解题技巧专题:比例式、等积式的常见证明方法
最新北师版九年级初三数学上册解题技巧专题:比例式、等积式的常见证明方法

解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 找线段对应的三角形,利用相似证明1.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,并且∠BAC=∠BDC =∠DAE.求证:AB AC =AE AD.◆类型二 利用等线段代换2.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =AC AD.3.★如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F.求证:DE 2=BE·CE.◆类型三找中间比利用等积式代换4.如图,在△ABC中,点D为BC的中点,AE∥BC,ED交AB于P,交AC的延长线于Q.求证:PD·EQ=PE·DQ.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE =∠CAD.∵∠BAC=∠BDC,∠BF A=∠CFD,∴180°-∠BAC-∠BF A=180°-∠BDC-∠CFD,即∠ABE=∠ACD,∴△ABE∽△ACD,∴ABAC=AE AD.证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB=∠ADC.∴△ABE∽△ACD,∴ABAC=AE AD.2.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ACB =∠ABE .又∵∠CAB =∠BAE ,∴△ACB ∽△ABE ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD.3.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA=∠AEC ,∴△BEA ∽△AEC .∴AE CE =BE AE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE . 4.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQ EQ=CD AE .∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BD AE.∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQ EQ,即PD ·EQ =PE ·DQ .励志名言:1、学习从来无捷径,循序渐进登高峰。
相似三角形模型总结2(比例式、等积式的常见证明方法)

相似三角形模型总结2(比例式、等积式的常见证明方法)XXX∠XXX,∴△AEB∽△CEB,∴AE/AC=EB/EC.又∵△ADB∽△ACB,∴AD/AC=DB/BC.∴AE/AD=EB/DB,∴AE/AC=EB/EC=EB/(EB+DB)。
ACADAE=AC·EB/(EB+DB)=AC·EB/AB.又∵△ABE∽△CDE,∴EB/DE=AB/CD,∴EB=AB·DE/CD.∴AE=AC·AB·DE/(AB·DE+CD·EB)=AC·AB·DE/(AB·DE+CD·AB·DE/CD)=AC·AB·DE/(AB+DB)=AC·DE/AD.又∵△ADE∽△ACB,∴DE/AC=AD/AB,∴DE=AC·AD/AB.∴AE=AC·DE/AD=AC·AC·AD/(AB·AD)=AC2/AB,∴AE/AC=AC/AB=AC/AD。
AE/AC=AD/AC,即AE/AC=AE/AD-∵AC=AD,∴AE/AC=AE/AE-DE,∴AE/AC=DE/AE,∴AE2=AC·DE,∴AE/AC=DE/AE=AE2/AC·AE=AE/AD,即AE=AC·AD/AB=AC2/AB。
XXX,∴=.1.由于文章中没有明显的格式错误,直接删除明显有问题的段落。
2.将原文中的符号改为中文,重新表述如下:已知在三角形ABE和ACB中,∠BAE=∠CAB,因此△ABE∽△ACB。
根据相似三角形的性质,可以得到AE/AB=AC/AE,所以AE²=AB×AC。
又因为AB=AD,所以AE²=AD×AC。
因此,DE²=AE²-BE²=AD×AC-BE²=BE×CE。
(贵州版)北师大版2020年中考数学专题9.解题技巧专题:比例式、等积式的常见证明方法

解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 找线段对应的三角形,利用相似证明1.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,并且∠BAC =∠BDC =∠DAE.求证:AB AC =AE AD.◆类型二 利用等线段代换2.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =ACAD.3.★如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F.求证:DE 2=BE·CE.◆类型三 找中间比利用等积式代换 4.如图,在△ABC 中,点D 为BC 的中点,AE ∥BC ,ED 交AB 于P ,交AC 的延长线于Q.求证:PD·EQ =PE·DQ.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .∵∠BAC =∠BDC ,∠BF A =∠CFD ,∴180°-∠BAC -∠BF A =180°-∠BDC -∠CFD ,即∠ABE =∠ACD ,∴△ABE ∽△ACD ,∴AB AC =AE AD. 证法二:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .∵∠BEA =∠DAE +∠ADE ,∠ADC =∠BDC +∠ADE ,∠DAE =∠BDC ,∴∠AEB =∠ADC .∴△ABE ∽△ACD ,∴AB AC =AEAD.2.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ACB =∠ABE .又∵∠CAB =∠BAE ,∴△ACB ∽△ABE ,∴AB AE =ACAB .又∵AB =AD ,∴AB AE =ACAD.3.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA =∠AEC ,∴△BEA ∽△AEC .∴AE CE =BEAE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE .4.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQEQ=CDAE.∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BDAE .∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQEQ ,即PD ·EQ =PE ·DQ .。
相似专题四证比例式或等积式的技巧

