北京市海淀区2020学年度初一上期末数学试题及答案

合集下载

2020-2021学年北京市海淀区七年级上期末数学试卷(附答案解析)

2020-2021学年北京市海淀区七年级上期末数学试卷(附答案解析)

2020-2021学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.下列说法中,正确的是( ) A .绝对值等于他本身的数必是正数 B .若线段AC =BC ,则点C 是线段AB 的中点 C .角的大小与角两边的长度有关,边越长,则角越大 D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为42.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为( ) A .164×103B .16.4×104C .1.64×105D .0.164×1063.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是( ) A .﹣5B .﹣0.9C .0D .﹣0.014.下列运算正确的是( ) A .3a +2a =5a 2 B .3a ﹣a =3C .2a 3+3a 2=5a 5D .﹣0.25ab +14ab =05.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y +1=12y ﹣□,小明想了想后翻看了书后的答案,此方程的解是y =−53,然后小明很快补好了这个常数,这个常数应是( ) A .−32B .32C .52D .26.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )A .a >cB .b +c >0C .|a |<|d |D .﹣b <d7.下列等式变形错误的是( ) A .若a =b ,则a 1+x 2=b 1+x 2B .若a =b ,则3a =3bC .若a =b ,则ax =bxD.若a=b,则am =b m8.如图,在A、B两处观测到C处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东35°,北偏西50°9.根据如图所示的图形,下列语句中:①过A,B两点画直线l;②直线l过A,B两点;③点A,点B在直线l上;④A,B是直线l上的两点,其中,能正确表达图形的语句有()A.1个B.2个C.3个D.4个10.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)如果收入100元记作+100,那么支出30元记作.12.(2分)观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.13.(2分)计算:。

