(推荐)高中物理动能动量历年真题
物理动能与动能定理题20套(带答案)

μmg=kx
对木板由动能定理得 μmgx=Ep1+ 1 Mv2 2
同理,当 m′= 1 m,平板达最大速度 v′时, mg =kx′
2
2
1 μmgx′=Ep2+ 1 Mv′2
2
2
由题可知 Ep∝x2,即 Ep2= 1 Ep1 4
解得 v′= 1 v. 2
8.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将
=0.30 ,BCD 是半径为 R=0.2m 的光滑圆弧轨道,它们相切于 B 点,C 为圆弧轨道的最低
点,整个空间存在着竖直向上的匀强电场,场强 E = 4.0×103N/C,质量 m = 0.20kg 的带电滑 块从斜面顶端由静止开始滑下.已知斜面 AB 对应的高度 h = 0.24m,滑块带电荷 q = 5.0×10-4C,取重力加速度 g = 10m/s2,sin37°= 0.60,cos37°=0.80.求:
(2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。
【答案】(1) t
3 3
s;(2)
1 32
3 4
或
3
13 16
。
【解析】
【分析】
【详解】
(1)设滑块从点 A 运动到点 B 的过程中,加速度大小为 a ,运动时间为 t ,则由牛顿第二
定律和运动学公式得
【答案】(1) 4v02 Epm ;(2) mg ;(3) v
9 g mg
2
【解析】
【分析】
(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平
衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度
物理动能动量试题及答案

物理动能动量试题及答案一、选择题1. 物体的动能与下列哪个因素无关?A. 物体的质量B. 物体的速度C. 物体的形状D. 物体的颜色答案:C2. 一个物体的动量是其质量和速度的乘积,以下哪项描述正确?A. 动量是标量B. 动量是矢量C. 动量与物体的质量成反比D. 动量与物体的速度无关答案:B3. 根据动能定理,下列哪种情况会导致物体动能增加?A. 物体的质量增加,速度不变B. 物体的质量不变,速度增加C. 物体的质量减少,速度减少D. 物体的质量减少,速度不变答案:B二、填空题4. 动能的公式是_______,其中Ek表示动能,m表示物体的质量,v表示物体的速度。
答案:Ek = 1/2 mv^25. 动量的公式是_______,其中p表示动量,m表示物体的质量,v表示物体的速度。
答案:p = mv三、计算题6. 一辆质量为1000kg的汽车以20m/s的速度行驶,求汽车的动能。
答案:Ek = 1/2 * 1000kg * (20m/s)^2 = 200000J7. 一个质量为5kg的足球以10m/s的速度飞出,求足球的动量。
答案:p = 5kg * 10m/s = 50kg·m/s四、简答题8. 描述动能和动量在物理学中的重要性。
答案:动能和动量是物理学中描述物体运动状态的两个重要物理量。
动能反映了物体运动的能量,与物体的质量和速度的平方成正比,是能量守恒定律在运动物体中的应用。
动量则反映了物体运动的量,与物体的质量和速度有关,是动量守恒定律的基础,也是碰撞和爆炸等现象研究的关键。
两者在物理学中有着广泛的应用,如在力学、热力学、量子力学等领域都有重要的地位。
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高中物理动量经典大题练习(含答案)

