高中物理复习专题-动量与能量
动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
高中物理公式大全(全集)八动量与能量

高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。
高中物理动量和能量知识点

高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
动量与动能、冲量与功的区别及冲量的四种计算方法 精讲精练-2022届高三物理一轮复习疑难突破微专题

一.必备知识精讲1.对动量的理解(1)动量的两性①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的。
②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量。
(2)动量与动能的比较(1)冲量的两性①时间性:冲量不仅由力决定,还由力的作用时间决定,恒力的冲量等于该力与该力的作用时间的乘积。
②矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致。
(2)作用力和反作用力的冲量:一定等大、反向,但作用力和反作用力做的功之间并无必然联系。
(3)冲量与功的比较乘积上的位移的乘积单位N·s J公式I=FΔt(F为恒力)W=Fl cosα(F为恒力) 标矢量矢量标量意义①表示力对时间的累积②是动量变化的量度①表示力对空间的累积②是能量变化的量度联系①都是过程量,都与力的作用过程相互联系②冲量不为零时,功可能为零;功不为零时,冲量一定不为零3.冲量的四种计算方法公式法利用定义式I=FΔt计算冲量,此方法仅适用于恒力的冲量,无需考虑物体的运动状态图像法利用F-t图像计算,F-t图像与时间轴围成的面积表示冲量,此法既可以计算恒力的冲量,也可以计算变力的冲量动量定理法如果物体受到大小或方向变化的力的作用,则不能直接用I=FΔt求变力的冲量,可以求出该力作用下物体动量的变化量,由I=Δp求变力的冲量平均力法如果力随时间是均匀变化的,则F=12(F0+F t),该变力的冲量为I=12 (F0+F t)t二.典型例题精讲题型1 对动量和冲量的定性分析例1如图为跳水运动员从起跳到落水过程的示意图,运动员从最高点到入水前的运动过程记为Ⅰ,运动员入水后到最低点的运动过程记为Ⅱ,忽略空气阻力,则运动员( )A.过程Ⅰ的动量改变量等于零B.过程Ⅱ的动量改变量等于零C.过程Ⅰ的动量改变量等于重力的冲量D.过程Ⅱ的动量改变量等于重力的冲量答案 C解析过程Ⅰ中动量改变量等于重力的冲量,即为mgt,不为零,故A错误,C正确;运动员入水前的速度不为零,末速度为零,过程Ⅱ的动量改变量不等于零,故B错误;过程Ⅱ的动量改变量等于合外力的冲量,不等于重力的冲量,故D错误.题型2 对动量和冲量的定量计算例2(多选)一质量为m的运动员托着质量为M的重物从下蹲状态(图甲)缓慢运动到站立状态(图乙),该过程重物和人的肩部相对位置不变,运动员保持乙状态站立Δt时间后再将重物缓慢向上举,至双臂伸直(图丙).甲到乙、乙到丙过程重物上升高度分别为h1、h2,经历的时间分别为t1、t2,重力加速度为g,则( )A.地面对运动员的冲量为(M+m)g(t1+t2+Δt),地面对运动员做的功为0B.地面对运动员的冲量为(M+m)g(t1+t2),地面对运动员做的功为(M+m)g(h1+h2)C.运动员对重物的冲量为Mg(t1+t2+Δt),运动员对重物做的功为Mg(h1+h2)D.运动员对重物的冲量为Mg(t1+t2),运动员对重物做的功为0答案AC解析因运动员将重物缓慢上举,则可认为是平衡状态,地面对运动员的支持力为:(M+m )g ,整个过程的时间为(t 1+t 2+Δt ),根据I =Ft 可知地面对运动员的冲量为(M +m )g (t 1+t 2+Δt );因地面对运动员的支持力没有位移,可知地面对运动员做的功为0,选项A 正确,B 错误;运动员对重物的作用力为Mg ,作用时间为(t 1+t 2+Δt ),根据I =Ft 可知运动员对重物的冲量为Mg (t 1+t 2+Δt ),重物的位移为(h 1+h 2),根据W =Fl cos α可知运动员对重物做的功为Mg (h 1+h 2),选项C 正确,D 错误.题型3 动量、冲量与图像结合例3某物体的v t 图像如图所示,下列说法正确的是( )A .0~t 1和t 2~t 3时间内,合力做功和冲量都相同B .t 1~t 2和t 3~t 4时间内,合力做功和冲量都相同C .0~t 2和t 2~t 4时间内,合力做功和冲量都相同D .0~t 1和t 3~t 4时间内,合力做功和冲量都相同 答案 C解析 0~t 1时间内物体动能的变化量为12mv 20,动量的变化量为mv 0;t 2~t 3时间内物体动能的变化量为12mv 20,动量的变化量为-mv 0,根据动能定理可知这两段时间内合力做的功相等;根据动量定理得知:合力的冲量不同,故A 错误。
动量与能量重难点整理

动量与能量重难点整理一、基本的物理概念1.冲量与功的比较(2)属性⎩⎨⎧冲量是矢量,既有大小又有方向(求合冲量应按矢,量合成法则来计算)功是标量,只有大小没有方向(求物体所受外力的,总功只需按代数和计算)2.动量与动能的比较(1)定义式⎩⎪⎨⎪⎧动量的定义式:p =mv 动能的定义式:E k=12mv2(2)属性⎩⎨⎧动量是矢量(动量的变化也是矢量,求动量的变化,应按矢量运算法则来计算)动能是标量(动能的变化也是标量,求动能的变化,只需按代数运算法则来计算)(3)动量与动能量值间的关系⎩⎨⎧p =2mEkE k=p 22m =12pv(4)动量和动能都是描述物体状态的量,都有相对性(相对所选择的参考系),都与物体的受力情况无关.动量的变化和动能的变化都是过程量,都是针对某段时间而言的.二、动量观点的基本物理规律1.动量定理的基本形式与表达式:I=Δp.分方向的表达式:I x合=Δp x,I y合=Δp y.2.动量定理推论:动量的变化率等于物体所受的合外力,即ΔpΔt=F合.3.动量守恒定律(1)动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体).