北京市海淀区2019-2020学年初一期末数学试题及答案

北京市海淀区2019-2020学年初一期末数学试题及答案

海 淀 区 七 年 级 第 一 学 期 期 末 调 研一、选择题(本题共30分,每小题3分)1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:区县 海淀怀柔密云昌平 气温o (C)+132这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B . 若4223x x -=-,则4322x x +=-C . 若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D.若3112123x x+--=,则3(31)2(12)6x x+--=8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为A.20° B.70° C.110°D.160°9.已知线段8AB=cm,6AC=cm,下面有四个说法:①线段BC长可能为2cm;①线段BC长可能为14cm;①线段BC长不可能为5cm;① 线段BC长可能为9cm.所有正确说法的序号是A.①① B.①① C.①①① D.①①①①10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是A.P→A B.P→BC.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12.一个单项式满足下列两个条件:①系数是2-;①次数是3.请写出一个同时满足上述两个条件的单项式_______.13.计算48396731''︒+︒的结果为_______.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长_______ (填:大或小),北O ABGFAB E理由为__________________________________________________ . 15.已知一个长为6a ,宽为2a 的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a 的代数式表示)图1 图216.如下图,点C 在线段AB 上,D 是线段CB 的中点. 若47AC AD ==,,则线段AB 的长为_______.17. 历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式3()5f x mx nx =++,当2x =时,多项式的值为(2)825f m n =++,若(2)6f =,则(2)f -的值为_______.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A 、B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-2a6aB C20.解方程:(1)3265x x -=-+ (2) 325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹); (3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.||3m x y=+ ||3m x y=-24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”. 2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示. (1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中. (2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ①求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2①a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)OBA26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分①BOD. 求证:①AOC 与①BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.OBAOCBAODCBA27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =, 因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;①与23“模二相加不变”的两位数有 个.1111011100+七年级第一学期期末调研数学参考答案 2020.1一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)11. 丁. 12. 32x (不唯一) 13. 0′1°116 14. 小,两点之间线段最短 15. 2a 16. 1017. 418. B ,B ,12820注:① 第12题答案不唯一,只要符合题目要求的均可给满分;② 第14题每空1分;③ 第18题前两个空均答对给1分,第三个空1分.三、解答题(本大题共24分,第19题8分,第20题8分,第21题4分,第22题4分) 19.(每小题满分4分)(1)解:7(6)(4)(3)7612 …………………………………..2分 25 …………………………………..4分(2)解:2313(2)1()2341(8) …………………………………..2分128 …………………………………..3分 4 …………………………………..4分20.(每小题满分4分)(1)解:3265x x3562x x …………………………………..2分 24x…………………………………..3分2x …………………………………..4分(2)解:325123x x 3(32)2(5)16x x …………………………………..1分962106x x …………………………………..2分710x…………………………………..3分107x…………………………………..4分 21.(本小题满分4分)解: 222222(2)(6)3xy x y x y xy x y=222224263xy x y x y xy x y …………………………………..2分=22xy …………………………………..3分当2,1x y 时,原式222(1)4 ………………………………..4分22. (本小题满分5分) (1)(2)(3)如图所示:正确画出射线AC ,线段BC ………………………………….2分 正确画出线段AB 及延长线,点D 以及线段CD ………………………………….4分 正确画出点E 以及线段BE ………………………………….5分四、解答题(本大题共10分,第23题4分,第24题6分)23. (本小题满分4分) 解:(1) ∵2x,3y ,∴x y , ………………………………..1分 ∴32337mx y. ………………………………..2分 (2)由已知条件可得4,x y m ,当4m 时,由43m m ,得2m ,符合题意; ………………………………..3分当4m 时,由43m m 得1m ,不符合题意,舍掉.∴2y. …………………………………..4分24. (本小题满分4分)解:(1) 32 …………………………………..1分A (2) 设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(5)x 场 ………………..2分 依题意可列方程 32(5)121x x ………………………………….4分 3210121x x 530x6x …………………………………..5分则积2分取胜的场数为51x ,所以取胜的场数为617答:巴西队取胜的场数为7场. …………………………………..6分 五、解答题(本大题共19分,25~26每题6分,27题7分) 25. (本小题满分6分) (1)① 0a b…………………………………..1分②∵M M 为AB 中点, ∴AMBM . …………………………………..2分∴m a b m . ∴2+=ba m . …………………………………..3分 (2) ①如图所示 …………………………………..4分②a c d b 或者c a b d …………………………………..6分26. (本小题满分6分)(1)证明:点O 在直线AD 上, ∴180AOB BOD . 即180AOB BOCCOD .∴180AOCCOD . …………………………………..1分OC 平分BOD , ∴BOC COD .∴180AOCBOC .AOC BOC 与互补. ………………………………….2分(2)如图所示第 11 页 共 11 页或 ………………………4分 (3)45或|45| ………………………6分27.(本小题满分7分)解:(1) 10111101,………………………2分 (2)①2(23)01M ,2(12)10M ,22(12)(23)11M M ,2(1223)11M∴222(12)(23)(1223)M M M ,∴12与23 满足“模二相加不变”.2(23)01M ,2(65)01M ,22(65)(23)10M M ,2(6523)00M222(65)(23)(6523)M M M ,∴65与23不满足“模二相加不变”.2(23)01M ,2(97)11M ,22(97)(23)100M M ,2(9723)100M222(97)(23)(9723)M M M ,∴97与23满足“模二相加不变”…………………….5分 ②38……………………7分。

2020学年北京市海淀区人教版七年级上期末数学考试题含答案

2020学年北京市海淀区人教版七年级上期末数学考试题含答案

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3- 4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km .隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2020年11月到2020年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为 A .738.53元 B .125.45元 C .136.02元 D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余日期 摘要 币种 存/取款金额 余额 操作员备注151101 北京水费 RMB 钞 -125.45 874.55 010005B25 折 160101 北京水费 RMB 钞 -136.02 738.53 010005Y03折160301 北京水费 RMB 钞 -132.36 606.17 010005D05 折 160501北京水费RMB 钞-128.59477.5801000K19折12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母m 、n ,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为 ︒.2020面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=. 七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,. 三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.计算: (1)111()12462+-⨯. (2)1031(1)2()162-÷+-⨯.22.解方程:12324x x+--=.23.设11324()()2323A x x y x y =---+-+. (1)当1,13x y =-=时,求A 的值;(2)若使求得的A 的值与(1)中的结果相同,则给出的x 、y 的条件还可以是 .24.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图: ①射线BA ;②直线AD ,BC 相交于点E ;③在线段DC 的延长线上取一点F ,使CF=BC ,连接EF . (2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线. 问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,COAD E磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足2020只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长2020拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O •. 对于两个不同的点M 和N ,若点M 、点N到点O •的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O •的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动k (k >0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动k 个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论k 为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2020.1一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 2020品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分。

