第四章 第3节 分部积法
高等数学 第四章 第三节 分部积分法

(再次使用分部积分法)u x , e x dx dv
x e 2( xe e ) C .
2 x x x
结论
若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函 数为 u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx . 2 x dv 解 令 u arctan x , xdx d
微分部分
积分部分
+
x
2
cos x
sin x
cos x
sin x
2x
2
结束
0
+
2 2 x cos xdx x sinx 2 x cos x 2 sinx C
例13 求积分 x e dx .
微分部分
2
x
竖式算法
选 u x 2 , v' e x
积分部分
+
x
2
e
x
2x
sec x tan x tan x sec xdx
2
sec x tan x (sec 2 x 1) sec xdx
这是一个 sec x tan x (sec 3 x tan x )dx 循环积分
sec x tan x I ln cos x
1 解出I即可 I (se cx tan x lncos x ) C 2
2 x e e
2 x2
x2
C.
例9
解:原式 x ln(1 x ) xd ln(1 x )
2 2
求 ln( x 1)dx
2
2x x ln( 1 x ) x dx 2 1 x
《分部积分法》课件

02
分部积分法的计算步确定积分区间和积分变量,以 便确定被积函数。
VS
确定函数
根据题目要求,确定需要计算的函数。
确定分部函数和被积函数
分部函数的选择
根据被积函数的性质,选择适当的分部函数 。
被积函数的确定
根据题目要求和分部函数的性质,确定被积 函数。
计算积分结果
注意积分的范围和上下限
总结词
确定积分的范围和上下限是分部积分法中至关重要的 一步,错误的设定可能导致结果错误或无法计算。
详细描述
在应用分部积分法时,应根据函数的具体形式和积分的 原函数,准确设定积分的上下限,以避免计算中出现符 号错误或无法收敛的情况。同时,要注意上下限之间的 逻辑关系和连续性。
注意计算过程中的符号和单位问题
《分部积分法》ppt课件
目录 CONTENTS
• 分部积分法概述 • 分部积分法的计算步骤 • 分部积分法的实例解析 • 分部积分法的注意事项 • 分部积分法与其他积分方法的比较
01
分部积分法概述
分部积分法的定义
总结词
分部积分法是一种求解积分的方法, 通过将积分拆分为两个或多个部分的 乘积,再分别对各部分进行积分,最 终求得原积分的结果。
与直接积分法的比较
适用范围
直接积分法适用于简单的积分,如 $int x^n dx$;分部积分法适用于被 积函数为两个函数的乘积或商的情况 ,如$int frac{x^2}{x+1} dx$。
操作步骤
直接积分法是通过凑微分来完成的; 分部积分法是通过将被积函数拆分为 两个函数的乘积,然后分别积分,最 后相减来完成的。
与换元积分法的比较
适用范围
换元积分法适用于被积函数为复合函数或三角函数的情况;分部积分法适用于被积函数为两个函数的 乘积或商的情况。
高等数学第四章第三节分部积分法课件.ppt

原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx
tan x lncos x tan x x C
例7. 求
解: 令 x t , 则 x t2 , dx 2t d t
原式 2 t e t d t 令 u t , v et 2(t et et ) C 2e x ( x 1) C
则 u 1 , v 1 x2
x
2
原式 = 1 x2 ln x 1 x dx
2
2
1 x2 ln x 1 x2 C
2
4
例3. 求 x arctan x dx.
解: 令 u arctan x, v x
则
u
1
1 x
2
,
v 1 x2 2
∴ 原式 1 x2 arctan x 1
2
2
cos sin
x x
dx
cos sin
x x
dx
cos sin
x x
dx
1,
1
cos sin
x x
dx
得0=1
ln sin x C
答: 不定积分是原函数族 , 相减不应为 0 . 求此积分的正确作法是用换元法 .
再令 u cos x , v ex , 则 u sin x , v ex
ex sin x ex cos x ex sin x dx
故
原式 =
1 2
e
x
(sin
x
cos
x)
C
说明: 也可设
为三角函数 , 但两次所设类型
必须一致 .
