则|A B |=2㊂因为P D ʅ底面A B -C D ,所以øP A D 是直线P A 与平面A B C D所成的角,得øP A D =60ʎ,则|P D |=3㊂易得D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,3),N 12,1,32㊂(1)易知D N ң=12,1,32,B C ң=(-1,0,0),所以异面直线D N 与B C 所成角θ1的余弦值为c o s θ1=|c o s <D N ң,B C ң>|=|D N ң㊃B C ң||D N ң||B C ң|=24㊂(2)易知P A ң=(1,0,-3),P B ң=(1,2,-3)㊂设平面P B C 的法向量为m =(x 1,y 1,z 1),直线P A 与平面P B C 所成的角为解题篇 经典题突破方法 高二数学 2023年5月θ2,则m ㊃P B ң=x 1+2y 1-3z 1=0,且m ㊃B C ң=-x 1=0㊂令z 1=2,则x 1=0,y 1=3㊂所以m =(0,3,2),则s i n θ2=|c o s <m ,P A ң>|=|m ㊃P A ң||m ||P A ң|=217㊂(3)由(2)知,m =(0,3,2)是平面P B C的一个法向量㊂设平面C D N 的法向量为n=(x 2,y 2,z 2),因为D N ң=12,1,32,D C ң=(0,2,0),所以n ㊃D N ң=12x 2+y 2+32z 2=0,且n ㊃D C ң=2y 2=0㊂令z 2=1,则x 2=-3,y 2=0,n =(-3,0,1)㊂所以c o s <m ,n >=m ㊃n |m ||n |=77㊂在二面角P -N C -D 内部取一点H (0,0,1),则C H ң=(0,-2,1)㊂因为m ㊃C H ң=-23+2<0,n ㊃C H ң=1>0,所以二面角P -N C -D 的大小等于<m ,n >,其余弦值为77㊂评注:解异面直线夹角问题,先求出两条异面直线的方向向量m ,n ,再求出m ,n 的夹角,设两异面直线的夹角θ,利用c o s θ=|c o s <m ,n >|=|m ㊃n ||m ||n |求出异面直线的夹角㊂注意异面直线夹角与向量夹角不完全相同,当两个方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角,两条异面直线夹角θ的取值范围是0,π2㊂解线面角问题,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为φ,则直线的方向向量a 在平面法向量n 方向上的投影向量的长度|a ㊃n ||n |与直线方向向量a 的模|a |之比|a ㊃n ||a ||n |就是线面角的正弦值,即有s i n θ=|c o s φ|=|a ㊃n ||a ||n |㊂当φ为锐角时,s i n θ=s i n (90ʎ-φ)=c o s φ=a ㊃n|a ||n |;当φ为钝角时,s i n θ=s i n (φ-90ʎ)=-c o s φ=-a ㊃n|a ||n |㊂解二面角问题,是依据二面角两个半平面的法向量夹角与二面角相等或互补来处理㊂大多数情况下是根据图形判断该角是锐角还是钝角,有时也可以根据两个半平面的法向量的指向来判断㊂6.结构不良型问题图11例6 (2022年北京高考卷)如图11,在三棱柱A B C -A 1B 1C 1中,侧面B C C 1B 1为正方形,平面B C C 1B 1ʅ平面A B B 1A 1,|A B |=|B C |=2,M ,N 分别为A 1B 1,A C 的中点㊂(1)求证:MN ʊ平面B C C 1B 1㊂(2)再从条件①㊁条件②中选择一个作为已知条件,求直线A B 与平面B MN 所成角的正弦值㊂条件①:A B ʅMN ;条件②:|B M |=|MN |㊂注:如果选择条件①和条件②分别解答,那么按第一个解答计分㊂解析:(1)因为侧面C B B 1C 1为正方形,所以C B ʅB B 1㊂又平面C B B 1C 1ʅ平面A B B 1A 1,平面C B B 1C 1ɘ平面A B B 1A 1=B B 1,C B ⊂平面C B B 1C 1,所以C B ʅ平面A B B 1A 1㊂因为A B ⊂平面A B B 1A 1,所以B C ʅA B ㊂因为M ,N 分别为A 1B 1,A C 的中点,所以MNң=B N ң-B M ң=12B A ң+12B C ң-B B 1ң-12B 1A 1ң=12B C ң-B B 1ң,故MN ң,B C ң,B B 1ң三向量共面㊂又MN ⊄平面B C C 1B 1,B C ⊂平面B C C 1B 1,B B 1⊂平面B C C 1B 1,所以MN ʊ平面B C C 1B 1㊂(2)若选①,A B ʅMN ,则A B ң㊃MN