(2)动量守恒定律的适用条件①标准条件:系统不受外力或系统所受外力之和为零.②近似条件:系统所受外力之和虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计.③分量条件:系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统总动量的分量保持不变.(3)使用动量守恒定律时应注意:①速度的瞬时性;②动量的矢量性;③时间的同一性.(4)应用动量守恒定律解决问题的基本思路和方法①分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体统称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.②对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是作用于系统的外力.在受力分析的基础上根据动量守恒定律的条件,判断能否应用动量守恒定律.③明确所研究的相互作用过程,确定过程的始末状态,即系统内各个物体的初动量和末动量的值或表达式.(注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系)④确定正方向,建立动量守恒方程求解.三、功和能1.中学物理中常见的能量动能E k=12mv2;重力势能E p=mgh;弹性势能E弹=12kx2;机械能E=E k+E p;分子势能;分子动能;内能;电势能E=qφ;电能;磁场能;化学能;光能;原子能(电子的动能和势能之和);原子核能E=mc2;引力势能;太阳能;风能(空气的动能);地热、潮汐能.2.常见力的功和功率的计算:恒力做功W=Fs cos θ;重力做功W=mgh;一对滑动摩擦力做的总功W f=-fs路;电场力做功W=qU;功率恒定时牵引力所做的功W=Pt;恒定压强下的压力所做的功W=p·ΔV;电流所做的功W=UIt;洛伦兹力永不做功;瞬时功率P=Fv cos_θ;平均功率P-=Wt=F v-cos θ.3.中学物理中重要的功能关系能量与物体运动的状态相对应.在物体相互作用的过程中,物体的运动状态通常要发生变化,所以物体的能量变化一般要通过做功来实现,这就是常说的“功是能量转化的量度”的物理本质.那么,什么功对应着什么能量的转化呢?在高中物理中主要的功能关系有:(1)外力对物体所做的总功等于物体动能的增量,即W总=ΔE k.(动能定理)(2)重力(或弹簧的弹力)对物体所做的功等于物体重力势能(或弹性势能)的增量的负值,即W重=-ΔE p(或W弹=-ΔE p).(3)电场力对电荷所做的功等于电荷电势能的增量的负值,即W电=-ΔE电.(4)除重力(或弹簧的弹力)以外的力对物体所做的功等于物体机械能的增量,即W其他=ΔE机.(功能原理)(5)当除重力(或弹簧弹力)以外的力对物体所做的功等于零时,则有ΔE机=0,即机械能守恒.(6)一对滑动摩擦力做功与内能变化的关系是:“摩擦所产生的热”等于滑动摩擦力跟物体间相对路程的乘积,即Q=fs相对.一对滑动摩擦力所做的功的代数和总为负值,表示除了有机械能在两个物体间转移外,还有一部分机械能转化为内能,这就是“摩擦生热”的实质.(7)安培力做功对应着电能与其他形式的能相互转化,即W安=ΔE电.安培力做正功,对应着电能转化为其他能(如电动机模型);克服安培力做负功,对应着其他能转化为电能(如发电机模型);安培力做功的绝对值等于电能转化的量值.(8)分子力对分子所做的功等于分子势能的增量的负值,即W分子力=-ΔE分子.(9)外界对一定质量的气体所做的功W与气体从外界所吸收的热量Q之和等于气体内能的变化,即W+Q=ΔU.(10)在电机电路中,电流做功的功率等于电阻发热的功率与输出的机械功率之和.(11)在纯电阻电路中,电流做功的功率等于电阻发热的功率.(12)在电解槽电路中,电流做功的功率等于电阻发热的功率与转化为化学能的功率之和.(13)在光电效应中,光子的能量hν=W+12mv02.(14)在原子物理中,原子辐射光子的能量hν=E初-E末,原子吸收光子的能量hν=E末-E初.(15)核力对核子所做的功等于核能增量的负值,即W核=-ΔE核,并且Δmc2=ΔE核.(16)能量转化和守恒定律.对于所有参与相互作用的物体所组成的系统,无论什么力做功,可能每一个物体的能量的数值及形式都发生变化,但系统内所有物体的各种形式能量的总和保持不变.4.运用能量观点分析、解决问题的基本思路(1)选定研究对象(单个物体或一个系统),弄清物理过程.(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化.(3)仔细分析系统内各种能量的变化情况及变化的数量.(4)列方程ΔE减=ΔE增或E初=E末求解.四、弹性碰撞在一光滑水平面上有两个质量分别为m1、m2的刚性小球A和B以初速度v1、v2运动,若它们能发生正碰,碰撞后它们的速度分别为v1′和v2′.v1、v2、v1′、v2′是以地面为参考系的,将A和B看做系统.由碰撞过程中系统动量守恒,有:m1v1+m2v2=m1v1′+m2v2′由于弹性碰撞中没有机械能损失,故有:1 2m1v12+12m2v22=12m1v1′2+12m2v2′2由以上两式可得:v2′-v1′=-(v2-v1)或v1′-v2′=-(v1-v2)碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等、方向相反;碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等、方向相反.【结论1】对于一维弹性碰撞,若以其中某物体为参考系,则另一物体碰撞前后速度大小不变、方向相反(即以原速率弹回).联立以上各式可解得:v1′=2m2v2+(m1-m2)v1m1+m2v2′=2m1v1+(m2-m1)v2m1+m2若m1=m2,即两个物体的质量相等,则v1′=v2,v2′=v1,表示碰后A的速度变为v2,B的速度变为v1.【结论2】对于一维弹性碰撞,若两个物体的质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度).若A的质量远大于B的质量,则有:v1′=v1,v2′=2v1-v2;若A的质量远小于B的质量,则有:v2′=v2,v1′=2v2-v1.