40+64+40m连续梁边墩支座预偏量计算
(40+64+40)m连续梁0#块支架计算书

跨渝宜高速(40+64+40)连续梁0#块支架计算书一、工程简介连续梁里程为D1K71+802.4~D1K71+947.6,全长145.2m,悬臂现浇法施工。
连续梁中墩为32#、33#墩,墩高分别为7.5m、12m;边墩为31#、34#墩,墩高分别为14.5m、15m。
梁体中支点梁高为5.29m,跨中梁高为2.89m,边支座中心线至梁端0.6m,边支座横桥向中心距4.6m,中支座横桥向中心距4.4m。
0#块施工时采用碗扣式支架现浇。
支架间距腹板底:0.3m×0.6m ×1.2m(横×纵×竖),底板底0.6m×0.6m×1.2m(横×纵×竖),翼缘板底0.9m×0.6m×1.2m(横×纵×竖)。
支架搭设完后搭设剪刀撑。
剪刀撑采用Φ48×3.5mm普通钢管、与地面呈45°~60°搭设,每隔四跨搭设一道。
完后再钢管顶部安装顶托作为脱模杆件,顶托上横向摆放10×15cm方木,再纵向分布摆放10×10cm方木作为面板加劲肋,中心间距为20cm,面板采用1.5cm厚竹胶板。
二、计算参数:1)、梁体混凝土容重:26.0kN/m3;2)、混凝土超重系数:1.05;3)、方木弹性模量取:9×103MPa;4)、竹胶板弹性模量取:3.1×103MPa;5)、杆件承担混凝土重的弹性挠度取构件跨度的L/400;6)、冲击系数取:1.2;7)、施工荷载取:2.5kN/m 2;8)、应力取值:A 3钢: [σ轴]=140MPa ,[σ弯]=145MPa ,[τ]=85MPa ;方木: [σ弯]=9MPa, [τ]=1.5MPa;竹胶板: [σ弯]=55MPa, [τ]=12.1MPa 。
三、计算支架主要承受的荷载:底模、内模支架及内模自重取1.5KN/m 2,侧模自重取2KN/m,施工荷载取:2.5KN/m 2。
(40+64+40)m连续箱梁临时支座设计计算

η——考虑纵向弯曲的轴向力偏心距增大系数 e——轴向压力作用点至手拉钢筋合力点之间的距离 检算结果显示无需配置受拉和受压配筋, 按照最小配筋率配筋及 满足要求。 7、结论 临时支座设计满足承载能力,满足要求
附件四:
Байду номын сангаас
临时支墩受力检算
1、荷载计算及内力分析: 临时支座平面尺寸为纵桥向 0.70cm,横桥向 220cm,纵桥向中心 间距 a=295cm,见临时支座平面图。 按最大悬臂灌注长度时一侧箱梁不平衡重 5%对支座中心弯矩的 及一端挂篮(另一端挂篮拆除)自重对支座中心弯矩之和计算最大不 平衡弯矩, 竖向力为按最大悬臂灌注长度时箱梁自重计算。 施工挂篮、 机具、人群荷载按 700KN 计,利用结构检算软件 midas 建模如下:
l0 .2KN 12068 .5KN , 8 ,φ=1, N c A 2.24* 70* 220* 0.7 24147 b
满足要求。
3、墩身、粱部局部承压检算: 墩 身 混 凝 土 采 用 C35 , 局 部 承 压 容 许 应 力
c1 1.3 * 9.4 *
X N 24137000 233.1m m f C b 16.7 * 6200
2 Ne a1 f c bx(h0 x / 2) 4373051360 3971 .9 mm f y (h0 as ) 1169 .4
As
N——为轴向压力设计值 e0——轴向压力对截面重心的偏心距 ea——附加偏心距,其值取偏心方向截面尺寸的 1/30 和 20mm 中 的较大值; X、ξ——分别为受压区计算高度和相对计算高度
f y 540N / mm2
,墩身混凝土用 C35,轴心抗拉强度设计值
支座预偏量(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
赠人玫瑰,手留余香。
连续梁支座预偏量计算
支座预偏量是支座上钢板纵向偏离理论中心线的位置。
设Δ1为梁体的弹性变形及收缩徐变引起的支点处的偏移量,设Δ2为各支点由于温度引起的偏移量。
各支座处的纵向偏移量根据支座安装时温度和灌注混凝土时温差引起,由Δ=-(Δ1+Δ2)求得,施工合拢时选用一天温度最低时进行。
支座安装后即按规定锚固支座螺栓,灌注固定。
温差引起梁体自由伸长量为:
ΔL=α*Δt*L
式中:
α为主梁混凝土线膨胀系数,α=1×10-5/℃
Δt为合拢时温差
L为温度不动点到计算点的梁体长度
Δ2(温度引起的支座纵向偏移量)计算如下:
设计图纸给出支座纵向预偏量(理论值),按温度18℃考虑。
初步计划40m+64m+40m连续梁合拢时间为5月1日,往年最低温度为16℃,由于该温差引起的偏移量为:
1#墩:Δ2=ΔL=α*Δt*L=1×10-5*(16-18)*80.05=-1.6mm
2#墩:Δ2=ΔL=α*Δt*L=1×10-5*(16-18)*48=-1.0mm
4#墩:Δ2=ΔL=α*Δt*L=1×10-5*(16-18)*32.05=-0.6mm
支座预偏量
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
赠人玫瑰,手留余香。
40+64+40m连续梁0#段支架计算