ң=0㊂由(1)知,MN ң=12B C ң-B B 1ң,所以A B ң㊃MN ң=A B ң㊃12B C ң-B B 1ң=0㊂解题篇 经典题突破方法 高二数学 2023年5月由B C ңʅA B ң,得B C ң㊃A B ң=0,所以A B ң㊃B B 1ң=0,即B A ʅB B 1㊂图12故B C ,B A ,B B 1三条直线两两垂直,以B 为坐标原点,分别以B C ң,B A ң,B B 1ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系B -x yz ,如图12所示㊂则由题中数据,得B (0,0,0),A (0,2,0),M (0,1,2),N (1,1,0),故B A ң=(0,2,0),B M ң=(0,1,2),B N ң=(1,1,0)㊂设平面B MN 的一个法向量为n =(x ,y ,z ),则n ʅB N ң,n ʅB M ң, 所以n ㊃B N ң=0,n ㊃B M ң=0,即x +y =0,y +2z =0㊂令z =1,得n =(2,-2,1)㊂因此,直线A B 与平面B MN 所成角θ的正弦值为s i n θ=|c o s <n ,B A ң>|=|n ㊃B A ң||n ||B A ң|=|-2ˑ2|22+(-2)2+12ˑ2=23㊂若选②:|M B |=|MN |,则|B M ң|2=|MN ң|2㊂由(1)知,MN ң=12B C ң-B B 1ң,所以B B 1ң+12BA ң2=12B C ң-B B 1ң2,化为|B B 1ң|2+14|B A ң|2+B B 1ң㊃B A ң=14|B C ң|2+|B B 1ң|2-B C ң㊃B B 1ң,即B B 1ң㊃B A ң+B C ң㊃B B 1ң=0㊂因为B C ʅB B 1,所以B C ң㊃B B 1ң=0,B B 1ң㊃B A ң=0,即B B 1ʅB A ,故BC ,B A ,B B 1三条直线两两垂直㊂以下步骤与选①相同,过程略㊂评注:本题运用空间向量的三角形法则㊁平行四边形法则㊁数量积及模的运算,得到共面和垂直关系,避开了复杂的推理过程,无需添加辅助线,降低了思维难度,让人感到耳目一新㊂对于选择性条件的结构不良试题,应该选择一个易于入手的条件进行求解㊂7.最值问题例7 (2022年全国乙卷理数)如图图1313,在四面体A -B C D 中,A D ʅC D ,|A D |=|C D |,øA D B =øB D C ,E 为A C 的中点㊂(1)证明:平面B E D ʅ平面A C D ;(2)设|A B |=|B D |=2,øA C B =60ʎ,点F 在棱B D 上,当әA F C 的面积最小时,求C F 与平面A B D所成角的正弦值㊂解析:(1)因为|A D |=|C D |,E 为A C 的中点,所以A C ʅD E ㊂又øA D B =øC D B ,|D B |=|D B |,所以әA B D ɸәC B D ,|A B |=|C B |㊂连接B E ,又因为E 为A C 的中点,所以A C ʅB E ㊂因为D E ɘB E =E ,所以A C ʅ平面B E D ㊂因为A C ⊂平面A C D ,所以平面B E D ʅ平面A C D ㊂(2)因为әA B D ɸәC B D ,所以|C B |=|A B |=|B D |=2㊂又因为øA C B =60ʎ,所以әA B C 是等边三角形,|A E |=|E C |=1,|B E |=3㊂因为A D ʅC D ,所以|D E |=12|A C |=1㊂图14在әD E B 中,|D E |2+|B E |2=|B D |2,所以B E ʅD E ㊂以E 为坐标原点建立如图14所示的空间直角坐标系E -x yz ㊂则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1),所以A D ң=(-1,0,1),A B ң=(-1,3,0),D B ң=(0,3,-1)㊂连接E F ,由(1)知,A C ʅ平面B E D ㊂因为E F ⊂平面B E D ,所以AC ʅE F ,S әA F C =12|A C |㊃|E F |㊂因为|A C |=2,所以当|E F |取最小值时,әA F C 的面积最小㊂设此时F (a ,b ,c ),D F ң=λD B ң(0ɤλɤ1),即(a ,b ,c -1)=λ(0,3,-1),得F (0,3λ,1-λ)㊂解题篇 经典题突破方法高二数学 2023年5月则|EF ң|=02+(3λ)2+(1-λ)2=4λ-142+34㊂当λ=14时,|E F |取最小值,此时F 0,34,34,从而C F ң=1,34,34㊂设平面A B D 的一个法向量为n =(x ,y ,z ),则n ㊃A D ң=-x +z =0,n ㊃A B ң=-x +3y =0㊂取y =3,则n =(3,3,3)㊂所以C F 与平面A B D 所成角θ的正弦值为s i n θ=|c o s <n ,C F ң>|=|n ㊃C F ң||n ||C F ң|=621ˑ74=437㊂评注:对于面积㊁点面距离或体积的最值,一般有两个思考方向:一是从图中直接观察,先分清哪些量是定值,哪些量是变量,通过点或线的变化情况寻找最值,如本题中,E 为定点,F 为动点,可以看出当E F ʅB D 时,|E F |取最小值,易得|D F |=12,故D F ң=14D B ң,即可得点F 的坐标,或者由EF ң=(0,3λ,1-λ)与D B ң=(0,3,-1)垂直,得E F ң㊃D B ң=0,进而得λ;二是直接根据目标函数的关系,转化为函数的最值或值域问题来处理,如果是求空间角的三角函数的最值,可直接利用数量积及模的计算公式写出三角函数的表达式,再转化为二次函数来处理㊂8.逆向探索性问题图15例8 已知四边形A B C D 是梯形,S 为A D 的中点,B C ʊA D ,øBCD =90ʎ,|A D |=2|B C |=4㊂现将әA B S 沿B S 向上翻折,使A 到A ',且二面角A '-B S -C 为直二面角,E ,F 分别是A 'S ,A 'B 的中点,如图15所示㊂在线段B C 上是否存在一点M ,使得点D 到平面E F M 的距离为25若存在,求出|B M ||M C |的值;若不存在,请说明理由㊂图16解析:由题意知,四边形B C D S 是边长为2的正方形,B S ʅS D ,B S ʅS A ',S A 'ʅS D ,以S 为坐标原点,分别以向量S D ң,S B ң,S A 'ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系S -x yz ,如图16所示㊂则点S (0,0,0),A '(0,0,2),C (2,2,0),D (2,0,0),E (0,0,1),F (0,1,1),则E F ң=(0,1,0),D E ң=(-2,0,1)㊂假设在线段B C 上存在一点M (x 0,2,0)满足题意,则E M ң=(x 0,2,-1)㊂设平面E F M 的法向量为n =(x ,y ,z ),则有n ㊃E F ң=0,n ㊃E M ң=0㊂故(x ,y ,z )㊃(0,1,0)=0,(x ,y ,z )㊃(x 0,2,-1)=0,所以y =0,z =x 0x ㊂令x =1,得n =(1,0,x 0)㊂则D E ң在平面E F M 的法向量方向上的投影向量的长为|D E ң㊃n ||n |=25,得|-2+x 0|1+x 20=25,两边同时平方,得21x 20-100x 0+96=0,即(3x 0-4)㊃(7x 0-24)=0㊂因0<x 0<2,解得x 0=43,所以M43,2,0㊂从而M C ң=23,0,0,|M C |=23,|B M |=2-23=43,即在线段B C 上存在一点M 满足题意,且|B M ||M C |=2㊂评注:对于距离㊁体积或空间角的逆向存在性问题,其求解思路是先假设条件存在,把假设当作新的已知条件进行推理,通过构造方程求解㊂若得到合理的数据,则假设成立;若出现矛盾,则假设不成立㊂对于翻折问题,关键是抓住翻折前后几何量的变与不变进行相关计算㊂(责任编辑 徐利杰)解题篇 经典题突破方法 高二数学 2023年5月。
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量 (2) 向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下⑵加法结合律:(a b) a (b c) ⑶数乘分配律:(a b^ a b运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a // b 。
(2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ) , a // b 存在实数 入使a = Xb 。
(3) 三点共线:A 、B 、C 三点共线<=> AB 二’AC<=> OC xOA yOB 其中X 厂 1)(4) 与a 共线的单位向量为土 —a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2) 共面向量定理:如果两个向量a,b 不共线,p 与向量a,b 共面的条件是存在实(如图)运算律:⑴加法交换律:a b a一个唯一的有序实数组 x,y,z ,使p 二xa • yb zc 。