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣22.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.02026.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.47.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+289.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<010.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.运算:180°﹣20°40′=.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为.17.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.2020-2021学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣2【考点】相反数.【分析】依照只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.2.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万用科学记数法表示为3×106.故选C.3.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|【考点】正数和负数.【分析】依照小于零的数是负数,可得答案.【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】依照合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.0202【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】解:0.02020≈0.020(精确到千分位).故选B.6.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.4【考点】余角和补角.【分析】依照图形和余角的概念解答即可.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣【考点】同解方程.【分析】依照解方程,可得x的值,依照同解方程,可得关于a的方程,依照解方程,可得答案.【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+28【考点】由实际问题抽象出一元一次方程.【分析】设这件夹克衫的成本价是x元,依照题意可得,利润=标价×80%﹣成本价,据此列出方程.【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】数轴.【分析】依照数轴和ac<0,b+a<0,能够判定选项中的结论是否成立,从而能够解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴假如a=﹣2,b=0,c=2,则b+c>0,故选项A错误;假如a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;假如a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.10.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T【考点】线段的性质:两点之间线段最短;几何体的展开图;平面展开-最短路径问题.【分析】依照圆锥画出侧面展开图,依照两点之间线段最短可得它最有可能通过的点是N.【解答】解:如图所示:依照圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T (M,N,S,T均在PB上)四个点中,它最有可能通过的点是N,,故选B.二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是1,+,0.(写出所有符合题意的数)【考点】有理数.【分析】依照大于或等于零的有理数是非负有理数,可得答案.【解答】解:非负有理数是1,+,0.故答案为:1,+,0.12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为120°.【考点】余角和补角.【分析】先依照图形得出∠AOB=60°,再依照和为180度的两个角互为补角即可求解.【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.13.运算:180°﹣20°40′=159°20′.【考点】度分秒的换算.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)【考点】列代数式.【分析】依照4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.【解答】解:(4x+15)÷4=(件).答:这4名工人此月实际人均工作量为件.故答案为:.15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是数轴上表示﹣2的点与原点的距离;若|x|=2,则x的值是±2.【考点】绝对值;数轴.【分析】直截了当利用绝对值的定义得出|﹣2|的含义以及求出x的值.【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设该小组共有x名同学,依照题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.【解答】解:设该小组共有x名同学,由题意得,+=1.故答案为:+=1.17.如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【考点】线段的性质:两点之间线段最短.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE >DC,从而得到AB+CD<AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=7;②若|x+x1+x2+x3+…+x20|的值最小,则x3=﹣3.【考点】规律型:图形的变化类.【分析】(1)按照规律写出x14即可.(2)当x=﹣6时,|x+x1+x2+x3+…+x20|的值最小,由此能够解决问题.【解答】解:①由题意:x1=2,x2=3,x3=4,x4=5,x5=6,x6=7,x7=4,x8=,5,x9=6,x10=7,x11=4,x12=5,x13=6,x14=7.故答案为x14=7.②由题意当x=﹣6时,x1=﹣5,x2=﹣4,x3=﹣3,x4=﹣2,x5=﹣1,x6=0,x7=1,x8=2,x9=3,x10=4,x11=5,x12=6,x13=7,x14=4,x15=5,x16=6,x17=7,x18=4,x19=5,x20=6,|x+x1+x2+x3+…+x20|=50最小,∴x3=﹣3.故答案为﹣3.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.【考点】有理数的混合运算.【分析】(1)依照有理数的乘法和减法进行运算即可;(2)依照有理数的乘方、除法、乘法和减法进行运算即可.【解答】解:(1)3﹣6×=3﹣6×=3﹣1=2;(2)﹣42÷(﹣2)3﹣×=﹣16÷(﹣8)﹣=2﹣1=1.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为90°(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是BC=AC;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是BC′=AC′.【考点】作图—复杂作图.【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.【解答】解:(1)如图所示:直线DC即为所求;(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】第一依照整式的加减运算法则将原式化简,再代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.【考点】两点间的距离.【分析】依照点A在线段CB上,AC=,点D是线段BC的中点,CD=3,能够求得BC的长,从而能够求得CA的长,从而得到AD的长.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?【考点】一元一次方程的应用.【分析】设②号小球运动了x米,依照图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.【解答】解:设②号小球运动了x米,由题意可得方程:=,解方程得:x=2答:从造型一到造型二,②号小球运动了2米.五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【分析】(1)利用“相伴数对”的定义化简,运算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入运算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯独);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是,,,.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.【考点】角的运算.【分析】(1)依照题意,明确每次旋转的角度,运算即可;(2)依照各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情形讨论,求出α的度数即可;(4)不管a为多少度,旋转专门多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,可不能显现OA i是∠A i OA K是的角平分线,因此旋转会中止.【解答】解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2+=4α,解得:.(3),,(4)关于角α=120°不能停止.理由如下:不管a为多少度,旋转过若干次后,一定会显现OA i是∠A i OA K是的角平分线,因此旋转会停止.但专门的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会显现“与OM重合”或“与OA1重合”两种情形,可不能出第三条射线,因此可不能显现OA i是∠A i OA K是的角平分线这种情形,旋转可不能停止.2021年6月9日。