【结论3】对于一维弹性碰撞,若其中某物体的质量远大于另一物体的质量,则质量大的物体碰撞前后速度保持不变.至于质量小的物体碰后速度如何,可结合结论1和结论2得出.在高考复习中,若能引导学生推导出以上二级结论并熟记,对提高学生的解题速度是大有帮助的.热点、重点、难点一、动量定理的应用问题动量定理的应用在高考中主要有以下题型:1.定性解释周围的一些现象;2.求打击、碰撞、落地过程中的平均冲力;3.计算流体问题中的冲力(或反冲力);4.根据安培力的冲量求电荷量.●例1 如图2-1所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,瓶的底端与竖直墙壁接触.现打开右端阀门,气体向外喷出,设喷口的面积为S,气体的密度为ρ,气体向外喷出的速度为v,则气体刚喷出时贮气瓶底端对竖直墙壁的作用力大小是( )图2-1A.ρvS B.ρv2SC.12ρv2S D.ρv2S【解析】Δt时间内喷出气体的质量Δm=ρSv·Δt对于贮气瓶、瓶内气体及喷出的气体所组成的系统,由动量定理得:F·Δt=Δm·v-0解得:F=ρv2S.[答案] D【点评】动量定理对多个物体组成的系统也成立,而动能定理对于多个物体组成的系统不适用.★同类拓展1 如图2-2所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为( )图2-2A.v=mv0M+m,I=0 B.v=mv0M+m,I=2mv0C.v=mv0M+m,I=2m2v0M+mD.v=mv0M,I=2mv0【解析】设在子弹射入木块且未压缩弹簧的过程中,木块(含子弹)的速度为v1,由动量守恒定律得:mv0=(m+M)v1解得:v1=mv0 m+M对木块(含子弹)压缩弹簧再返回A点的过程,由动能定理得:1 2(m+M)v2-12(m+M)v12=W总=0可知:v=v1=mv0 m+M取子弹、木块和弹簧组成的系统为研究对象,由动量定理得:I=(m+M)·(-v)-(m+M)v1=-2mv0负号表示方向向左.[答案] B二、动能定理、机械能守恒定律的应用1.对于单个平动的物体:W总=ΔE k,W总指物体所受的所有外力做的总功.2.系统只有重力、弹力作为内力做功时,机械能守恒.(1)用细绳悬挂的物体绕细绳另一端做圆周运动时,细绳对物体不做功.(2)轻杆绕一端自由下摆,若轻杆上只固定一个物体,则轻杆对物体不做功;若轻杆上不同位置固定两个物体,则轻杆分别对两物体做功.(3)对于细绳连接的物体,若细绳存在突然绷紧的瞬间,则物体(系统)的机械能减少.3.单个可当做质点的物体机械能守恒时,既可用机械能守恒定律解题,也可用动能定理解题,两种方法等效.发生形变的物体和几个物体组成的系统机械能守恒时,一般用机械能守恒定律解题,不方便应用动能定理解题.●例2 以初速度v0竖直向上抛出一质量为m的小物块.假定物块所受的空气阻力f大小不变.已知重力加速度为g,则物块上升的最大高度和返回到原抛出点的速率分别为[2009年高考·全国理综卷Ⅱ]()A.v022g(1+fmg)和v0mg-fmg+fB.v022g(1+fmg)和v0mgmg+fC.v022g(1+2fmg)和v0mg-fmg+fD.v022g(1+2fmg)和v0mgmg+f【解析】方法一:对于物块上升的过程,由动能定理得:-(mgh+fh)=0-12 mv02解得:h=v022g(1+f mg)设物块返回至原抛出点的速率为v,对于整个过程应用动能定理有:1 2mv2-12mv02=-f·2h解得:v=v0mg-f mg+f.方法二:设小物块在上升过程中的加速度大小为a1,由牛顿第二定律有:a1=mg+f m故物块上升的最大高度h=v022a1=v022g(1+fmg)设小物块在下降过程中的加速度为a2,由牛顿第二定律有:a2=mg-f m可得:v=2a2h=v0mg-f mg+f.[答案] A【点评】动能定理是由牛顿第二定律导出的一个结论,对于单个物体受恒力作用的过程,以上两种方法都可以用来分析解答,但方法二的物理过程较复杂.例如涉及曲线运动或变力做功时,运用动能定理更为方便.★同类拓展2 一匹马拉着质量为 60 kg 的雪橇,从静止开始用 80 s 的时间沿平直冰面跑完 1000 m.设在运动过程中雪橇受到的阻力保持不变,已知雪橇在开始运动的 8 s 时间内做匀加速直线运动,从第 8 s 末开始,马拉雪橇做功的功率保持不变,使雪橇继续做直线运动,最后一段时间雪橇做的是匀速直线运动,速度大小为 15 m/s;开始运动的 8 s 内马拉雪橇的平均功率是 8 s 后功率的一半.求:整个运动过程中马拉雪橇做功的平均功率和雪橇在运动过程中所受阻力的大小.【解析】设 8 s 后马拉雪橇的功率为P ,则:匀速运动时P =F ·v =f ·v即运动过程中雪橇受到的阻力大小f =P v对于整个过程运用动能定理得:P2·t 1+P (t 总-t 1)-f ·s 总=12mv t 2-0 即P 2×8+P (80-8)-P 15×1000=12×60×152 解得:P =723 W故f =48.2 N再由动能定理可得P -t 总-f ·s =12mv t 2解得:P -=687 W .[答案] 687 W 48.2 N●例3 如图2-3所示,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过两个轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段沿竖直方向.若在挂钩上挂一质量为m3的物体C,则B将刚好离地.若将C换成另一个质量为m1+m3的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度大小是多少?(已知重力加速度为g)图2-3【解析】开始时A、B静止,即处于平衡状态,设弹簧的压缩量为x1,则有:kx1=m1g挂上C后,当B刚要离地时,设弹簧的伸长量为x2,则有:kx2=m2g此时,A和C的速度均为零从挂上C到A和C的速度均为零时,根据机械能守恒定律可知,弹性势能的改变量为:ΔE=m3g(x1+x2)-m1g(x1+x2)将C换成D后,有:ΔE+12(m1+m3+m1)v2=(m1+m3)g(x1+x2)-m1g(x1+x2)联立解得:v=2m1(m1+m2)g2 k(2m1+m3).