4^4 彳"呻H 4若三向量a,b,c 不共面,我们把{a,b,c }叫做空间的一个 基底,a,b,c 叫做基向 量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O ,A ,B ,C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数 T T T Tx, y, z ,使 OP 二 xOA yOB zOC 。
6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O-xyz 中,对空间任一点A ,存在唯一的有序实数组(x,y,z ), 使OA =xi yi zk ,有序实数组(x,y,z )叫作向量A 在空间直角坐标系O-xyz 中的坐标, 记作A (x, y,z ), x 叫横坐标,y 叫纵坐标,z 叫竖坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何与空间向量(1)知识点1 空间向量的坐标运算设a=(1,5,-1),b=(-2,3,5).(1)若(k a+b)∥(a-3b),求k;(2)若(k a+b)⊥(a-3b),求k.已知A(3,3,1),B(1,0,5),求:(1)线段AB的中点坐标和长度;(2)到A,B两点距离相等的点P(x,y,z)的坐标x,y,z满足的条件.知识点2 证明线面的平行、垂直在正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点,求证:D1F⊥平面ADE.已知A (-2,3,1),B (2,-5,3),C (8,1,8),D (4,9,6),求证:四边形ABCD为平行四边形. 证明知识点3 向量坐标的应用棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,O 1、O 2、O 3分别是平面A 1B 1C 1D 1、平面BB 1C 1C 、平面ABCD 的中心.(1)求证:B 1O 3⊥PA ; (2)求异面直线PO 3与O 1O 2所成角的余弦值;(3)求PO 2的长.直三棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,N 是AA 1的中点.(1)求BN 的长;(2)求BA 1,B 1C 所成角的余弦值. 解 以C 为原点建立空间直角坐标系,则知识点4 棱柱、棱锥和棱台 圆柱、圆锥、圆台和球例1:如图,用过BC 的一个平面(此平面不过D A '')截去长方体的一个角,剩下的几何体是什么?截去的几何体是什么?请说出各部分的名称.A 'D ' B ' C '例2:观察下面三个图形,分别判断(1)中的三棱镜,(2)中的方砖,(3)中的螺杆头部模型,分别有多少对互相平行的平面?其中能作为棱柱底面的分别有几对? (1)(2)例3:请指出图中的几何体是由哪些简单几何体构成的.知识点5:中心投影和平行投影知识、一个封闭的立方体,它的六个表面各标有F E D C B A ,,,,,这六个字母之一,现放置成如图的三种不同的位置,则字母C B A ,,对面的字母分别为 .例5:如图,P 为正方体1111ABCD A B C D -的中心,则PAC ∆在该正方体各个面上的射影CA 'B AB 'C 'AA 'BCDB 'C 'D 'AA 'BCDEF B 'C 'D 'F 'E ' (3)ABCAD CEB ACB可能是()A .(1)(2)(3)(4)B .(1)(3)C .(1)(4)D .(2)(4)例6:一个三棱锥的三视图如图所示,则该三棱锥的体积(单位:cm 3)为( )(A )72cm 3 (B )36cm 3 (C )24cm 3 (D )12cm 3例7:将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B. C. D.正视图 侧视图俯视图6 446663(第6题)知识点6:平面的基本性质 完成表格位置关系 符号表示点P 在直线l 上直线AB 与直线BC 交于点B∈M 平面αl C ∉⊂AB 平面α直线l 不在平面α内例13:如图,在长方体1111D C B A ABCD -中,下列命题是否正确?并说明理由. ①.1AC 在平面B B CC 11内;②.若1O O 、分别为面1111D C B A ABCD 、的中心,则平面C C AA 11与平面11BDD B 的交线为1OO ; ③.由点C O A 、、可以确定平面;④.设直线⊄l 平面AC ,直线⊄m 平面C D 1,若l 与m 相交,则交点一定在直线CD 上;⑤.由点11B C A 、、确定的平面与由点D C A 、、确定的平面是同一个平面.例14:在正方体1111D C B A ABCD -中,画出平面1ACD 与平面1BDC 的交线,并说明理由.A BC DOO 1A 1B 1C 1D 1ABCD D 1C 1B 1A 1例16:正方体1111D C B A ABCD -中,F E 、分别为1111C B C D 、的中点,P BD AC =⋂,Q EF C A =⋂11.