专题训练
∴∠BAD=∠DAC.∴∠B=∠CAP. 又∵∠APC=∠BPA, ∴△PAC∽△PBA.∴ PA = PC .
PB PA
即PA2=PB•PC. ∵PA=PD, ∴PD2=PB•PC.
∴∠CAB+∠CBE=90°.
∴∠ACE=∠CBE.∴△AEC∽△CEB.
∴
AE CE
=
CE BE
,即CE2=AE•BE.
∴CE2=DE•PE.
专题训练
技巧 5 两次相似法
8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC 的平分线BE交AC于E,交AD于F. 求证:BF = AB .
BE BC
第二十七章 相似
四、证比例式或等积式的技巧
专题训练
证比例式或等积式思路:
通常通过平行线分线段成比例或相似三角形,得到 成比例线段,从而得到比例式。等积式可由比例式 转化而来。
专题训练
技巧 1 构造平行线法
1.如图,在△ABC中,D为AB的中点,DF交AC于点 E,交BC的延长线于点F. 求证:AE·CF=BF·EC.
专题训练
4.如图,在△ABC中,∠BAC=90°,M为BC的中点, DM⊥BC交CA的延长线于D,交AB于E. 求证:AM2=MD·ME.
证明:∵DM⊥BC,∠BAC=90°, ∴∠B+∠BEM=90°,
∠D+∠DEA=90°. ∵∠BEM=∠DEA, ∴∠B=∠D. 又∵M为BC的中点,∠BAC=90°, ∴BM=AM.
专题训练
∴∠B=∠BAM.
∴∠BAM=∠D,即∠EAM=∠D.
又∵∠AME=∠DMA.
∴△AME∽△DMA.
∴ AM = MD
ME AM
,即AM2=MD·ME.
例说证明线段比例式或等积式的方法与技巧

D
B
在这一个图形中,有两个 三 对相似,有 垂直,有____ 四 对互余的角,有_____ 三 ___ 组等积关系,它们分别是 AC2=AD· AB BC2=BD· AB
CD2=AD· BD
二 找相等的量(比、线段、等积式)替换
1等线段替换
例1 已知等腰 ABC中,AB=AC,AD BC于D, CG AB,BG分别交AD、AC于E、F, 求证:BE EF EG
D
F
C
利用等比 式代换
2.已知:如图, ∠ACB=90°,AD=DB,DE⊥AB 于D交AC于E,交BC的延长线于F,试说明: DC2=DE· DF
A
D
E
F
C
B
点,若∠A=35°, ∠C=85°,∠AED=60°,
则AD· AB= AE· AC。
A D E B C
一、三点定形法
• 注:三点定形法证明等积式的一般步骤: • 1.先把等积式转化为比例式; • 2.观察比例式的线段确定可能相似的两个 三角形; • 3.再找这两个三角形相似所需的条件.
C
A
相似三角形
——比例式、等积式的几种常见证明方法
例.弦AB和CD相交于⊙o内一点P, 求证:PA· PB=PC· PD
∴ ∠A=∠D 同理: ∠C=∠B ∴△PAC∽△PDB
O
P
⌒ ∵∠A、∠D都是CB所对的圆周角 A
D
B C
PA PC PD PB
即PA· PB=PC· PD
练习:已知D、E分别是△ABC的边AB,AC上的
2
2等比替换
例2已知梯形ABCD中,AB CD,AC、 BD交于点O,BE AD交AC的延长线 于点E,求证:OA 2 OC OE
比例式、等积式证明的常用方法