[答案] 2m1(m1+m2)g2 k(2m1+m3)【点评】含弹簧连接的物理情境题在近几年高考中出现的概率很高,而且多次考查以下原理:①弹簧的压缩量或伸长量相同时,弹性势能相等;②弹性势能的变化取决于弹簧的始末形变量,与过程无关.三、碰撞问题1.在高中物理中涉及的许多碰撞过程(包括射击),即使在空中或粗糙的水平面上,往往由于作用时间短、内力远大于外力,系统的动量仍可看做守恒.2.两滑块在水平面上碰撞的过程遵循以下三个法则:①动量守恒;②机械能不增加;③碰后两物体的前后位置要符合实际情境.3.两物体发生完全非弹性碰撞时,机械能的损耗最大.●例4 如图2-4所示,在光滑绝缘水平面上由左到右沿一条直线等间距的静止排着多个形状相同的带正电的绝缘小球,依次编号为1、2、3……每个小球所带的电荷量都相等且均为q=3.75×10-3 C,第一个小球的质量m=0.03 kg,从第二个小球起往下的小球的质量依次为前一个小球的13,小球均位于垂直于小球所在直线的匀强磁场里,已知该磁场的磁感应强度B=0.5 T.现给第一个小球一个水平速度v=8 m/s,使第一个小球向前运动并且与后面的小球发生弹性正碰.若碰撞过程中电荷不转移,则第几个小球被碰后可以脱离地面?(不计电荷之间的库仑力,取g=10 m/s2)图2-4【解析】设第一个小球与第二个小球发生弹性碰撞后两小球的速度分别为v1和v2,根据动量和能量守恒有:mv=mv1+13 mv21 2mv2=12mv12+16mv22联立解得:v2=3 2 v同理,可得第n+1个小球被碰后的速度v n+1=(32)n v设第n+1个小球被碰后对地面的压力为零或脱离地面,则:qv n+1B≥(13)n mg联立以上两式代入数值可得n≥2,所以第3个小球被碰后首先离开地面.[答案] 第3个【点评】解答对于多个物体、多次碰撞且动量守恒的物理过程时,总结出通项公式或递推式是关键.★同类拓展3 如图2-5所示,质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0.一个物块从钢板的正上方相距3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块的质量也为m时,它们恰能回到O点;若物块的质量为2m,仍从A处自由落下,则物块与钢板回到O点时还具有向上的速度.求物块向上运动所到达的最高点与O点之间的距离.图2-5【解析】物块与钢板碰撞前瞬间的速度为:v0=6gx0设质量为m的物块与钢板碰撞后瞬间的速度为v1,由动量守恒定律有:mv0=2mv1设弹簧的压缩量为x0时的弹性势能为E p,对于物块和钢板碰撞后直至回到O点的过程,由机械能守恒定律得:E p+12×2m×v12=2mgx0设质量为2m的物块与钢板碰撞后瞬间的速度为v2,物块与钢板回到O点时所具有的速度为v3,由动量守恒定律有:2mv0=3mv2由机械能守恒定律有:E p+12×3m×v22=3mgx0+12×3m×v32解得:v3=gx0当质量为2m的物块与钢板一起回到O点时,弹簧的弹力为零,物块与钢板只受到重力的作用,加速度为g;一过O点,钢板就会受到弹簧向下的拉力作用,加速度大于g,由于物块与钢板不粘连,故在O点处物块与钢板分离;分离后,物块以速度v3竖直上升,由竖直上抛的最大位移公式得:h=v322g =x02所以物块向上运动所到达的最高点与O点之间的距离为x0 2.[答案] x0 2【点评】①物块与钢板碰撞的瞬间外力之和并不为零,但这一过程时间极短,内力远大于外力,故可近似看成动量守恒.②两次下压至回到O点的过程中,速度、路程并不相同,但弹性势能的改变(弹力做的功)相同.③在本题中,物块与钢板下压至回到O点的过程也可以运用动能定理列方程.第一次:0-12×2m×v12=W弹-2mgx0第二次:12×3m×v32-12×3m×v22=W弹-3mgx0.四、高中物理常见的功能关系1.摩擦生热——等于摩擦力与两接触面相对滑动的路程的乘积,即Q=f·s相.●例5 如图2-6所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下始终以v0=2 m/s的速率运行.现把一质量m=10 kg的工件(可看做质点)轻轻放在皮带的底端,经时间t=1.9 s,工件被传送到h=1.5 m的皮带顶端.取g=10 m/s2.求:(1)工件与皮带间的动摩擦因数μ.(2)电动机由于传送工件而多消耗的电能.图2-6【解析】(1)由题意可知,皮带长s=hsin 30°=3 m工件的速度达到v0前工件做匀加速运动,设经时间t1工件的速度达到v0,此过程工件的位移为:s1=12v0t1达到v0后,工件做匀速运动,此过程工件的位移为:s-s1=v0(t-t1)代入数据解得:t1=0.8 s工件加速运动的加速度a=v0t1=2.5 m/s2据牛顿第二定律得:μmg cos θ-mg sin θ=ma解得:μ=32.(2)在时间t1内,皮带运动的位移s2=v0t1=1.6 m工件相对皮带的位移Δs=s2-s1=0.8 m在时间t1内,因摩擦产生的热量Q=μmg cos θ·Δs=60 J工件获得的动能E k=12mv02=20 J工件增加的势能E p=mgh=150 J电动机多消耗的电能E=Q+E k+E p=230 J.[答案] (1)32(2)230 J2.机械能的变化——除重力、弹簧的弹力以外的力做的功等于系统机械能的变化.●例6 一面积很大的水池中的水深为H,水面上浮着一正方体木块,木块的边长为a,密度为水的12,质量为m.开始时木块静止,有一半没入水中,如图2-7甲所示,现用力F将木块缓慢地向下压,不计摩擦.图2-7甲(1)求从开始压木块到木块刚好完全没入水的过程中,力F所做的功.(2)若将该木块放在底面为正方形(边长为2a)的盛水足够深的长方体容器中,开始时,木块静止,有一半没入水中,水面距容器底的距离为2a,如图2-7乙所示.现用力F将木块缓慢地压到容器底部,不计摩擦,求这一过程中压力做的功.图2-7乙【解析】方法一:(1)因水池的面积很大,可忽略因木块压入水中所引起的水深变化,木块刚好完全没入水中时,图2-7丙中原来处于划斜线区域的水被排开,结果等效于使这部分水平铺于水面,这部分水的质量为m,其势能的改变量为(取容器底为零势能面):图2-7丙ΔE 水=mgH -mg (H -34a )=34mga 木块势能的改变量为:ΔE 木=mg (H -a2)-mgH=-12mga根据功能原理,力F 所做的功为:W =ΔE 水+ΔE 木=14mga .