轨道结构动力分析的傅里叶变换法
傅里叶变换及其性质 PPT

也称为时间倒置定理。
5. 对称性
我们知道
S a ( t) 1
-1
1
-2
0
2
t
(a )
g 2( ) 1
- o
( b ) 图2.5-4 取样函数Sa(t) 及其频谱
6. 时域卷积
在信号与系统分析中卷积性质占有重要地位,它将系统 分析中的时域方法与频域方法紧密联系在一起。在时域分析 中, 求某线性系统的零状态响应时,若已知外加信号f(t)及系 统的单位冲激响应h(t), 则有
的关系也可以用一个图绘出。
大家学习辛苦了,还是要坚持
继续保持安静
取样函数定义为
Sa(x) sinx x
这是一个偶函数,且x→0时,Sa(x)=1;当x=kπ时,Sa(kπ)=0。
据此,可将周期矩形脉冲信号的复振幅写成取样函数的形式,即
Fn
E
T
San
2
Sa(x) 1
-3-2 - o
2 3
x
f
(t)
e at
t 0
0
t 0
f (t)
1 e-t (>0)
(0)
F()
1
o
t
o
(a)
(b)
图 2.4-2 单边指数函数e-αt
(a) 单边指数函数e-αt; (b) e-αt的幅度谱
解
F(j) f(t)ejtdt etejtdt
e((jj )t ) 01j
1
jarctan
ea
a22
f(t)lim F nej n t 1F (j )ej td
T n
2
非周期信号的傅里叶变换可简记为
一般来说,傅里叶变换存在的充分条件为f(t)应满足绝对
傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上前言第一部分、DFT第一章、傅立叶变换的由来第二章、实数形式离散傅立叶变换(Real DFT)从头到尾彻底理解傅里叶变换算法、下第三章、复数第四章、复数形式离散傅立叶变换/***************************************************************************************************/这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。
感谢原作者们(July、dznlong)的精心编写。
/**************************************************************************************************/前言:“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?傅里叶变换(Fourier transform)是一种线性的积分变换。
因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。
哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。
这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。
ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:以下就是傅里叶变换的4种变体(摘自,维基百科)连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
快速傅里叶变换(含详细实验过程分析)

快速傅⾥叶变换(含详细实验过程分析)[实验2] 快速傅⾥叶变换 (FFT) 实现⼀、实验⽬的1、掌握FFT 算法和卷积运算的基本原理;2、掌握⽤C 语⾔编写DSP 程序的⽅法;3、了解利⽤FFT 算法在数字信号处理中的应⽤。
⼆、实验设备 1. ⼀台装有CCS 软件的计算机; 2. DSP 实验箱的TMS320C5410主控板; 3. DSP 硬件仿真器。
三、实验原理(⼀)快速傅⾥叶变换傅⾥叶变换是⼀种将信号从时域变换到频域的变换形式,是信号处理的重要分析⼯具。
离散傅⾥叶变换(DFT )是傅⾥叶变换在离散系统中的表⽰形式。
但是DFT 的计算量⾮常⼤, FFT 就是DFT 的⼀种快速算法, FFT 将DFT 的N 2步运算减少⾄ ( N/2 )log 2N 步。
离散信号x(n)的傅⾥叶变换可以表⽰为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因⼦,利⽤它的对称性和周期性可以减少运算量。
⼀般⽽⾔,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两⼤类。
两者的区别是蝶形因⼦出现的位置不同,前者中蝶形因⼦出现在输⼊端,后者中出现在输出端。
本实验以时间抽取⽅法为例。
时间抽取FFT 是将N 点输⼊序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN k NN n nkN W n x WWn x k X或者写成:()()12()kN X k X k W X k =+由于X 1(k) 与X 2(k) 的周期为N/2,并且利⽤W N 的对称性和周期性,即:kNNkNWW-=+2/可得:()()12(/2)kNX k N X k W X k+=-对X1(k) 与X2(k)继续以同样的⽅式分解下去,就可以使⼀个N点的DFT最终⽤⼀组2点的DFT来计算。
傅里叶变换分析法