1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
高中物理动量能量典型试题

中学物理动量能量典型试题1.(14分)某地强风的风速是20m/s ,空气的密度是ρ=1.3kg/m 3。
一风力发电机的有效受风面积为S =20m 2,假如风通过风力发电机后风速减为12m/s ,且该风力发电机的效率为η=80%,则该风力发电机的电功率多大?2、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg 的小球若干个,甲和他的车及所带小球的总质量为M 1=50kg ,乙和他的车总质量为M 2=30kg 。
现为避开相撞,甲不断地将小球以相对地面16.5m/s 的水平速度抛向乙,且被乙接住。
假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球?3.如图11所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ。
最初木板静止,A 、B 两木块同时以方向水平向右的初速度V 0和2V 0在木板上滑动,木板足够长, A 、B 始终未滑离木板。
求: (1)木块B 从刚起先运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移; (2)木块A 在整个过程中的最小速度。
4.总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是马上关闭油门,除去牵引力,如图13所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?5.如图14所示,在一光滑的水平面上有两块相同的木板B 和C 。
重物A (A 视质点)位于B 的右端,A 、B 、C 的质量相等。
现A 和B 以同一速度滑向静止的C ,B 与C 发生正碰。
碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力。
已知A 滑到C 的右端面未掉下。
试问:从B 、C 发生正遇到A 刚移动到C 右端期间,C 所走过的距离是C 板长度的多少倍?图11 V 02V0 图146.面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a ,密度为水的21,质量为m ,起先时,木块静止,有一半没入水中,如图38所示,现用力F 将木块缓慢地压到池底,不计摩擦,求(1)从起先到木块刚好完全没入水的过程中,力F 所做的功。
高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编( 含答案 )一、高考物理精讲专题动量定理1.半径均为R 5 2m的四分之一圆弧轨道 1 和 2 如下图固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R,让质量为 1kg 的小球从圆弧轨道 1 的圆弧面上某处由静止开释,小球在圆弧轨道 1 上转动过程中,协力对小球的冲量大小为5N s ,重力加快度 g 取10m / s2,求:(1)小球运动到圆弧轨道 1 最低端时,对轨道的压力大小 ;(2)小球落到圆弧轨道 2 上时的动能大小。
【答案】( 1)5(22)N (2)62.5J 2【分析】【详解】(1)设小球在圆弧轨道 1 最低点时速度大小为v0,依据动量定理有I mv0解得 v05m / s在轨道最低端,依据牛顿第二定律,2F mg m v0R2N解得 F 5 22依据牛顿第三定律知,小球对轨道的压力大小为 F 522N 2(2)设小球从轨道 1 抛出抵达轨道 2 曲面经历的时间为t,水平位移:x v0t竖直位移:y 1gt 2 2由勾股定理:x2 y2R2解得 t1s竖直速度:v y gt 10m / s 可得小球的动能E k 1 mv21m v02v y262.5J222.如下图,一质量m1=0.45kg 的平顶小车静止在圆滑的水平轨道上.车顶右端放一质量m2=0.4 kg 的小物体,小物体可视为质点.现有一质量m0 =0.05 kg 的子弹以水平速度v0=100 m/s射中小车左端,并留在车中,已知子弹与车互相作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最后小物体以 5 m/s的速度走开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】( 1)4.5N s( 2)5.5m【分析】① 子弹进入小车的过程中,子弹与小车构成的系统动量守恒,有:m0 v o (m0 m1 )v1,可解得 v110m / s ;对子弹由动量定理有:I mv1mv0 ,I4.5N s (或kgm/s);② 三物体构成的系统动量守恒,由动量守恒定律有:(m0 m1 )v1 (m0m1 )v2m2 v ;设小车长为 L,由能量守恒有:m2 gL 1( m0 m1 )v121(m0 m1 )v221m2v2 222联立并代入数值得 L= 5.5m;点睛:子弹击中小车过程子弹与小车构成的系统动量守恒,由动量守恒定律能够求出小车的速度,依据动量定理可求子弹对小车的冲量;对子弹、物块、小车构成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律能够求出小车的长度.3.质量0.2kg 的球 ,从 5.0m高处自由着落到水平钢板上又被竖直弹起,弹起后能达的最大高度为 4.05m. 假如球从开始着落到弹起达最大高度所用时间为 1.95s,不考虑空气阻力,g 取210m/s .求小球对钢板的作使劲.【分析】【详解】自由落体过程v12= 2gh1,得 v1=10m/s;v1=gt1得 t1=1s小球弹起后达到最大高度过程0- v22= -2 gh2,得 v2=9m/s0-v2=-gt2得 t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t ′=mv2-( -mv1)此中 t′=t-t1-t2 =0.05s得 F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作使劲大小为78N,方向竖直向下;4.如图,一轻质弹簧两头连着物体 A 和 B,放在圆滑的水平面上,某时辰物体小为的水平初速度开始向右运动。
高中物理动能与动能定理题20套(带答案)含解析