(2)因容器的底面积为2a 2,仅是木块的底面积的2倍,故不可忽略木块压入水中所引起的水深变化.如图2-7丁所示,木块到达容器底部时,水面上升14a ,相当于木块末状态位置的水填充至木块原浸入水中的空间和升高的水面处平面,故这一过程中水的势能的变化量为:图2-7丁488木块的势能的变化量ΔE木′=-mg·3 2 a根据功能原理,压力F做的功为:W′=ΔE水′+ΔE木′=118 mga.方法二:(1)水池的面积很大,可忽略因木块压入水中引起的水深变化.当木块浮在水面上时重力与浮力的大小相等;当木块刚没入水中时,浮力的大小等于重力的2倍,故所需的压力随下压位移的变化图象如图2-7戊所示.图2-7戊故W F=12mg·a2=14mga.(2)随着木块的下沉水面缓慢上升,木块刚好完全没入水中时,水面上升a4的高度,此时木块受到的浮力的大小等于重力的2倍.此后,木块再下沉54a的距离即沉至容器底部,故木块下沉的整个过程中压力的大小随位移的变化图象如图2-7己所示图2-7己2448[答案] (1)14mga(2)118mga【点评】①通过两种方法对比,深刻理解功能关系.②根据功的定义计算在小容器中下压木块时,严格的讲还要说明在0~a4的位移段压力也是线性增大的.3.导体克服安培力做的功等于(切割磁感线引起的)电磁感应转化的电能.●例7 如图2-8所示,竖直放置的光滑平行金属导轨MN、PQ相距L,在M点和P点间接有一个阻值为R的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab垂直地搁在导轨上,与磁场的上边界相距d0.现使ab棒由静止开始释放,棒ab 在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好接触且下落过程中始终保持水平,导轨的电阻不计).图2-8(1)求棒ab离开磁场的下边界时的速度大小.(2)求棒ab在通过磁场区的过程中产生的焦耳热.(3)试分析讨论棒ab在磁场中可能出现的运动情况.【解析】(1)设棒ab离开磁场的边界前做匀速运动的速度为v,产生的感应电动势为:E=BLv电路中的电流I=E R+r对棒ab,由平衡条件得:mg-BIL=0解得:v=mg(R+r)B2L2.(2)设整个回路中产生的焦耳热为Q,由能量的转化和守恒定律可得:mg(d0+d)=Q+12 mv2解得:Q=mg(d0+d)-m3g2(R+r)22B4L4故Q ab=rR+r[mg(d0+d)-m3g2(R+r)22B4L4].(3)设棒刚进入磁场时的速度为v0,由mgd0=12 mv02解得:v0=2gd0棒在磁场中匀速运动时的速度v=mg(R+r)B2L2,则①当v0=v,即d0=m2g(R+r)22B4L4时,棒进入磁场后做匀速直线运动;②当v0<v,即d0<m2g(R+r)22B4L4时,棒进入磁场后先做加速运动,后做匀速直线运动;③当v0>v,即d0>m2g(R+r)22B4L4时,棒进入磁场后先做减速运动,后做匀速直线运动.[答案] (1)mg(R+r)B2L2(2)rR+r[mg(d0+d)-m3g2(R+r)22B4L4](3)①当v0=v,即d0=m2g(R+r)22B4L4时,棒进入磁场后做匀速直线运动;②当v0<v,即d0<m2g(R+r)22B4L4时,棒进入磁场后先做加速运动,后做匀速直线运动;③当v0>v,即d0>m2g(R+r)22B4L4时,棒进入磁场后先做减速运动,后做匀速直线运动.【点评】①计算转化的电能时,也可应用动能定理:mg(d0+d)-W安=12mv2-0,其中W安=E电=Q.②对于电磁感应中能量转化的问题,在以后的《感应电路》专题中还会作更深入的探讨.五、多次相互作用或含多个物体的系统的动量、功能问题●例8 如图2-9所示,在光滑水平面上有一质量为M的长木板,长木板上有一质量为m的小物块,它与长木板间的动摩擦因数为μ.开始时,长木板与小物块均靠在与水平面垂直的固定挡板处,某时刻它们以共同的速度v0向右运动,当长木板与右边的固定竖直挡板碰撞后,其速度的大小不变、方向相反,以后每次的碰撞均如此.设左右挡板之间的距离足够长,且M>m.图2-9(1)要想物块不从长木板上落下,则长木板的长度L应满足什么条件?(2)若上述条件满足,且M=2 kg,m=1 kg,v0=10 m/s,求整个系统在第5次碰撞前损失的所有机械能.【解析】(1)设第1次碰撞后小物块与长木板共同运动的速度为v1,第n次碰撞后小物块与长木板共同运动的速度为v n.每次碰撞后,由于两挡板的距离足够长,物块与长木板都能达到相对静止,第1次若不能掉下,往后每次相对滑动的距离会越来越小,更不可能掉下.由动量守恒定律和能量守恒定律有:(M-m)v0=(M+m)v1μmgs=12(m+M)v02-12(M+m)v12解得:s=2Mv02μ(M+m)g故L应满足的条件是:L≥s=2Mv02μ(M+m)g.(2)第2次碰撞前有:(M-m)v0=(M+m)v1第3次碰撞前有:(M-m)v1=(M+m)v2第n次碰撞前有:(M-m)v n-2=(M+m)v n-1所以v n-1=(M-mM+m)n-1v0故第5次碰撞前有:v4=(M-mM+m)4v0故第5次碰撞前损失的总机械能为:ΔE=12(M+m)v02-12(M+m)v42代入数据解得:ΔE=149.98 J.[答案] (1)L≥2Mv02μ(M+m)g(2)149.98 J【点评】在复杂的多过程问题上,归纳法和演绎法常常大有作为.经典考题动量与功能问题可以与高中物理所有的知识点综合,是高考的重点,试题难度大,需要多训练、多总结归纳.1.如图所示,一轻绳的一端系在固定粗糙斜面上的O点,另一端系一小球,给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中[2008年高考·海南物理卷]( )A.小球的机械能守恒B.重力对小球不做功C.绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功是等于小球动能的减少【解析】小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B、D错误,C正确.[答案] C。