2019-2020学年北京市海淀区初一年级第一学期期末数学试题(含答案)

2019-2020学年北京市海淀区初一年级第一学期期末数学试题(含答案)

海 淀 区 七 年 级 第 一 学 期 期 末 调 研数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory (胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B . 若4223x x -=-,则4322x x +=-C . 若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D . 若3112123x x+--=,则3(31)2(12)6x x +--= 8. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB 在点O 南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为 A .20°B . 70°C .110°D .160°9. 已知线段8AB =cm ,6AC =cm ,下面有四个说法:①线段BC 长可能为2cm ; ②线段BC 长可能为14cm ; ③线段BC 长不可能为5cm ;④ 线段BC 长可能为9cm .所有正确说法的序号是A . ①②B .③④C .①②④D .①②③④10. 某长方体的展开图中,P 、A 、B 、C 、D (均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A 、B 、C 、D 四点,则蚂蚁爬行距离最短的路线是A . P→AB . P→BC . P→CD . P→D二、填空题(本题共16分,每小题2分) 11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数机场记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12. 一个单项式满足下列两个条件:①系数是2-;②次数是3.请写出一个同时满足上述两个条件的单项式_______.13. 计算48396731''︒+︒的结果为_______.14. 如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长_______ (填:大或小),理由为__________________________________________________ .15. 已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a的代数式表示)2a6a图1 图216. 如下图,点C在线段AB上,D是线段CB的中点. 若47AC AD==,,则线段AB的长为_______.17. 历史上数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示.例如,对于多项式3()5f x mx nx=++,当2x=时,多项式的值为(2)825f m n=++,若(2)6f=,则(2)f-的值为_______.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.B则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元. 三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-20.解方程:(1)3265x x -=-+(2)325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹);B(3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示.||3m x y =+||3m x y =-(1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ②求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2②a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.OBAOBAOCBAODCBA图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分∠BOD. 求证:∠AOC 与∠BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次1111011100+将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =,因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有 个.。