解题技巧:
把被积函数视为两个函数之积 ,
高等数学课件 分部积分法

tan x ⋅ lncos x + ∫ tan2 xdx 原式 = = tan x ⋅ lncos x + ∫ (sec2 x −1) dx
= tan x ⋅ lncos x +tan x − x + C
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例7 求 解 令 x= t , 则 x = t 2 , dx = 2t d t 原式 = 2∫ t e d t
− xsin x − cos x x2
说明: 说明 此题若先求出
− cos x + 2sin x + 2cos x d x ∫ x f ′(x) dx = ∫ 2 x x
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例12 求 I = ∫
e
arctan x
2 32 (1+ x )
t
令 u = t , v′ = et
= 2( te − ∫ e dt )
t
t
= 2(t et − et ) + C
= 2e x ( x −1) + C
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例8 求 解 令 u = x2 + a2 , v′ =1, 则 x u′ = 2 2 , v = x
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例3 求 ∫ x arctan x dx. 解 令 u = arctanx, v′ = x 1 1 2 ′= 则 u , v= x 2 2 1+ x 1 2 1 x2 ∴ 原式 = x arctan x − ∫ dx 2 2 2 1+ x 1 2 1 1 = x arctan x − ∫ (1− ) dx 2 2 2 1+ x 1 2 1 = x arctan x − (x − arctan x) + C 2 2
上交大微积分教学课件 第四章不定积分

3.原函数定理
定理1 若函数 f (x) 在区间D上连续,则 f (x) 在区间D上一定存在原函数 F(x) .
定理2 如果函数F(x) 是 f (x)在区间D上的原 函数,则
(1) F (x) C 也是 f (x) 在区间D上的原函
数,其中C是任意常数; (2) f (x) 在区间D上的任意两个原函数之间 只相差一个常数.
❖ ④ 若被积函数中含有 x2 a2 (a 0) ,可令 x a sect .
第三节 分部积分法
当被积函数是两类基本初等函数的乘积的形式 时,这种类型的积分用换元法一般不能求出.例
如: xcos xd x 和 xex d x 等.为此,我们再探讨一种
新的积分法—分部积分法,它是与导数(微分)运 算中乘积的导数(微分)公式相对应的积分方法.
换将被积函数中的根号去掉,就能顺利积分了,
这就是第二类换元积分法的思想 .
定理2 (第二类换元积分法) 若 x (t)单调可微 且 (t) 0,如果
f (x) d x f (t)(t) d t (t) C [ (x)] C
即 f (x) d x [ (x)] C 其中,t (x) 是 x (t)
当被积函数为幂函数与指数函数或三角函数乘积时, 选幂函数为 u(x) ;当被积函数为幂函数与对数函数或 反三角函数乘积时,选幂函数为v(x) ;当被积函数为 三角函数与指数函数乘积时,u(x) 可以任意选取.
❖ 例1 求 xcos xd x .
❖ 分析 因被积函数是幂函数与三角函数的乘 积.把“cos x ”凑f [(x)](x) .
因此 f (x)(x)d x f (u)du
.
❖ 注意:
(1)求不定积分的方法不唯一,不同方法算出 的答案也不相同,但它们的导数都是被积函数,经 过恒等变形后可以互化,其结果本质上只相差一个 常数.
第三节 分部积分

1 3 解: 原式 = ∫ arctan x d x 3 1 3 1 x3 = x arctan x −∫ ⋅ dx 2 3 3 1+ x
1 1 3 x2 1 2 = x arctan x − ∫ dx 2 3 1+ x 2 3 1 1 3 1 (1− ) dx2 = x arctan x − ∫ 2 1+ x 3 6
上页 下页 返回 结束
例3. 求
∫ x ln xdx .
x2 x2 x2 1 dx = ln x−∫ 解: 原式 = ∫ ln x d 2 2 2 x
1 2 1 x2 x2 = ln x − ∫ x dx = ln x − x + C 4 2 2 2
上页
下页
返回
结束
例4. 求
∫x
2
arctan x dx .