动量和能量的综合问题-高考物理复习

(2)小物块第一次返回到B点时速度v的大小; 答案 8 m/s
当小物块第一次回到B点时,设车和子弹的速度为v3,取水平向右为 正方向,由水平方向动量守恒有(m0+M)v1=(m0+M)v3+mv 由能量守恒定律有 12(m0+M)v12=12(m0+M)v32+12mv2 联立解得v3=2 m/s,v=8 m/s, 即小物块第一次返回到B点时速度大小为v=8 m/s.
1234
(2)从C球由静止释放到第一次摆到最低点的过程中,B
移动的距离;
答案
l 3
对A、B、C组成的系统,由人船模型规律可得mxC=2mxAB, xC+xAB=l 联立解得从 C 球由静止释放到第一次摆到最低点的过程中,B 移动 的距离为 xAB=3l .
1234
(3)C球向左摆动的最高点距O点的竖直高度.
⑩
设在M点轨道对物块的压力大小为FN,
则 FN+mg=mvRM2
⑪
由⑩⑪解得FN=(1- 2 )mg<0,假设不成立,即物块B不能到达M点.
(3)物块A由静止释放的高度h. 答案 1.8 m
物块A、B的碰撞为弹性正碰且质量相等,
碰撞后速度交换,则vA=v0=6 m/s ⑫
设物块A释放的高度为h,对下落过程,根
(3)求平板A在桌面上滑行的距离.
答案
3 8m
A、B碰撞后,A向左做匀减速直线运动,B向左做匀加速直线运动,
则对B有μmBg=mBaB 对A有μmBg+μ(mB+mA)g=mAaA 解得aA=6 m/s2,aB=2 m/s2 设经过时间t,两者共速,则有v=aBt=vA-aAt 解得 v=12 m/s,t=14 s 此过程中A向左运动距离 x1=vA+2 vt=2+2 12×14 m=156 m
【2020】高三物理专题复习-第五专题-动量与能量试卷及参考答案

②、③式联立解得
④
将①代入得④
(2)a由④式,考虑到得
根据动能传递系数的定义,对于1、2两球
⑤
同理可得,球m2和球m3碰撞后,动能传递系数k13应为
⑥
依次类推,动能传递系数k1n应为
解得
b.将m1=4m0,m3=mo代入⑥式可得
为使k13最大,只需使
由
8、答案:(1)0.24s (2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题.。
涉及动量守恒定律、动量定理和功能关系这些物理规律的运用.。
(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有
①
设物块与车面间的滑动摩擦力为F,对物块应用动量定理有
②其中③
解得
代入数据得
④
(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则
⑤
+=S。
动量与能量的关系

动量与能量的关系动量与能量是物理学中两个重要的概念,它们在描述物体运动和相互作用时起着关键的作用。
本文将探讨动量与能量之间的关系,以及它们在实际应用中的意义。
一、动量的定义与性质动量是描述物体运动的物理量,它是物体质量和速度的乘积。
动量的计算公式为:p = m * v,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量具有以下几个重要的性质:1. 动量是矢量量,具有方向性。
它的方向与物体的速度方向一致。
2. 动量与物体质量成正比,与速度成正比。
质量越大,速度越快,动量就越大。
3. 动量是守恒的。
在一个封闭系统中,物体间的相互作用不会改变系统的总动量。
二、能量的定义与性质能量是描述物体状态和物体间相互作用的物理量,它是物体所具有的做工能力。
根据能量的性质和形式,能量可以分为多种类型,如机械能、热能、电能、化学能等。
能量的计量单位是焦耳(J)。
能量具有以下几个重要的性质:1. 能量是标量量,不具有方向性。
2. 能量具有转化和守恒的性质。
能量可以在不同形式之间相互转化,但总能量守恒,不会因为转化而减少或增加。
三、动能与动量之间的关系物体的动能是指因物体运动而具有的能量。
动能的计算公式为:E_k = 1/2 * m * v^2,其中E_k表示动能,m表示物体质量,v表示物体的速度。
动能与动量之间存在着密切的关系。
根据动能的计算公式可以推导出:E_k = 1/2 * p * v,其中p表示物体的动量。
这表明动能与动量之间存在着倍数关系,动量越大,动能也越大。
四、冲量与动量的关系物体受到外力作用时,会发生动量的变化,这种变化称为冲量。
冲量的计算公式为:I = ∆p = m * ∆v,其中I表示冲量,∆p表示动量的变化量,m表示物体的质量,∆v表示速度的变化量。
冲量与动量之间存在着密切的关系。
根据冲量的计算公式可以推导出:I = F * ∆t = ∆p,其中F表示外力的大小,∆t表示作用时间。
这表明冲量等于动量的变化量,而动量是物体运动的量度,因此冲量可以看作是物体运动状态变化的度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三动量与能量思想方法提炼牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.一、能量1.概述能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。
在每年的高考物理试卷中都会出现考查能量的问题。
并时常发现“压轴题”就是能量试题。
2.能的转化和守恒定律在各分支学科中表达式(1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。
(动能定理)(2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。
(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能(2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。
(3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。
重力势能变化只与重力做功有关,与其他做功情况无关。