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。

11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。

2019-2020学年北京市海淀区七年级上册期末数学试题(有答案)【优质版】

2019-2020学年北京市海淀区七年级上册期末数学试题(有答案)【优质版】

2019-2020学年北京市海淀区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣52.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×1063.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=05.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>06.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=17.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b 元则小何共花费元.(用含a,b的代数式表示)13.已知|a﹣2|+(b+3)2=0,则b a的值等于.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=°.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).20.解方程:(1)3(2x﹣1)=15;(2).21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=°所以∠AOC=+=°+°=°因为OD平分∠AOC所以∠COD==°.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.2019-2020学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣5【分析】依据相反数的定义求解即可.【解答】解:﹣5的相反数是5.故选:C.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:174000用科学记数法表示为 1.74×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选:A.【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=0【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、是一元一次方程,故此选项正确;故选:D.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.5.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.【点评】本题考查了数轴的意义、绝对值的定义及有理数的乘法法则,熟练掌握数轴的有关性质是关键.6.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、若﹣3x=5,则x=﹣,错误;B、若,则2x+3(x﹣1)=6,错误;C、若5x﹣6=2x+8,则5x﹣2x=8+6,错误;D、若3(x+1)﹣2x=1,则3x+3﹣2x=1,正确;故选:D.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.7.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB 上.10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=102°12'.【分析】1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.【解答】解:48°37'+53°35'=101°72'=102°12',故答案为:102°12'.【点评】本题主要考查了度分秒的换算,在进行度、分、秒的运算时也应注意借位和进位的方法.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b 元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.13.已知|a﹣2|+(b+3)2=0,则b a的值等于9.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式中即可.【解答】解:依题意得:a﹣2=0,b+3=0,∴a=2,b=﹣3.∴b a=(﹣3)2=9.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=59°.【分析】根据题意可得∠CAS=18°,∠BAS=77°,然后利用角的和差关系可得答案.【解答】解:∠BAC=77°﹣18°=59°,故答案为:59.【点评】此题主要考查了方向角,方向角是从正北或正南方向到目标方向所形成的小于90°的角.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=1.【分析】根据一元一次方程的解的定义列出方程,解方程即可.【解答】解:∵2是关于x的一元一次方程2(x﹣1)=ax的解,∴2a=2,解得,a=1,故答案为:1.【点评】本题考查的是方程的解的定义,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=﹣8(直接写出答案).【分析】原式利用已知的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣8【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为2或10.【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,AC=1B﹣BC=6﹣4=2;当C在线段AB的延长线上时,AC=AB+BC=10.综上所述:AC的长度为2或10.故选:2或10.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,不会(填写“会”或者“不会”),图形的周长为2n+4a.【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【解答】解:周长依次为16a,32a,64a,128a,…,2n+4a,即无限增加,所以不断发展下去到第n次变化时,图形的周长为2n+4a;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a2.故答案为:不会、2n+4a.【点评】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键,本题有一定难度.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣)×(﹣8)+(﹣6)2=4+36=40;(2)﹣14+(﹣2)=﹣1+2×3﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.解方程:(1)3(2x﹣1)=15;(2).【分析】(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:(1)去括号得,6x﹣3=15,移项得,6x=15+3,合并同类项得,6x=18,系数化为1得,x=3;(2)去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.【分析】根据整式的运算法则即可求出答案.【解答】解:当3a﹣7b=﹣3时,原式=4a+2b﹣2+5a﹣20b﹣3b=9a﹣21b﹣2=3(3a﹣7b)﹣2=﹣9﹣2=﹣11【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;(2)连接AB交直线l于点O,点O即为所求;【解答】解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.【点评】本题考查作图﹣复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=120°所以∠AOC=∠AOB+∠BOC=40°+120°=160°因为OD平分∠AOC所以∠COD=∠AOC=80°.【分析】先求出∠BOC的度数,再求出∠AOC的度数,根据角平分线定义求出即可.【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,∴∠BOC=120°,∴∠AOC=∠AOB+∠BOC=40°+120°=160°,∵OD平分∠AOC,∴∠COD=∠AOC==80°,故答案为:120,∠AOB,∠BOC,40,120,160,∠AOC,80.【点评】本题考查了角平分线定义和角的有关计算,能求出∠AOC的度数和得出∠COD =∠AOC是解此题的关键.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.【分析】(1)根据线段的中点得出AE=CE=AC,CF=FB=CB,求出EF=AB,代入求出即可;(2)根据线段的中点得出AE=CE=AC,CF=FB=CB,即可求出EF=AC.【解答】解:(1)∵当点E、点F是线段AC和线段BC的中点,∴AE=CE=AC,CF=FB=CB,∵AB=10,∴EF=CE+CF=AC+CB=(AC+CB)=AB=10=5;(2)如图:EF=AC,理由是:∵当点E、点F是线段AB和线段BC的中点,∴AE=EB=AB,CF=FB=CB,∴EF=EB﹣FB=AB﹣CB=(AB﹣CB)=AC.【点评】本题考查了求两点之间的距离和线段的中点,能根据线段的中点定义得出AE =EB=AB和CF=FB=CB是解此题的关键.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为2:3;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?【分析】探究一:依据3个A型号钢球与2个B型号钢球的体积相等,即可得到A型号与B型号钢球的体积比为2:3;探究二:设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由放入A 型号与B型号钢球共10个后,水面高度涨到57mm,可得方程,进而得出结论.【解答】解:探究一:由题可得,3个A型号钢球与2个B型号钢球的体积相等,∴A型号与B型号钢球的体积比为2:3;故答案为:2:3;探究二:每个A型号钢球使得水面上升(36﹣30)=2 mm,每个B型号钢球使得水面上升(36﹣30)=3mm,设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由题意列方程:2x+3(10﹣x)=57﹣30,解得:x=3,所以10﹣x=7,答:放入水中的A型号钢球3个,B型号钢球7个.【点评】本题主要考查了一元一次方程的应用,解决问题的关键是依据等量关系列方程求解.26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=﹣5;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=1;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x的值;(3)原式利用题中的新定义计算,求出整数k的值即可.【解答】解:(1)根据题意得:原式=﹣9+4=﹣5;故答案为:﹣5;(2)根据题意化简得:2x﹣1+3x+3=7,移项合并得:5x=5,解得:x=1;故答案为:1;(3)∵等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数,∴(2x﹣1)k﹣(﹣3)(x+k)=5+2k,∴(2k+3)x=5,∴x=,∵k是整数,∴2k+3=±1或±5,∴k=1,﹣1,﹣2,﹣4.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.【分析】(1)根据角平分线的定义计算即可;(2)①根据∠FCD=∠ACF﹣∠ACD,求出∠ACF,∠ACD即可;②猜想:∠BCE=2α.根据∠BCE=∠AOB﹣∠ECD﹣∠ACD计算即可;(3)求出α,β(用t表示),构建方程即可解决问题;【解答】解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,故答案为45°(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°故答案为30°.②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,∴|30t|=20°,解得t=.故答案为.【点评】本题考查角的计算、角平分线的定义、数轴、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.。