∫e
− x2
dx , dx, ∫ ln x
sin x ∫ cos x dx, ∫ x dx,
2
它们的积分可以借助无穷级数来计算,或运用数学软件 它们的积分可以借助无穷级数来计算 或运用数学软件 快速算出. 快速算出
上页
下页
返回
结束
x cos x − sin x 例11. 求 ∫ d x. 2 x
x cos x − sin x cos x sin x 解: ∫ dx = ∫ d x −∫ 2 d x 2 x x x
1 sin x = ∫ dsinx −∫ 2 d x x x 1 sin x 1 = sinx −∫ sinx (− 2 )d x −∫ 2 d x x x x 1 = sinx +C. x
上页
下页
返回
结束
本章主要内容
分部积分法
分部积分法我在做数学题时常用分部积分法,就是将题目中的各个已知量化成各个相等的部分,然后利用这些量之间的关系进行计算。
在解答比较复杂的数学题时,也经常会遇到需要利用分部积分法解决的问题。
分部积分法运用得好,能使解题过程变得十分简洁、准确,还能帮助我们更快地得出答案。
如:小明家距离学校60千米,每天上学平均要走10千米。
如果以每小时行走4千米为标准,求小明一周大约要走多少千米?不妨试试分部积分法:以每小时行走4千米为标准, 1天行走60/10=4(千米); 3天行走60/4=12(千米); 5天行走60/12=9(千米); 2周共行走60/16= 8(千米)。
如果用被除数和除数同时乘10得出的商做分母,除数与商同时除以10得出的积作分子,把两者结合起来列式,则可转化为两个因数相乘的形式。
可见,当因数a ×b×c时,积是一个等式,我们可以先约分再计算,得分母a×b×c=b×c,即a×b×c=b。
所以,最后可以写成, a×b×c=b, a×b=b,这样就可以直接约分了。
学习了分部积分法后,我在做应用题时不仅学会了转化思想,而且对分部积分法有了更深刻的认识。
在解应用题时,通常会涉及“路程=速度×时间”的数学模型,但有时实际情况中,还会涉及“路程=时间×速度”或“速度=路程/时间”的数学模型,所以,还要引导学生善于把现实中的数量关系与数学模型联系起来加以理解。
在实际生活中,这种情况很多,只要我们注意观察和思考,并进行适当的分析、推理,找出规律,解题就变得容易了。
这种方法应用起来非常简便,所以受到人们的青睐。
分部积分法既能使计算简单明了,又不易出错。
例如:某工厂生产一批零件,第一天生产120个零件,第二天生产120个零件,第三天生产120个零件,依此类推,最后完成任务时还剩20个没有生产。
高等数学课件 4第三节 分部积分法ppt
令 x tan t ( t ), 则
I
et sec3
t
2 sec2 t d t
2
e t cos t d t
e t sin t e t sin t d t
e t sin t e t cos t e t cos t d t
故 I 1 (sin t cos t)e t C
1 x2
2
2.
原式
ex 1 cos
dx x
ex sin x dx
1 cos x
ex
tan
x 2
C.
(第一个积分分部积分)
3. 求 sin(ln x)dx.
解: sin(ln x)dx x sin(ln x) xd[sin(ln x)]
x
sin(ln
x)
x cos(ln
x)
1 x
dx
x2 a2
(x2 a2) a2 dx
x2 a2
x2 a2 dx x x2 a2 x2 a2 dx
a2
dx
x2 a2
x x2 a2 a2 ln | x x2 a2 | x2 a2 dx
∴ 原式 = 1 x x2 a2 a2 ln ( x x2 a2 ) C.
1
earctanx
1 x2
x dearctanx 1 x2
1 1
x2
earctanx (1
x)
I
I 1 x earctanx C . 2 1 x2
例16.
求
(1
xe x x)2
dx.
解:
(1
xe x x)2
dx
xe
xd
1
1
x
xex 1 d( xex ) 1 x 1 x
高等数学:第三节 定积分的换元法、分部积分法
(1)换元的基本思路是方便有效地找出被积函
数的原函数。这与不定积分的换元思路相同。
(2)换元的同时一定要相应地变换积分的上、 下限。
(3)同不定积分的换元法不同的是,在用换元 法求出原函数后,不必代回原来的变量,这使 问题变得更加方便、简单。
(4)同不定积分一样,d x 可看作对 x 的微分 .