比例式、等积式证明的常用方法一、三点定形法例1 如图,在Rt △ABC 中,90=∠ACB °,AB CD ⊥于D ,E 为AC 的中点,ED 的延长线交CB 的延长线于点P ,求证:PC PB PD ⋅=2例 2 如图,在ABC ∆中,AC AB ⊥,D 为BC 中点,BC DE ⊥交AC 于F ,交BA 延长线于E . 求证:DF DE AD ⋅=2注:三点定形法证明等积式的一般步骤:1.先把等积式转化为比例式;2.观察比例式的线段确定可能相似的两个三角形;3.再找这两个三角形相似所需的条件.二、找相等的量(比、线段、等积式)替换1、等线段替换例1 已知等腰ABC ∆中,AC AB =,BC AD ⊥于D ,AB CG //,BG 分别交AD 、AC 于E 、F ,求证:EG EF BE ⋅=21 D F A B C E 2例2 如图,在ABC ∆中,AC AB =,BC AD ⊥于D ,AC BE ⊥于E ,BC EG ⊥于G ,L 是AF 的中点.求证:DL EG CD ⋅=22、等比替换例3 已知梯形ABCD 中,AB ∥CD ,AC 、BD 交于点O ,BE ∥AD 交AC 的延长线于点E ,求证:.2OE OC OA ⋅=例4 如图,在ABC ∆中,AC AB ⊥,BC AD ⊥,E 为AC 中点,ED 延长线交AB 延长线于F . 求证:DF AC AF AB ⋅=⋅3、等积替换例5 如图,在ABC ∆中,AD 、BF 分别是BC 、AC 边上的高,过D 作AB 的垂线交AB 于E ,交BF 于G ,交AC 延长线于H .求证:EH EG DE ⋅=2.例6 如图,已知CE 是Rt △ABC 斜边AB 上的高,在EC 的延长线上取一点P ,连结AP ,AP BG ⊥垂足为G ,交CE 于D ,求证:DE PE CE ⋅=2.注:当要证明的比例式中的线段在同一条直线上时,可以用相等的比、相等的线段、相等的等积式来替换相应的量,把看似无路可走的题目盘活,从而达到“车到山前疑无路,柳暗花明又一村”的效果.三、把求证等积式、比例式转化为求证垂直、求证角、线段相等,使证明简化例1 已知在正方形ABCD 中,E 是AB 的中点,F 是AD 上的一点,且AD AF 41=,CF EG ⊥,垂足为G ,求证:FG CG EG ⋅=2.A B C H D G E F四、利用相似三角形的性质例1 如图,ABC Rt ∆中,90=∠ACB °,AB CD ⊥于点D ,CAB ∠的平分AE 交CD 于点F ,交CB 于点E .求证:AE CD CB AF ⋅=⋅.注:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比,我们可以利用这些性质来证明有关的等积式往往会起到事半功倍的效果!练习巩固:1.如图,点D 、E 分别在边AB 、AC 上,且C ADE ∠=∠求证:(1) ADE ∆∽ACB ∆; (2)AC AE AB AD ⋅=⋅.2.如图,ABC ∆中,点DE 在边BC 上,且ADE ∆是等边三角形,︒=∠120BAC求证:(1)ADB ∆∽CEA ∆;(2)CE BD DE ⋅=2; (3)BC AD AC AB ⋅=⋅.3.如图,在平行四边形ABCD 中,E 为BA 延长线上一点,ECA D ∠=∠.求证:EB AC EC AD ⋅=⋅4.如图,AD 为ABC ∆中BAC ∠的平分线,EF 是AD 的垂直平分线.求证:FB FC FD ⋅=2。
15.比例式、等积式的常见证明方法

语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学 习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
采青 春 风
高考总分: 692分(含20分加分) 语文131分 数学145分 英语141分 文综255分 毕业学校:北京二中 报考高校: 北京大学光华管理学 院
北京市文科状元
来自北京二中,高考成绩672分,还有20 分加分。‚何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。‛ 班主任吴京梅说,何旋是个阳光女孩。 ‚她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。‛吴老师说,何旋考出好成绩的秘 诀是心态好。‚她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区
∴
∵AD⊥BC,E为直角边AC中点 ∴DE=EC ∴∠3=∠C 又∵∠3=∠2,∠1=∠C ∴∠1=∠2 而∠F是△FBD与△FDA的公共角 ∴△FBD∽△FDA
DF BD AF AD AB DF ∴ AC AF
∴
AB BD AC AD
∴AB· AF=AC· DF.
方法总结 证明线段比例式或等积式时,如果按类型一、类型二的方法仍无法证 明,可以尝试将等积式化为比例式,结合图形找到能够与比例式中的两个 比分别相等的中间比,从而证明所求证的结果成立.
C
∴∠B=∠1
「初中数学」证比例式或等积式的六种常用技巧