神华新准铁路巴准线施工一标公涅尔盖沟大桥连续梁0#段现浇支架计算书中铁十一局集团新准铁路巴准线施工一标项目经理部二〇一一年七月公涅尔盖沟大桥(60m+100m+60m)连续梁施工0#段现浇支架计算书一、设计说明0号段为预应力钢筋混凝土结构,长12m,中支点处梁高7.2m,端部梁高4.2m,截面采用单箱单室直腹板形式。
顶板厚为70~36cm,腹板厚120~50cm,底板厚度根部为144~40cm,按照圆曲线变化,圆曲线半径R=309.6667m。
顶板宽度7.4m,底板宽度5.4m,两侧腹板与顶底板相交处均采用圆弧倒角过渡,悬壁下设置通长的滴水槽。
二、现浇支架方案根据现场实际情况,为确保高墩施工安全,大桥3#、4#墩采用在每个墩前后两侧各立1排ф609×16钢管,每排5根,为方便0号段施工完成后拆除底模及支撑,钢管支撑高度以0号段底(含底模及方木背杠)最低处与支架平台顶之间能容纳最小长度的碗扣支架(含顶托底托)。
钢管支撑架立完成后,向钢管内灌入施工细砂,并灌水密实,以减小钢管的自由高度,钢管支撑上部焊接靴顶。
根据现场材料充分利用的原则,现浇平台采用三层型钢搭设,首先在钢管靴顶纵向铺设梁2I32b工字钢与之采用电焊联结,上部顺桥向采用1排32Ib工字钢,顶面铺设20Ia工字钢作为施工平台。
详细见下图三、荷载分析及结构受力计算为确保0#段施工的安全性,对现浇支架需进行受力检算及稳定性分析。
1、混凝土荷载:0号段设计浇筑混凝土数量为300.4m3,混凝土单位重量按26KN/ m3计,合计总重7810.4KN。
其中墩顶中支点处长5.4m,混凝土数量为149.2 m3,重量为3796KN;伸出墩身部分每端长3.3m,混凝土数量各为75.6m3,重量为1965.6KN;根据0#段混凝土结构,支撑部位在腹板处压力最大,为更全面地计算受力,同时分析底板及翼板。
(1)腹板处压力:伸出段腹板厚度为0.9m,高度选取平均高度为6.95m,长度为3.3m。
支座纵向预偏移量计算

沪昆客专杭长湖南段东京殿大桥、清潭河大桥支座纵向预偏量沪昆客专杭长湖南段东京殿大桥、清潭河大桥均为预应力混凝土连续梁,跨径组合分别为:48+80+48m 、40+64+40m ,均采用挂篮悬臂浇筑法施工。
支座布置示意如图1所示:纵向活动纵向活动纵向活动纵向固定支座4支座3支座2支座1图1 支座布置示意图(以箭头方向为正)悬臂浇筑施工合拢完成的梁体在温度、混凝土收缩徐变等因素影响下会产生变形,导致连续梁活动支座的纵向位移量较大。
若不根据桥梁合拢时间计算出相应的偏移量,则全桥合拢后活动支座的上支座板会发生较大的错动,使支座受力不均匀,桥墩处于偏心受压状态,对支座及桥墩受力不利。
支座纵向预偏量系指支座上板纵向偏离支座理论中心线的位置,主要分为两部分:预应力张拉的弹性压缩、混凝土收缩徐变引起的位移量△1,由于体系实际合拢温度与设计合拢温度的差值引起的位移量△2。
△1是因梁体的弹性压缩、混凝土收缩徐变引起各墩活动支座的偏移量,根据设计图纸查得。
△2根据现场实际施工进度推算出连续梁合拢时间及温度,得出与设计合拢温度的差值。
△2=α×△t ×L其中,α—为箱梁混凝土线膨胀系数(10-5/℃); △t —实际合拢温度与设计合拢温度的温差; L —计算位置至桥梁固定支座位置的梁体长度;沪昆客专东京殿大桥、清潭河大桥位于湖南省境内湘东地区,属于亚热带季风湿润气候,气温最高为8月份,最低气温时间为1月份,年平均气温为18℃左右。
现假定设计合拢温度为18℃,实际合拢温度取25℃。
则各活动支座的位移量如表1、表2所示:表1 东京殿大桥(48+80+48m)支座位移量支座1 支座2 支座3 支座4Δ1 /mm -26.6 0 44.9 71.6Δ2 /mm -3.36 0 5.6 8.96(Δ1+ Δ2)/mm -29.96 0 50.5 80.56表2 清潭河大桥(40+64+40m)支座位移量支座1 支座2 支座3 支座4Δ1 /mm -28.8036.466.2Δ2 /mm -2.80 4.487.28(Δ1+ Δ2)/mm -31.6 040.88 73.48 从表1、表2可见,支座1、支座3、支座4的(△1+△2)均以支座2为中心向外侧预偏。
支座预偏量的计算与设置