(5)上述换元公式也可反过来使用。
a
0
0
a
0 [ f (x ) f ( x) ]d x
即
a
a
f ( x)d x [ f ( x) f ( x) ] d x
a
0
a
a
即
f (x)d x [ f (x) f (x) ] d x
a
0
(1)若 f (x) 为偶函数,即 f (x ) f ( x )
a
a
a f (x)d x 2 0 f (x)d x
则
b
f (x)d x F(b) F(a)
a
由不定积分换元法有 f [ (t)] '(t)d t F[ (t)] c
f [ (t)] '(t)d t F[ (t)]
F[( )] F[( )]
b
F(b) F(a) a f (x)d x
几点注记:
b
a
f ( x)d x
f [ (t)] '(t)d t
第四节 定积分的换元法和分部积分法 一、定积分的换元法 不定积分的换元法
• 第一类换元公式
u (x)
f [(x)] '(x) d x
f (u) du (1)
• 第二类换元公式
x (t)
f (x) d x f [ (t) ] '(t)dt (2)
第三节 分部积分法
例2 求 xx22eexxddxx..x sin x cos解x C .x arctan反xd对x 幂第1三三节指ar分ct部an积1x x a2rcsin x
例若 解 解选3 求x求择cxxol2unsexxxxx=ddlldnxxn三xxx角ddxxxxxc函2x22..loee2nc第sdxx数oxe三xsdx,dx节22xx2v2分2xxxd=e2部eexxd幂xx例解 例 2积xx2xs2分2函i66cnl法noe数求求xsxxdedx,xxxs2则ieenxxxx2x2ss2iid反11d22更dnnxlcxxnxx对难o22xddsaa幂x积 xastt三i出 rsaancinnnsx指ixxxndex
解
令 x2
sxe=ca32ax22dtdatexxentxst(e12,aecat2(xxsdsetexaCcc1n=)22| 解sttldednctt|x,sIee则nacxt2taxn1(sxxd(etax2cx|en23xxtdxadxs2|a21)et)2c,n)2t3xCn2xt.2d2x1nln(dx(tt(22x
第三节 分部积分法
一、分部积分公式 二、举例
第三节 分部积分法
一、分部积分公式
由第一节我们已知道,对应于一个求导公式,就有 一个积分公式,在第二节中,利用复合函数的求导法则 得到了换元积分法,在本节中,将利用两个函数乘积 的求导法则,来推导另一个求积分的基本方法 分部积 分法.
第三节 分部积分法
(2) vdu 要比 udv 容易积出.
第三节 分部积分法
udv uv vdu
当被积函数是两类基本初等函数的乘积时, 可用如 下的办法来选择 u 和 dv :
选择 u 和 dv 时,可按照反三角函数、对数 函数、幂函数、三角函数、指数函数的顺序 (即“反、对、幂、三、指”的顺序),把排 在前面的那类函数选作 u,而把排在后面的 那类函数选作 v .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题 xe xdx ?
解决思路 利用两个函数乘积的求导法则.
设函数u u( x)和v v( x)具有连续导数,
uv uv uv, uv uv uv,
uvdx uv uvdx,
udv uv vdu. 分部积分公式 2
例1 求积分 x cos xdx .
e x sin x (e x cos x e xd cos x)
e x (sin x cos x) e x sin xdx 注意循环形式
e
x
sin
xdx
ex 2
(sin
x
cos
x)
C.
10
例10 sec3xdx secx sec2 xdx
secxd tan x
secx tan x tan x secx tan xdx
ln 5
ln 5
5
例4 求积分 x arctan xdx.
解 x arctan xdx arctan xd( 1 x2 )
x2 arctan x
x2
2
d(arctan x)
2
2
x2 arctan x
2
x2 2
1
1 x
2
dx
x2 arctan x
2
1 2
(1
1
1 x
2
)dx
x2 arctan x 1 ( x arctan x) C .
