三视图还原技巧
完整版三视图还原技巧

核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
三视图还原几何体口诀

三视图还原几何体口诀
打地基,长对正;俯侧图,宽相等;正侧高,疯狂升。
释义:还原几何体,先从俯视图“打地基”,俯视图的长和正视图的长相等;俯视图和侧视图的宽相等;正视图和侧视图的高相等,据此“疯狂升”画出几何体的高。
折痕现,平直等,斜投影。
释义:每个面的折痕是要表示出来的;从每个方向观察到的横平竖直的线段长度,在三视图中显示的长度与实际的长度相等的;从每个面观察到的不是横平竖直的线段,在三视图中对应的其实是这些线段在后面的投影,投影长度和后面的高相等。
眼见为实不见虚,先虚后实立体成。
释义:凡是从正面看得见的线,都画成实线,凡是从正面看不见的线,都画成虚线。
在画几何体的时候,先把所有的线段都画成虚线,然后再把正面看得见的线都画成实线,立体图形就画出来了。
(完整版)三视图还原技巧

核心内容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM 如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A 、B 、C 出不可能有垂直向前拉升的线条,而在M 出必有垂直向前拉升的线条MD ,由俯视图和侧视图中长度,确定点D 的位置如图:(3)将点D 与A 、B 、C 分别连接,隐去所有的辅助线条便可得到还原的几何体D —ABC 如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D —ABC ,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
三视图复原技巧

当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
立体几何之三视图高效还原法:拔高法,提升解题效率!

立体几何之三视图高效还原法:拔高法,提升解题效率!今天我们来讲一下立体几何里的三视图。
三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,能快速还原出对应的立体图形,那么这道问题就马上解决。
它无非就是考察几个点:形状判断、由两个试图读出另一视图、考察综合运算——求多面体棱长最大值、求体积或者表面积。
对于这些问题,只要把立体图形还原出来,这个题目没有任何难度了。
如果同学的空间想象稍微偏弱,那种问题就不会得到快速解决。
那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是这些方法都不能最高效、最准确的还原三视图。
如果所有的立体图形都用三线交汇、或者正方体切等方法,解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法。
六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来。
首先,我们来看一下拔高法的步骤:1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;2、由主、侧视图的左、中、右找出所被拔高的点。
例如,我们先将俯视图作底座。
然后由俯视图看主视图,在俯视图和主视图上都标出它们相对应的节点左、中、右。
现在,我们可以得出结论,从俯视图来看,右边被拔高有三种可能:B点被拔高,或者C点被拔高,或者BC边整条线被拔高。
接着,由俯视图来看侧视图,在俯视图和侧视图上都标出相应的节点左、中、右。
从俯视图可以看出,左侧被拔高了。
可能的情况是D点被拔高,或者C点被拔高,或者DC边整条线被拔高。
根据图中的③和④,可以确定它们公共部分C点被拔高。
因此,我们可以直接在直观图里将C点拔高,快速得出立体图形,发现它是一个四棱锥。
拔高法可以帮助同学解决90%以上的还原三视图的题目,但还有10%的偏难题型不能用拔高,需要用到终极结论一和终极结论二,需要掌握方法。
由三视图还原几何体的方法及技巧

由三视图还原几何体的方法及技巧
通过三视图来还原几何体是许多机械设计中常用的一种方式,它
主要是将物体的三个视图分别表示为侧视、正面视图和俯视图,从而
获得物体的整体结构。
还原几何体是建立任何零部件的基础,因此学
会还原几何体的方法十分重要,这里就给大家介绍一下三视图还原几
何体的方法及技巧。
首先,需要根据所提供的三视图,在平面上画出它们的几何图形,包括侧视图正面视图和俯视图。
其次,我们需要确定几何图形的轴心,将侧视图图形看作中心轴,而正面视图图形和俯视图图形则作为各轴
的切面。
再次,把几何图形的各个边长统称为参数,将其加以记录,
以备后用。
最后,以中轴为旋转轴,将正面视图和俯视图旋转,将它
们的角度根据参数的记录,按照实际角度旋转,即可获得物体的三维
图形,从而完成几何体的还原。
通过以上步骤,我们可以轻松地还原几何体,它不仅能获得物体
的三维图形,还能按照实际角度,对物体进行设计。
当然,三视图还
原几何体也有其局限性,例如,它不能精确的反映物体的真实形状,
因此在使用时,应该谨慎考虑,以免出现设计上的错误。
总之,在机械设计中,三视图还原几何体是常用的一种方式,熟
练掌握这一技术对于我们来说非常重要,希望以上介绍能为大家在机
械设计中提供一定的帮助。
三视图还原技巧