「初中数学」证比例式或等积式的六种常用技巧证比例式或等积式的题目时,若问题中无平行线或相似三角形,则需要构造平行线或相似三角形,得到成比例线段.若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若比例式或等积式中的线段分布不在两个三角形中,可尝试将它们转化到两个三角形中;若比例式或等积式中的线段分布在两个明显不相似的三角形中,可尝试用中间比代换.技巧一.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC 的延长线于点F,求证AE×CF=BF×EC.【分析】由AE×CF=BF×EC,变为AE/BF=EC/CF或AE/EC=BF/CF,成比例的线段明显的组不成三角形,于是寻求中间比进行代换,过C点作CM∥AB,交DF于M,如图,则BF/CF=BD/CM,AE/EC=AD/CM,而D为AB的中点,则AD=BD,∴BF/CF=AE/EC,即AE×CF=BF×EC.另,过C点作CM∥DF交AB于M,如图则AE/EC=AD/DM,又BF/CF=BD/DM,而AD=BD,∴AE/EC=BF/CF,即AE×CF=BF×EC.另,过B点作BM∥AC,交FD的延长线于M,如图则BF/CF=BM/EC,而D为AB的中点,易证AE=BM,∴BF/CF=AE/EC,即AE×CF=BF×EC,这里巧用AE等量代换了BM,得证.另,过B点作BM∥DF交AC的延长线于M,如图则BC/CF=CM/EC,∴(BC+CF)/CF=(CM+EC)/EC,即BF/CF=EM/EC,而DE是△ABM的中位线,AE=EM,∴BF/CF=AE/EC,即AE×CF=BF×EC.另,过A点作AM∥DF交BF的延长线于M,如图∵D为AB的中点,∴BF=FM,又AE/EC=FM/CF,∴AE/EC=BF/CF,即AE×CF=BF×EC.另,过A点作AM∥BC,交FD的延长线于M,如图则AM/CF=AE/EC,而D为AB的中点,易证AM=BF,∴BF/CF=AE/EC,即AE×CF=BF×EC.技巧二.构造相似三角形法2.已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,求证AB×DF=BC×EF.【分析】由AB×DF=BC×EF,变形为AB/BC=EF/DF,成比例的线段可构成△ABC,而EF,DF构不成三角形,可寻求中间比代换,过D作DM∥BE,交AC于M,如图则出现A型相似,△ADM∽△ABC;X型相似,△CEF∽△MDF,∴有AB/BC=AD/DM,EF/DF=CE/DM,而AD=CE,∴AB/BC=EF/DF,即AB×DF=BC×EF.另,过E点作EM∥AB,交AC的延长线于M,如图同学们自己证一下.技巧三,三点定型法3.如图,在△ABC中,∠BAC=90°,M是BC的中点,MD⊥BC,交AB于E,交CA的延长线于D,求证AM²=DM×EM.【分析】由AM²=DM×EM,化为AM/DM=EM/AM,锁定两个三角形ADM与△EAM,看是否相似,∵∠BAC=90°,M是BC的中点,∴BM=AM,∴∠B=∠BAM,而∠D,与∠B都是∠C的补角,∠B=∠D=∠EAM,∵∠AEM=∠D+∠DAE,∠DAM=∠EAM+∠DAE,∴∠AEM=∠DAM,又∠AME=∠DMA,∴△AME∽△DMA,∴AM/DM=EM/AM,即AM²=DM×EM.技巧四.等积过渡法4.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D,求证CE²=DE×PE.【分析】从结论分析,成比例的线段不在三角形中,那么就要找等量代换,由BG⊥AP,DE⊥AB,∴∠AEP=∠BED=∠AGB=90°,∵∠P与∠ABG都是∠PAB的余角,∴∠P=∠ABG,∴△AEP∽△DEB,∴AE/DE=PE/BE,即AE×BE=DE×PE,又CE⊥AB,∠ACB=90°,易证△AEC∽△CEB,∴AE/CE=CE/BE,即AE×BE=CE²,∴CE²=DE×PE.技巧五.等比代换法5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AC的中点,连接ED并延长,交AB的延长线于点F,求证AB/AC=DF/AF【分析】由于AD⊥BC,∠BAC=90°,∴∠ADB=∠ADC=90°,又E是AC的中点,∴DE=EC=AC/2,∴∠C=∠CDE,又∠CDE=∠FDB,∵∠BAD+∠DAC=90°,∠C+∠DAC=90°,∴∠BAD=∠C=∠FDB,又∵∠F=∠F,∴△FDB∽△FAD,∴DB/AD=DF/AF,∵∠ADB=∠ADC,∠BAD=∠C,∴△ABD∽△CAD,∴BD/AD=AB/AC,∴AB/AC=DF/AF.技巧六.等线段代换法6.在△ABC中,AB=AC,AD是BC边上的中线,CF∥AB,BF交AD于点P,交AC于点E,求证PB²=PE×PF.【分析】由结论看,PB,PE,PF三线段在同一条线上,无法找到相似三角形,考虑代换,连接PC,而AB=AC,AD是BC边上的中线,则AD垂直平分BC,∴PB=PC,∴∠PBC=∠PCB,而∠ABC=∠ACB,∴∠ABP=∠ACP,又∵CF∥AB,∴∠F=∠ABP,∴∠F=∠ACP,又∠EPC=∠FPC,∴△PEC∽△PCF,∴PC/PF=PE/PC,∴PC²=PE×PF,∵PB²=PE×PF.如图【总结】几何证明题,多种多样,证等积式等比例式,究竟用什么方法,因题而异,考虑题中的条件,灵活代换,可以是等线段代换.等比代换,等积代换等。