(4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。
在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。
注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。
(5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。
(6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。
(7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。
(可以以粒子的动能、光子等形式向外释放)动量与能量的关系1.动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2p2=2mE k动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I,冲量I=Ft是力对时间的积累效应动能定理:物体动能的变化量等于外力对物体所做的功.△E k=W,功W=Fs是力对空间的积累效应.3.动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.【例1】如图所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的Array速率v0向右滑动.突然轻绳断开.当弹簧伸至本身的自然长度时,滑块A的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep;(2)在以后的运动过程中,滑块B是否会有速度为0的时刻?试通过定量分析证明你的结论.【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A的速度为0,故系统的机械能等于滑块B的动能.设这时滑块B的速度为v,则有E=m2v2/2.因系统所受外力为0,由动量守恒定律(m1+m2)v0=m2v.解得E=(m1+m2)2v02/(2m2).由于只有弹簧的弹力做功,系统的机械能守恒(m1+m2)v02/2+E p=E.解得E p=(m1-m2)(m1+m2)v02/2m2.(2)假设在以后的运动中滑块B可以出现速度为0的时刻,并设此时A的速度为v1,弹簧的弹性势能为E′p,由机械能守恒定律得m1v12/2+E′p=(m1+m2)2v02/2m2.根据动量守恒得(m1+m2)v0=m1v1,求出v1代入上式得:(m1+m2)2v02/2m1+E′p=(m1+m2)2v02/2m2.因为E′p≥0,故得:(m1+m2)2v02/2m1≤(m1+m2)2v02/2m2即m1≥m2,这与已知条件中m1<m2不符.可见在以后的运动中不可能出现滑块B的速度为0的情况.【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前,高考突出能力考察的形势下,加强证明题的训练很有必要.套在光滑的水平杆上,在A下面用细绳挂一质量为M的物体B,若A固定不动,给B一水平冲量I,B恰能上升到使绳水平的位置.当A不固定时,要使B物体上升到使绳水平的位置,则给它的水平冲量至少多大?【解析】当A固定不动时,B受到冲量后以A为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B的重力势能应等于其在最低位置时获得的动能Mgh=E k=p2/2M=I2/2M.若A不固定,B向上摆动时A也要向右运动,当B恰能摆到水平位置时,它们具有相同的水平速度,把A、B看成一个系统,此系统除重力外,其他力不做功,机械能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M在最低点得到的速度为v0,到水平位置时的速度为v.Mv0=(M+m)v.Mv02/2=(M+m)v2/2+Mgh.I′=Mv0.I ′=【解题回顾】此题重要的是在理解A 不固定,B 恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.另外B 上升时也不再是做圆周运动,此时绳的拉力对B 做功(请同学们思考一下,绳的拉力对B 做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况. 【例3】下面是一个物理演示实验,它显示:图中下落的物体A 、B 经反弹后,B 能上升到比初始位置高的地方.A 是某种材料做成的实心球,质量m 1=0.28kg ,在其顶部的凹坑中插着质量m 2=0.1kg 的木棍B.B 只是松松地插在凹坑中,其下端与坑底之间有小间隙. 将此装置从A 的下端离地板的高度H=1.25m处由静止释放.实验中,A 触地后在极短的时间内反弹, 且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A恰好停留在地板上,求木棍B 上升的高度.重力加速度(g=10m/s 2)【解析】根据题意,A 碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得(m 1+m 2)gH=(m 1+m 2)v 2/2,v 1= .A 刚反弹时速度向上,立刻与下落的B 碰撞,碰前B 的速度v 2= . 由题意,碰后A 速度为0,以v 2表示B 上升的速度,根据动量守恒m 1v 1-m 2v 2=m 2v ′2.令h 表示B 上升的高度,有m 2v ′22/2=m 2gh ,由以上各式并代入数据得:h=4.05m. 【例4】质量分别为m 1、m 2的小球在一直线上做弹性碰撞,它们在碰撞前后的位移—时间图像如图所示,若m 1=1kg,m 2的质量等于多少?【解析】从位移—时间图像上可看出:m 1和m 2于t=2s 时在位移等于8m 处碰撞,碰前m 2的速度为0,m 1的速度v 0=△s/△t=4m/s 碰撞后,m 1的速度v 1=-2m/s ,m 2的速度v 2=2m/s ,由动量守恒定律得m 1v 0=m 1v 1+m 2v 2,m 2=3kg.