三视图还原技巧在汽车、飞机等机械类产品的设计中,三视图是非常重要的设计元素,可以通过三视图来展示机械产品的各个细节,以及各个部分的比例和关系。
本文将介绍一些三视图还原的技巧,以帮助读者更好地理解和掌握这项技术。
什么是三视图三视图是指在设计中,将产品分别从正面、侧面和俯视图三个角度进行绘制,从而得到三个视图图形。
每个视图可以展示不同的细节和特征,每个角度都有不同的功能。
三视图是机械设计绘图的基础,通常会用到CAD软件进行绘制。
在三维设计中,三视图也是设计师绘制草图的基础。
绘制三视图需要掌握一些基础技巧,下面我们将进行详细介绍。
基础技巧1. 按比例绘图在绘制三视图时,需要按照实际比例进行绘制。
具体来说,在绘制时需要测量出产品的实际尺寸,然后将其按照比例绘制到草图中。
比例通常采用常用的比例尺,例如:1:1,1:2,1:5等等。
根据实际需要和草图大小,选择合适的比例尺进行绘制。
2. 注重细节三视图是展示机械产品的细节的重要手段。
因此,在绘制三视图时,需要特别注重产品的细节部分的描绘。
在绘制时需要尽可能还原产品的每个部分,包括各种细节和小的轮廓。
对于机械产品来说,每个部分的大小、形状和位置都很重要,因此需要绘制清晰、准确的细节图,避免出现模糊或误差的情况。
3. 保持一致性三视图是从不同角度观察机械产品的图形,因此需要确保三个视图图形的一致性。
保持视图图形的一致性可以帮助观察者更好地理解产品的形状和尺寸。
在绘制三视图时,需要特别注意各个视图图形之间的一致性。
每个视图的大小、比例、角度和位置都需要保持一致,以便在观察三个视图时可以更好地了解机械产品。
4. 注重比例关系在绘制三视图时,特别要注重产品中各部分之间的比例关系。
比例关系决定了机械产品的整体形状和尺寸。
绘制时需要确保各个部分之间的比例关系正确,否则机械产品的整体形状会失衡或失真。
在绘制三视图时,可以通过比较尺寸来检查各部分的比例关系是否正确。
如果发现比例关系出现问题,及时调整绘图可以防止出现较大的偏差。
三视图还原几何体技巧

三视图还原几何体技巧是一门技术,通过查看三个视图,即正视图、侧视图和俯视图,以便从这三个图形中重建几何体。
这是一项重要的技术,可以帮助我们更加清楚地理解和
掌握几何体的特征和性质。
要用三视图还原几何体,首先要掌握这三种视图的特点:正视图是几何体的正面,侧视图是几何体的侧面,俯视图是几何体的俯视图。
在查看三视图的同时,要注意观察他们的长度、深度和宽度的比例,以及三视图之间的关系。
其次,要善于利用现有的几何体属性,如立方体的面、边和角,来判断几何体的形状。
比如,如果正视图和侧视图都是相互垂直的,而且正视图和俯视图都是正方形,可以根据这些特征判断几何体可能是立方体。
最后,要注意观察几何体的位置关系,比如几何体的每一面是否平行,是否有相互垂
直的面,边和角是否平行等。
这些特征可以帮助我们更准确地重建几何体。
总之,要想用三视图还原几何体,除了掌握这三种视图的特点外,还要善于利用几何
体的属性和位置关系,以此来判断几何体的形状。
用这种方法,可以使我们更加准确地还
原几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图还原解读
解决三视图问题,尤其是一些比较复杂的三视图还原问题,需要极强的空间想象能力.这给好多同学(包括一些空间想象能力挺强的同学)造成了一定的压力,如果在高考中碰到一个稍有些不常规的三视图,绝对会给在高考中以数学成绩为倚傍的同学设置了一道拦路虎,要是稍微一心慌,那我们与这一道5分题就失之交臂了,也会给后面的答题造成心理影响.比如2014年全国1卷第12题,当时就将相当大一部分同学斩于马下.本文就三视图还原总结为“三线交汇得顶点”现从这道高考题入手.
2014年高考全国I 卷理科第12题:如图,网格纸上小正方形
的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各
条棱中,最长的棱的长度是()
A.B.6 C.D.4
正确答案是B.
解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正
方体作为载体对三视图进行还原.先画出一个正方体,如图(1):
第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在
的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图
中红线上的点投影而成的.
第二步,侧视图有三个顶点,画出它们的原象所在的线段,
用蓝线表示,如图(3).
第三步,俯视图有三个顶点,画出它们的原象所在的线段,
用绿线表示,如图(4).
最后一步,三种颜色线的公共点(只有两种颜色线的交点不
行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至
此,易知哪条棱是最长棱,求出即可
大家是不是体会到了用这种方法还原三视图的妙处呢?这种方法的核心其实就是七个字:“三线交汇得顶点”.这样是不是比我们以前那种天马行空的遐想接地气一些呢?由此,我们在三视图还原上就可以七字真言扫天下了.
此方法更适用于解决三棱锥的问题,画直观图后需要验证一下是否符合。
由三视图画直观图的方法
由立体图形的三视图想象直观图一向是诸多考试的必考项目,而这也
恰好是很多空间想象能力不足的同学的噩梦.其实利用三视图的原理可以
很有效的帮助直观图的建立,下面结合一例说明这一方法,
三视图选自2015年北京市东城区高三一模理科数学选择第7小题.
首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.
这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.
练习1、练习2、
练习1答案:练习2答案:。