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH2.4的绝对值为()A.±4B.4C.﹣4D.23.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.45.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.16.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.09.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣﹣(填“>”“<”或“=”)12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是cm.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有对.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).2019-2020学年北京市海淀区七年级上期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH【分析】依据点F是线段EG的中点,点G是线段FH的中点,即可得到EF=FG,FG =GH,进而得出结论.【解答】解:如图,∵点F是线段EG的中点,点G是线段FH的中点,∴EF=FG,FG=GH,∴EF=GH,故选:D.【点评】本题主要考查了线段的中点,线段的中点就是把一条线段分成两条相等的线段的点.2.4的绝对值为()A.±4B.4C.﹣4D.2【分析】数轴上某个数与原点的距离叫做这个数的绝对值.根据绝对值的定义求解.【解答】解:∵数轴上表示4的点与原点的距离为4,∴4的绝对值是4,故选:B.【点评】此题考查了绝对值的定义,数轴上某个数与原点的距离叫做这个数的绝对值.3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.4【分析】先将原式去括号、合并同类项化简,再由多项式的值与x无关知x的项的系数为0,据此求得a和b的值,最后代入计算可得.【解答】解:x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)=x2+ax﹣2y+7﹣2bx2+4x﹣18y+2=(1﹣2b)x2+(a+4)x﹣20y+9,∵x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,∴1﹣2b=0且a+4=0,则a=﹣4,b=,∴a﹣2b=﹣4﹣2×=﹣5,故选:A.【点评】本题主要考查整式的加减,解题的关键是掌握整式的加减混合运算顺序和运算法则.5.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.1【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【点评】此题主要考查了度分秒的换算,正确掌握运算法则是解题关键.7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.【点评】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0【分析】令x=1,即可求出所求.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【解答】解:从上面看,是正方形右边有一条斜线,如图:故选:B.【点评】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2【分析】首先根据BC=2,C点所表示的数为x,求出B表示的数是多少,然后根据OA =OB,求出A点所表示的数是多少即可.【解答】解:∵BC=2,C点所表示的数为x,∴B点表示的数是x﹣2,又∵OA=OB,∴B点和A点表示的数互为相反数,∴A点所表示的数是﹣(x﹣2),即﹣x+2.故选:A.【点评】此题主要考查了列代数式,在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣>﹣(填“>”“<”或“=”)【分析】根据两个负数比较大小,绝对值大的反而小可得答案.【解答】解:||=,|﹣|=,∵,∴﹣>﹣,故答案为:>.【点评】此题主要考查了有理数的大小比较,关键是掌握有理数比较大小的方法.12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是1cm.【分析】先画出图象,则AC=AB+BC=5cm+3cm=8cm,根据点D是线段AC的中点可得到AD=4cm,然后利用DB=AB﹣AD进行计算.【解答】解:如图,∵AB=5cm,BC=3cm,∴AC=AB+BC=5cm+3cm=8cm,∵点D是线段AC的中点,∴AD=AC=×8cm=4cm,∴DB=AB﹣AD=5cm﹣4cm=1cm.故答案为1.【点评】本题考查了两点间的距离:两点间的连线段的长度叫这两点间的距离.也考查了线段中点的定义.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为3x4+6x3﹣4x2y﹣5xy2+2.【分析】根据字母x的指数从大到小排列即可.【解答】解:按x的降幂排列为:3x4+6x3﹣4x2y﹣5xy2+2,故答案为:3x4+6x3﹣4x2y﹣5xy2+2.【点评】此题主要考查了多项式,关键是掌握降幂排列定义.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有6对.【分析】根据补角的概念、角平分线的定义计算,得到答案.【解答】解:∵∠AOD=120°,∴∠BOD=180°﹣120°=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,∴∠AOE=150°,则∠AOD+∠COE=180°,∠AOE+∠BOE=180°,∠AOE+∠DOE=180°,∠AOD+∠DOC=180°,∠AOC+∠BOC=180°,∠AOD+∠EOC=180°,∴图中互为补角的角有6对,故答案为:6.