,化简为 ,结合图象可得: ,
解得: ;
第二空:由 ,解得: ;
第三空:由于弹簧弹力远大于摩擦力和重力沿斜面的分量,所以摩擦力和重力沿斜面的分量
忽略不计,根据能量守恒可得: ;
第四空:考虑摩擦力和重力沿斜面的分量,根据动能定理可得: ,
②弹簧放在挡板P和滑块之间,当弹簧为原长时,遮光板中心对准斜面上的A点;
③光电门固定于斜面上的B点,并与数字计时器相连;
④压缩弹簧,然后用销钉把滑块固定,此时遮光板中心对准斜面上的O点;
⑤用刻度尺测量A、B两点间的距离L;
⑥拔去锁定滑块的销钉,记录滑块经过光电门时数字计时器显示的时间△t;
⑦移动光电门位置,多次重复步骤④⑤⑥。
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。
高中物理动能与动能定理题20套(带答案)含解析
一、高中物理精讲专题测试动能与动能定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图,一平行板电容器连接在直流电源上,电容器的极板水平,两微粒 a、b 所带电
荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相
等。现同时释放 a、b,它们由静止开始运动,在随后的某时刻 t,a、b 经过电容器两
极板间下半区域的同一水平面,a、b 间的相互作用和重力可忽略。下列说法正确的是
12.装甲车和战舰采用多层钢板比采用同样质量的单
层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。质量 为 2m、厚度为 2d 的钢板静止在水平光滑桌面上。质量为 m 的子弹以某一速度垂直射向 该钢板,刚好能将钢板射穿。现把钢板分成厚度均为 d、质量均为 m 的相同两块,间隔 一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射 向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且 两块钢板不会发生碰撞不计重力影响。
(
)
A.a 的质量比 b 的大 B.在 t 时刻,a 的动能比 b 的大
C.在 t 时刻,a 和 b 的电势能相等 D.在 t 时刻,a 和 b 的动量大小相等
四、解答题 5.如图所示,悬挂于竖直弹簧下端的小球质量为 m,运动速度的大小为 v,方向向下.经 过时间 t,小球的速度大小为 v,方向变为向上.忽略空气阻力,重力加速度为 g,求 该运动过程中,小球所受弹簧弹力冲量的大小.
C.铯原子核(
133 55
Cs
)的结合能小于铅原子核(
208 8稳定 E.自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能 (2)(10 分)如图,光滑水平直轨道上有三个质童均为 m 的物块A、B、C。 B 的左侧 固定一轻弹簧(弹簧左侧的挡板质最不计).设 A 以速度v0朝 B 运动,压缩弹簧;当 A、 B 速度相等时,B 与 C 恰好相碰并粘接在一起,然后继续运动。假设 B 和 C 碰撞过程时 间极短。求从A开始压缩弹簧直至与弹黄分离的过程中,
(ⅰ)整个系统损失的机械能; (ⅱ)弹簧被压缩到最短时的弹性势能。
10.(18 分)小球 A 和 B 的质量分别为 mA 和 mB,且 mA>mB。在某高度处将 A 和 B 先后从 静止释放。小球 A 与水平地面碰撞后向上弹回,在释放处的下方与释放处距离为 H 的地 方恰好与正在下落的小球 B 发生正碰。设所有碰撞都是弹性的,碰撞时间极短。求小球 A、B 碰撞后 B 上升的最大高度。 11.冰球运动员甲的质量为 80.0kg。当他以 5.0m/s 的速度向前运动时,与另一质量为 100kg、速度为 3.0m/s 的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极 短,求: (1)碰后乙的速度的大小; (2)碰撞中总动能的损失。
高中物理动能动量历年真题
1.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出. 重力加速度为 g.求: (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离。
二、单选题 2.如图所示,PQS 是固定于竖直平面内的光滑的 1/4 圆周轨道,圆心 O 在 S 的正上方, 在 S 和 P 两点各有一质量为 m 的小物块 a 和 b,从同一时刻开始,a 自由下落,b 沿圆 弧下滑。以下说法正确的是 A.a 比 b 先到达 S,它们在 S 点的动量不相等 B.a 与 b 同时到达 S,它们在 S 点的动量不相等 C.a 比 b 先到达 S,它们在 S 点的动量相等 D.b 比 a 先到达 S,它们在 S 点的动量不相等
7.两滑块 a、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经 过一段时间后,从光滑路段进入粗糙路段。两者的位置 x 随时间 t 变化的图象如图所示。 求: (1)滑块 b、a 的质量之比; (2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而 损失的机械能之比。
8.如图,在足够长的光滑水平面上,物体 A、B、C 位于同一直线上,A 位于 B、C 之间.A 的质量为 m,B、C 的质量都为 M,三者均处于静止状态.现使 A 以某一速度向右运动, 求 m 和 M 之间应满足什么条件,才能使 A 只与 B、C 各发生一次碰撞.设物体间的碰撞 都是弹性的.
9.(1)(5 分)关于原子核的结合能,下列说法正确的是 标号。选
(填正确答案
对 I 个得 2 分,选对 2 个得 4 分,选对 3 个得 5 分;每选错 1 个扣 3 分,最低得分为 0 分)。
A.原子核的结合能等于使其完全分解成自由核子所需的最小能量
B.一重原子核衰变成 α 粒子和另一原子核,衰变产物的结合能之和一定大于原来重核 的结合能
三、多选题 3.一质量为 2 kg 的物块在合外力 F 的作用下从静止开始沿直线运动。F 随时间 t 变化 的图线如图所示,则 A.t=1 s 时物块的速率为 1 m/s B.t=2 s 时物块的动量大小为 4 kg·m/s
C.t=3 s 时物块的动量大小为 5 kg·m/s D.t=4 s 时物块的速度为零
13.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂。现 将绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性 碰撞。在平衡位置附近存在垂直于纸面的磁场。已知由于磁场的阻尼作用,金属球将于 再次碰撞前停在最低点处。求经过几次碰撞后绝缘球偏离竖直方向的 最大角度将小于 450。
6.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板 上的小孩和其面前的冰块均静止于冰面上。某时刻小孩将冰块以相对冰面 3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为 h="0.3" m(h 小于斜面体的高度)。已知小孩与滑板的总质量为 m1="30" kg,冰块的质 量为 m2="10" kg,小孩与滑板始终无相对运动。取重力加速度的大小 g="10" m/s2。 (i)求斜面体的质量; (ii)通过计算判断,冰块与斜面体分离后能否追上小孩?