【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运动轨迹混为一谈.mm M IgH 2gH 2【例5】云室处在磁感应强度为B的匀强磁场中,一质量为M的静止的原子核在云室中发生一次α衰变,α粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内.现测得α粒子运动的轨道半径为R,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)【解析】α粒子在磁场中做圆周运动的向心力是洛伦兹力,设α粒子的运动速度为v,由牛顿第二定律得qvB=mv2/R.衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v′,衰变过程中动量守恒(M-m)v′=mv.α粒子与剩余核的动能来源于衰变过程中亏损的质量,有△m·c2=(M-m)v′2/2+mv2/2.解得:△m=M(qBR)2/[2c2m(M-m)].【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.【例6】如图所示,一轻绳穿过光滑的定滑轮,两端各拴有一小物块.它们的质量分别为m1、m2,已知m2=3m1,起始时m1放在地上,m2离地面的高度h=1.0m,绳子处于拉直状态,然后放手.设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提起物块时绳的速度与物块的速度相同,试求m2所走的全部路程(取3位有效数字)【解析】因m2>m1,放手后m2将下降,直至落地.由机械能守恒定律得m2gh-m1gh=(m1+m2)v2/2.m2与地面碰后静止,绳松弛,m1以速度v上升至最高点处再下降.当降至h时绳被绷紧.根据动量守恒定律可得:m1v=(m1+m2)v1由于m1通过绳子与m2作用及m2与地面碰撞的过程中都损失了能量,故m2不可能再升到h处,m1也不可能落回地面.设m2再次达到的高度为h1,m1则从开始绷紧时的高度h处下降了h1.由机械能守恒(m1+m2)v12/2+m1gh1=m2gh1由以上3式联立可解得h1=m12h/(m1+m2)2=[m1/(m1+m2)]2h此后m2又从h1高处落下,类似前面的过程.设m2第二次达到的最高点为h2,仿照上一过程可推得h 2=m 12h 1/(m 1+m 2)2=m 14h/(m 1+m 2)4=[m 1/(m 1+m 2)]4h由此类推,得:h 3=m 16h/(m 1+m 2)6=[m 1/(m 1+m 2)]6h所以通过的总路程s=h+2h 1+2h 2+2h 3+……【解题回顾】这是一道难度较大的习题.除了在数学处理方面遇到困难外,主要的原因还是出在对两个物块运动的情况没有分析清楚.本题作为动量守恒与机械能守恒定律应用的一种特例,应加强记忆和理解.【例7】如图所示,金属杆a 从 离地h 高处由静止开始沿光滑平行的弧形轨道下滑,轨道的水平部分有竖直向上的匀强磁场B ,水平轨道上原来放有一金属杆b ,已知a 杆的质量为m a ,且与杆b 的质量之比为m a ∶m b =3∶4,水平轨道足够长,不计摩擦,求: (1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a ∶R b =3∶4,其余部分的电阻不计,整个过程中杆a 、b 上产生的热量分别是多少?【解析】(1)a 下滑过程中机械能守恒m a gh=m a v 02/2a 进入磁场后,回路中产生感应电流,a 、b 都受安培力作用,a 做减速运动,b 做加速运动,经过一段时间,a 、b 速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b 的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒m a v 0=(m a +m b )v由以上两式解得最终速度v a =v b =v=(2)由能量守恒得知,回路中产生的电能应等于a 、b 系统机械能的损失,所以 E=m a gh-(m a +m b )v 2/2=4m a gh/7(3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失mh h m m m m m m m m m h 13.1567.02])41()41()41(21[2])()()(21[2642621142112211≈⨯=++++=+++++++= gh 273的机械能,即Q a +Q b =E.在回路中产生电能的过程中,电流不恒定,但由于R a 与R b 串联,通过的电流总是相等的,所以应有所以【例8】连同装备质量M=100kg 的宇航员离飞船45m 处与飞船相对静止,他带有一个装有m=0.5kg 的氧气贮筒,其喷嘴可以使氧气以v=50m/s 的速度在极短的时间内相对宇航员自身喷出.他要返回时,必须向相反的方向释放氧气,同时还要留一部分氧气供返回途中呼吸.设他的耗氧率R 是2.5×10-4kg/s ,问:要最大限度地节省氧气,并安全返回飞船,所用掉的氧气是多少?【解析】设喷出氧气的质量为m ′后,飞船获得的速度为v ′,喷气的过程中满足动量守恒定律,有:0=(M-m ′)v ′+m ′(-v+v ′)得v ′=m ′v/M宇航员即以v ′匀速靠近飞船,到达飞船所需的时间t=s/v ′=Ms/m ′v这段时间内耗氧m ″=Rt故其用掉氧气m ′+m ″=2.25×10-2/m ′+m ′因为(2.25×10-2/m ′)×m ′=2.5×10-2为常数,所以当2.25×10-2/m ′=m ′,即m ′=0.15kg 时用掉氧气最少,共用掉氧气是m ′+m ″=0.3kg.【解题回顾】(1)动量守恒定律中的各个速度应统一对应于某一惯性参照系,在本题中,飞船沿圆轨道运动,不是惯性参照系.但是,在一段很短的圆弧上,可以视飞船做匀速直线运动,是惯性参照系.(2)此题中氧气的速度是相对宇航员而不是飞船,因此,列动量守恒的表达式时,要注意速度的相对性,这里很容易出错误.(3)要注意数学知识在物理上的运用.【例9】质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。