【点评】本题考查的是补角的概念,如果两个角的和等于180°,就说这两个角互为补角.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为45x+16=50x﹣9.【分析】设有x辆汽车,根据去郊游的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x辆汽车,根据题意得:45x+16=50x﹣9.故答案为:45x+16=50x﹣9.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是1或﹣3.【分析】根据数轴上点的位置特征确定出终点表示的数即可.【解答】解:根据题意得:2+3﹣4=1或﹣2+3﹣4=﹣3,此时终点所表示的数是1或﹣3,故答案为:1或﹣3【点评】此题考查了数轴,弄清题意是解本题的关键.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒6米.【分析】设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,故答案为:6【点评】本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x与y所表示的含义,也是本题的难点.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式通分后,计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣++﹣==;(3)原式=×(﹣)××=﹣;(4)原式=﹣16﹣1×3×=﹣16﹣16=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:﹣2x=2,解得:x=﹣1;(2)去分母得:4x﹣2+6=2x+1,移项合并得:2x=﹣3,解得:x=﹣1.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.【分析】(1)把A、B的值代入得出A﹣2B=(2a2﹣a)﹣2(a2+a),去括号后合并后再代入计算即可求解;(2)设去年乙类收入为a,则甲类收入是2a;进一步表示出预计今年甲类收入为(1﹣20%)×1.5a,乙类收入为(1+40%)a;分别算出两年甲类、乙类两种经营总收入,进一步比较得出答案.【解答】解:(1)A﹣2B=(2a2﹣a)﹣2(a2+a)=2a2﹣a﹣2a2﹣2a=﹣3a,当时,原式=﹣3×(﹣)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1﹣9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1﹣9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.【点评】(1)考查了整式的加减﹣求值,主要考查学生化简能力和计算能力.(2)考查列代数式,比较有理数的大小,列式时注意单位“1”,以单位“1”为标准列示解决问题.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).【分析】(1)根据线段的垂直平分线的性质即可作图;(2)作点P关于ON的对称点P′,根据两点之间线段最短即可作图.【解答】解:(1)如图点A即为所求作的点.(2)如图点B即为所求作的点,此时△ABP周长最短.【点评】本题考查了尺规作图、线段的垂直平分线的性质,解决本题的关键是准确画图.四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=m(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.【分析】(1)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得2AP+CQ﹣2PQ=0,即可得出2AP+CQ﹣2PQ与1的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵点C恰好在线段AB中点,∴AC=BC=AB,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×AB+×AB=AB=m;故答案为:m;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×(AC+BC)=AB=m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CP﹣CQ=BC﹣AC=×(BC﹣AC)=AB=m;③点C在线段AB的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ﹣CP=AC﹣BC=×(AC﹣BC)=AB=m;故PQ是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0,∴2AP+CQ﹣2PQ<1.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?【分析】规定向上爬为“+”,则向下滑为“﹣”,然后根据题意,列出算式来解答.【解答】解:设第x天爬到柱顶,规定向上爬为“+”,则向下滑为“﹣”,则根据题意,得5x﹣4(x﹣1)=10,解得x=6.故蜗牛在第6天爬到柱顶.【点评】在解答此题时注意,蜗牛在最后一天爬到顶端后,不用再滑下来了,即在计算天数时,上爬的天数应该比下滑的天数多一天.五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:a(a﹣)x=a+x+,移项合并得:(a2﹣﹣)x=a+,去分母得:(6a2﹣a﹣1)x=3a+1,解得:x=.【点评】此题考查了单项式乘多项式,以及解一元一次方程,熟练掌握运算法则是解本题的关键.