支座预偏量的计算与设置1.结构变形的考虑:结构在荷载作用下可能发生较大的变形,例如温度变化、载荷变动等。
为了保证结构的稳定性,需要在支座设计过程中考虑这些变形,并合理地设置预偏量。
通常情况下,支座预偏量一般与结构变形有关。
2.支座预偏量的计算方法:支座预偏量的计算方法通常需要考虑结构的受力情况和变形特性。
常用的计算方法包括经验法、试验法和数值模拟法。
其中,经验法是基于过往工程经验和实测数据进行计算,有一定的参考意义;试验法是通过实际试验进行测定,可以获得较为准确的结果;数值模拟法是利用计算机模拟软件进行支座预偏量的计算和分析,可以考虑更多的因素和复杂的结构情况。
3.支座预偏量的设置原则:支座预偏量的设置需要考虑以下原则:(1)保证结构在正常使用和工作状态下具有合理的受力和位移特性,以确保结构的安全性和稳定性;(2)考虑结构变形的影响,合理地设置预偏量,使结构变形能够在一定的范围内进行调整和补偿,同时避免结构超调;(3)根据实际情况和工程要求,进行定量计算和调整,避免过度设置预偏量,从而导致不必要的成本和资源浪费。
4.支座预偏量的施工管理:支座预偏量的施工管理是保证设置效果的关键环节。
在施工过程中,需要进行精确的测量和调整,确保支座预偏量的准确性和有效性。
同时,需要留有一定的余量和调整空间,以便在需要的时候进行进一步的调整和修正。
总之,支座预偏量的计算与设置是结构设计和施工过程中的重要环节,需要综合考虑结构的受力情况、变形特性和实际要求,在保证结构安全和稳定的前提下,进行合理的计算和调整。
通过科学的计算和精确的施工管理,可以确保结构在使用过程中的稳定性和安全性。
支座预偏量的计算与设置

连续梁支座预偏量的计算与设置1.工程概况连续梁桥两个主墩(61#、62#)采用GTQZ30000型支座,两个边墩(60#、63#)采用GTQZ6000型支座,固定支座设在61#墩,活动支座的纵向位移量为±100mm.根据固定支座设置位置相应设置横向位移、纵向位移、多向位移支座,具体如下图:2.支座偏移值计算活动支座位移量指桥梁施工阶段结束后,活动支座的上支座板偏移支座理论中心线的位移,主要分为两部分:因梁体的弹性压缩、混凝土收缩徐变引起的位移量△1 ,由于体系温差引起的位移量△2,故活动支座位移量为△1+△2.因活动支座的预设偏移量是抵消施工阶段各墩活动支座产生的纵向水平位移量,故支座预设偏移量与支座位移量相反,即支座预设偏移量为△=—(△1+△2)。
2.1。
△1的计算△1是因梁体的弹性压缩、混凝土收缩徐变引起各墩活动支座的偏移量。
△1由设计计算出结果,设计图纸中提供相应的偏移值。
2.2. △2的计算一般设计合拢温度取桥位处最低和最高月平均温度平均值,根据现场实际施工状况排出施工进度计划,计算出合拢日期,得出实际计划合拢温度。
△2=a△t*l,其中a为主梁混凝土线膨胀系数,△t为温差,l为计算位置至固定支座位置的梁体长度,△2为梁体的变形。
3.本桥支座偏移值计算3.1.△1的计算设计图纸中提供相应的偏移值,具体如下:以顺桥向方向为正单位:mm3.2.△2的计算该桥位于江西省南昌市范围,气温最高月是7月,平均温度为30。
2℃;气温最低月是1月,平均气温为-3℃,则设计合拢温度为16℃。
根据施工现场的施工情况,计划10月8日合拢,合拢温度约13℃。
60#墩支座△2=—a△t*l=1*10—5*(16—13)*40000=—1.2mm62#墩支座△2= a△t*l=1*10—5*(16—13)*72000=2。
16mm63#墩支座△2= a△t*l=1*10—5*(16—13)*112000=3。
40+64+40m连续梁0_块支架预压方案