Q( x)arccos xdx
Q( x)arctan xdx
Q( x)ln xdx
例7
x arcsinxdx
1 2
arcsin
xdx2
1 [x2 arcsin x x2 dx]
2
1 x2
1 [x2 arcsin x
1 x2 1 dx]
2
1 x2
1 x2 arcsin x 1 [1 arcsin x 1 x 1 x2 ] 1 arcsin x 8 C
解(一) x cos xdx
x2 cos x
x2 d cos
2
2
cos xd( 1 x2 )
x
x2 2
2
cos x
x2 sin xdx
2
显然,u,v 选择不当,积分更难进行.
解(二) x cos xdx xd sin x
x sin x sin xdx
x sin x cos x C.
2
22
2
2
例8 求积分 sin(ln x)dx.
解 sin(ln x)dx xsin(ln x) xd[sin(ln x)]
x sin(ln
x)
x
cos(ln
x)
1 x
dx
x sin(ln x) x cos(ln x) xd[cos(ln x)]
x[sin(ln x) cos(ln x)] sin(ln x)dx
3
例2 求积分 x2e xdx.
解 x2e xdx x2dex
x2e x 2 xe xdx
x2e x 2 xdex
x2e x 2( xe x e x ) C.
总结 若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函
数为 u, 使其降幂一次(假定幂指数是正整数)
合理选择 u, v ,正确使用分部积
分公式
uvdx uv uvdx
16
习题4 3 P212
双数
1
1 x2dx
1 sec2 tdt
1 tan2 t
sec tdt
ln(sec t tan t) C ln( x 1 x2 ) C
x
arctan 1 x2
x
dx
1 x2 arctan x ln( x 1 x2 ) C .
13
例 12 已知 f ( x)的一个原函数是ex2 , 求 xf ( x)dx .
2
2
6
例5 求积分 x3 ln xdx.
解 x3 ln xdx ln xd( 1 x4 ) 4
1 4
x4lnx来自1 4x3dx
1 x4 ln x 1 x4 C .
4
16
例6
ln x
x
2
dx
ln
xd
1 x
[
1 x
ln
x
1 x
1dx] x
1 x
ln x
1 x
C
7
一般地:
Q(x)arcsinxdx
解 xf ( x)dx xdf ( x) xf ( x) f ( x)dx,
f ( x)dx f ( x),
f ( x)dx ex2 C ,
两边同时对 x求导, 得 f ( x) 2 xex2 ,
xf ( x)dx xf ( x) f ( x)dx
2
x
2e
x
2
sin(ln
x)dx
x [sin(ln 2
x)
cos(ln
x)]
C.
9
例9 求积分 e x sin xdx.
解 e x sin xdx sin xde x
e x sin x e xd(sin x) e x sin x e x cos xdx e x sin x cos xde x
secx tan x (sec2 x 1)secxdx
secx tan x sec3xdx secxdx secx tan x sec3xdx ln(secx tan x)
sec3 xdx 1 [secx tan x ln(secx tan x)] C
2
11
例11 求积分 x arctan x dx.
1 x2
解 1 x2 x , 1 x2
x
arctan 1 x2
x
dx
arctan
xd
1 x2
1 x2 arctan x 1 x2d(arctan x)
1 x2 arctan x
1
x2
1
1 x2
dx
12
1 x2 arctan x 1 dx
1 x2 令 x tan t
ex2
C.
14
例13
x
e2
cos
x
sin x
dx
sin x
x
e2
cos x dx
x
e2
sin x
x
x
2 e 2d sin x e 2
sin xdx
sin xdx
x
x
x
2e 2 sin x e 2 sin xdx e 2 sin xdx
x
2e 2 sin x C
15
二、小结
4
一般地:
P(x)sinxdx
P(x)cos xdx
P( x)exdx
P( x)axdx
例3
(2x
3)5x
dx
1 ln 5
(2
x
3)d
5x
1 [(2x 3)5x 5x d(2x 3)]
ln15 [(2x 3)5x 2 5x dx] ln 5
1 [(2x 3)5x 2 1 5x ] C