求证:(1)E F B D 、、、四点共面;(2)若C A 1交平面DBFE 于R 点,则R Q P 、、三点共线.知识点7:空间两条直线的位置关系例18:三棱锥BCD A -中,H G F E ,,,分别是DA CD BC AB ,,,的中点. (1)求证:四边形EFGH 是平行四边形; (2)若BD AC =,求证:四边形EFGH 是菱形;(3)当AC 与BD 满足什么条件时,四边形EFGH 是正方形.例19:已知H G F E 、、、分别是空间四边形四条边DA CD BC AB 、、、上的点.且2==HDAHEB AE ,G F 、分别为CD BC 、的中点,求证:四边形EFGH 是梯形.ABCDPA 1B 1C 1D 1FGHABCDEBF CG D HEA知识点8:直线与平面的位置关系例24:如图, E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点, 求证:(1)四点E 、F 、G 、H 共面;(2)BD //平面EFGH ,AC //平面EFGH .例25:如图,在三棱柱111C B A ABC -中,C C EF C B F BC E 111//,,∈∈,点∈M 侧面B B AA 11,点F E M ,,确定平面γ,试作出平面γ与三棱柱111C B A ABC -表面的交线.知识点9:平面与平面的位置关系例32:如图,在长方体1111D C B A ABCD -中, 求证:平面DB C 1∥平面11D AB .A CFBEHDGCE1C1BF1ABA∙MABCDD 1A 1B 1C 1思考:如果两个平面平行,那么:(1)一个平面内的所有直线是否平行于另一个平面?(2)分别在两个平行平面内的两条直线是否平行?例33:棱长为a的正方体AC1中,设M、N、E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点.(1)求证:E、F、B、D四点共面;(2)求证:面AMN∥面EFBD.例34:如图,在三棱柱ABC-A1B1C1中,点E、D分别是B1C1与BC的中点.求证:平面A1EB//平面ADC1.例35:P是长方形ABCD所在平面外的一点,M、N两点分别是AB、PD上的中点.求证:MN∥平面PBC.A BCC1A1B1EDA BCDMNPA BD CNMAB1D C1EF一、选择题1.已知点A (x 1,y 1,z 1),则点A 关于xOz 平面的对称点A ′的坐标为( ) A .(-x 1,-y 1,-z 1) B .(-x 1,y 1,z 1) C .(x 1,-y 1,z 1) D .(x 1,y 1,-z 1)2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)3.已知a =(sin θ,cos θ,tan θ),b =(cos θ,sin θ,1tan θ),有a⊥b ,则θ等于( )A .-π4 B.π4C .2k π-π2 (k ∈Z )D .k π-π4(k ∈Z )4.若向量a =(1,λ,2),b =(2,-1,2),cos 〈a ,b 〉=89,则λ为( )A .2B .-2C .-2或255D .2或-2555.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90° B.60° C.30° D.0°二、填空题 6.模等于27且方向与向量a =(1,2,3)相同的向量为________________.7.已知三个力f 1=(1,2,3),f 2=(-1,3,-1),f 3=(3,-4,5),若f 1,f 2,f 3共同作用于一物体上,使物体从点M 1(1,-2,1)移动到点M 2(3,1,2),则合力所做的功是________.8.已知点A (2,-5,-1),B (-1,-4,-2),C (λ+3,-3,μ)在同一直线上,则λ=________,μ=________.三、解答题9.E ,F 分别是正方体ABCD —A 1B 1C 1D 1中线段A 1D ,AC 上的点,且DE =AF =13AC .求证:(1)EF ∥BD 1;(2)EF ⊥A 1D .10.,,如图所示,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB=4,点E 在CC 1上且C 1E=3EC.证明:A 1C ⊥平面BED.11:如图,在正方体1111D C B A ABCD 中,求证1BD ⊥AC .12:如图,正方体ABCD-A 1B 1C 1D 1,求证:平面B 1AC ⊥平面B 1BDD 1.ABCDD 1A 1C 1 B 1AB CD D 1A 1C 1B 1。