目录一、预压目的 (2)二、支架情况 (2)三、荷载情况 (3)四、预压方法 (3)4.1 加载分级 (3)4.2 卸载分级 (4)4.3 测量及记录 (4)4.4 加载材料及堆码 (6)五、安全措施 (7)五陵卫河特大桥(40+64+40)m连续梁0#、1#块支架预压专项方案一、预压目的由于在支架安装过程中,各杆件与结点板之间存在一定的间隙,在荷载作用下,除弹性变形外还将产生部分非弹性变形,所以必须对支架进行不小于施工总重量(支架理论上应分摊的0#、1#梁段墩顶4.2m范围以外钢筋混凝土重量+施工荷载),按照混凝土重量的120%等效荷载进行充分预压,以消除非弹性变形,同时测出弹性变形,绘制出荷载—变形曲线,以找出支架对应于承担(荷载情况的支架下沉量,以便为确定0#、1#梁段底模预拱度提供依据)。
二、支架情况根据设计桥墩高度和现场情况,0#、1#块支架采用Φ609mm钢管作为竖向支承构件现浇施工。
0#、1#块临时支架利用工字钢,汽车运输至施工现场,吊装至墩身、墩帽对应位置处,与预埋在墩身、墩帽的钢板焊接牢固,钢管桩顶部设横向双40b工字钢,纵向放40b工字钢作为分配梁,分配梁上铺设0#、1#块模板,纵梁、横梁和活络端顶部接触部分全部满焊处理,横梁双40b 工字钢之间每隔2米设一道焊缝,施工时,严格控制焊接质量,经检测合格后方可进行下道工序施工(详见图2-1)。
图2-1三、荷载情况由于1#块也是采用支架法浇筑砼,支架预压需要计算0#块、1#块在墩顶4.2m 范围以外的混凝土重量,单侧共227.3t ,一个墩压重为454.6t 。
四、预压方法4.1 加载分级根据现场条件,采用堆码砂袋的方法模拟支架的实际受力情况对其进行等效逐级预加载,共加载3次,每次加载前后都检查所有焊接部位。
加载分四个阶段进行:第一阶段,在支架对应的0#、1#梁段位置处按照支架应分摊的0#、1#梁40b工字钢16号槽钢钢板250*150*1075*50*5角钢A1A0B1跨五陵卫河连续梁19#墩临时钢管柱布置图段钢筋混凝土重量的60%,取136.4t模拟加载,观察支架焊接、变形情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
64m 连续梁支座预偏量计算
跨205国道64m 连续梁示意图如下:
支座总预偏量:△=-(△1+△2)
其中:△1表示梁体因混凝土收缩徐变引起(设计图提供); |△2|=a ×△t ×L ,其中:a 为混凝土线膨胀系数,取值
1.0×10-5;
△t = 设计温度-合龙温度;
合龙温度:需要现场量测,此处以取值8月中旬夜间温
度24℃为例;
设计温度:为梁体以后要长期处于的平均环境温度,即新沂市“(最高月平均温度+最低月平均温度)/2=(28℃+1.5℃)/2=14.75℃”(查天气记录可知,新沂市最高月8月份平均28℃,最低月1月份平均1.5℃)。
则,|△t| =24℃-14.75℃≈9℃。
1033#墩:|△1|取值2.79cm ;
|△2|=a ×△t ×L=1.0×10-5×9℃×40m=0.36cm ; 1036#墩:|△1|取值6.48cm ;
750
750
40000
64000
400001033#
1034#
1035#
1036#
|△2|=a×△t×L=1.0×10-5×9℃×104m=0.94cm。
分析:由于以后梁体长期处于的平均环境温度(即设计温度14.75℃)低于合龙时环境温度24℃,所以梁体以后要收缩,因此△2和△1引起的梁体效果要叠加。
即:1033#:△=-(2.79+0.36)=-3.15cm;
1086#:△=6.48+0.94=7.42cm。
2019年6月24日。