22
电路基础教学部
2004年11月25日10时7分
3.3.3 频谱密度函数(2)
Fn 2π F (ω ) = lim TFn = lim Fn = lim ∆ω → 0 ∆ ω ∆f → 0 ∆ f T →∞
表明:F (ω ) 是单位频带的复振幅,具有密度的概念,故称 其为频谱密度函数,简称为频谱函数或频谱密度(Spectral density)。
1 T /2 1 − jnω 0 t Fn = ∫ f ( t )e dt = (a n − jbn ) −T / 2 2 T nω 0τ nω 0τ A Aτ = sin( )= ) Sa ( 2 2 nπ T
f (t ) =
sin x x
1
-3π -π 2π -2π 0 π 3π
∞
x
n = −∞
∞ −∞ ∞ −∞
f ( t )e − jωt dt =| F (ω ) | e jθ (ω )
∞ −∞
f ( t ) cos ωtdt − j ∫
f ( t ) sin ωtdt
* f(t)为实函数 F (ω ) = F ( −ω )
| F (ω ) |~ ω
θ (ω ) ~ ω
f(t)为实偶函数 f(t)为实奇函数
…
…
ω0 2ω0 3ω0 nω0 ϕn ϕ1 ϕ2 ϕ3
-3ω0 -2ω0 -ω0 0
ω0 2ω0 3ω0 nω0 θn θ1 θ2 θ3
…
…
-3ω0 -2ω0 -ω0
…
0
ω0 2ω0 3ω0 nω0
…
θ-3 θ -2
电路基础教学部
θ-1
0
ω0 2ω0 3ω0 nω0
单边频谱
快速傅里叶变换解析课件PPT学习

(2)两个N/2点的DFT运算量:复乘次数: N 2
2
复加次数: N ( N 1)
2
(3)N/2个蝶形运算的运算量:复乘次数: N
复加次数:
2 2
N
2
N
总共运算量:
复乘: 复加:
N2 N
N(N
1)/ 2 N 2
22
2
N(N
1) N
N2
2
2
*N点DFT的复乘为N2 ;复加N(N-1);与分解后相比可知,
X (k) X1(k) WNk X 2 (k) , k 0,1,
, N 1 2
(4-11)
X
k
N 2
X1
k
N 2
W
k
N 2
N
X 2
k
N 2
X1(k) WNk X 2 (k), k 0,1,, N 1 (4-12) 2
13
第13页/共57页
这样,就可将X(k)表达为前后两部分:
n0
n0
N 1
{Re[x(n)]Re[WNnk ] Im[x(n)]Im[WNnk ]
n0
j(Re[x(n)]Im[WNnk ] Im[x(n)]Re[WNnk ])}
(4-3)
由此可见,一次复数乘法需用四次实数乘法和二次实数加法; 一次复数加法需二次实数加法。 因而每运算一个X(k)需4N次实 数乘法和2N+2(N-1)=2(2N-1)次实数加法。 所以,整个DFT运算 总共需要4N2次实数乘法和2N(2N-1)次实数加法。
2
第2页/共57页
N 1
正变换: X (k ) x(n)WNnk
n0
反变换:
x(n)
傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略傅立叶变换、拉普拉斯变换、Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换。
研究的都是什么?从几方面讨论下。
这三种变换都非常重要!任何理工学科都不可避免需要这些变换。
傅立叶变换,拉普拉斯变换, Z变换的意义【傅里叶变换】在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换(FFT)详解

关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。
结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算是土木工程和机械工程领域中的一个重要分支,它涉及到结构在动力作用下的响应分析。
这门课程的课后习题通常要求学生运用所学的理论,解决实际工程问题。
以下是一些可能的习题答案示例,请注意,这些答案是基于假设的习题内容,实际的习题答案应根据具体的题目来确定。
习题1:单自由度系统的动力响应假设有一个单自由度系统,其质量为m,阻尼系数为c,刚度系数为k。
系统受到一个简谐激励F(t) = F0 * sin(ωt),其中F0是激励力的幅值,ω是激励频率。
求系统的稳态响应。
答案:对于单自由度系统,其运动方程可以表示为:\[ m\ddot{x}(t) + c\dot{x}(t) + kx(t) = F_0 \sin(\omega t) \]稳态响应可以通过求解上述方程的特解来获得。
特解的形式为:\[ x(t) = X \sin(\omega t + \phi) \]其中,振幅X和相位角φ可以通过以下公式计算:\[ X = \frac{F_0}{\sqrt{(\omega^2 m - \omega^2)^2 +(c\omega)^2}} \]\[ \phi = \arctan\left(\frac{c\omega}{\omega^2 m -\omega^2}\right) \]习题2:多自由度系统的模态分析考虑一个两自由度系统,其质量矩阵、刚度矩阵和阻尼矩阵分别为:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & k_c \\ k_c & k_2\end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2\end{bmatrix} \]求系统的自然频率和模态形状。