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【解答】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点评】本题考查了余角和补角的计算,牢固掌握相关性质并正确列式,是解题的关键.27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+...+29,两边乘以2得到2S=2+22+ (210)然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②﹣①得2S=311﹣3,所以S =,即3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S =,即1+a+a2+a3+a4+..+a n =,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.第21 页共21 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区七年级第一学期期末练习
数学
2020.1
班级姓名成绩
一.选择题(本大题共30分,每小题3分)
在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.
题号 1 2 3 4 5 6 7 8 9 10 答案
1.-A . 2
B .2
1-
C .21
D .-2
2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为
A .15×106
B . 1.5×107
C .1.5×108
D .0.15×108 3.下列各式结果为正数的是
A .22--()
B .3
2-() C .2--D .2--()
4.下列计算正确的是
A .2
527a a a +=B .523a b ab
-=
C .523a a -=
D .3
3
3
2ab ab ab -+=
5.如图,把原来弯曲的河道改直,A ,B 两地间的河道长度变短,这样做的道理是 A .两点确定一条直线 B .两点确定一条线段 C .两点之间,直线最短 D .两点之间,线段最短
B
A
6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是
A .圆柱
B .圆锥
C .棱锥
D .球
7.若2是关于x 的方程1
12
x a +=-的解,则a 的值为 A .0
B .2
C .2-
D .6-
8.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是
A .b -a >0
B .-b >0
C .a >-b
D .-ab <0 9.已知33x y -=,则53x y -+的值是 A .8
B .2
C .2-
D .8-
10.已知线段AB =6cm ,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为 A .1cm
B .2cm
C .1.5cm
D .1cm 或2cm
二.填空题(本大题共24分,每小题3分) 11.比较大小:2-3-(填“>”,“<”或“=”). 12.写出一个以1为解的一元一次方程. 13.若=2040α∠′,则α∠的补角的大小为.
14.商店上月收入为a 元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a 的式子表示).
15.若22(3)0a b -++=,则2a b -的值为_____________.
16.将一副三角板如图放置,若=20AOD ∠︒,则
BOC ∠的大小为____________.
0 b a
17.已知关于x 的方程7kx x =-有正整数解,则整数k 的值为.
18.有一组算式按如下规律排列,则第6个算式的结果为________;第n 个算式的结果为_________________________(用含n 的代数式表示,其中n 是正整数).
1 = 1 (-2) + (-3) + (-4) = -9 3 + 4 + 5 + 6 + 7 = 25 (-4) + (-5) + (-6) + (-7) + (-8) + (-9) + (-10) = -49 5 + 6 + 7 + 8 + 9 + 10 + 11 + 1
2 + 1
3 = 81
…… 三.解答题(本大题共18分,第19题6分, 第20204分,第21题各8分) 19.计算:
(1)12(18)(7)15--+--;(2)()()2
316821⎪⎭

⎝⎛-÷-+-⨯⎪⎭⎫ ⎝⎛-.
2020图,平面上四个点A ,B ,C ,D .按要求完成下列问题: (1)连接AD ,BC ;
(2)画射线AB 与直线CD 相交于E 点;
(3)用量角器度量得∠AED 的大小为_________(精确到度).
B A
21.解方程:
(1)2(10)6x x x -+=;(2)12324
x x
+-=+
.
四.解答题(本大题共12分,每小题4分)
22.先化简,再求值:(
)(
)
a a a a a 32252
2
2
---+,其中5-=a .
23. 点A ,B ,C 在同一直线上,AB =8,AC : BC =3 : 1,求线段BC 的长度.
24.列方程解应用题:
甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?
五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)
25.如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右
平移的T 字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426,若能,请求出这五个数,若不能,请说明理由.
26. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =22ab ab a ++. 如:1☆3=2132131⨯+⨯⨯+=16. (1)求(-2)☆3的值;
(2)若(12+a ☆3)☆(-1
2
)=8,求a 的值; (3)若2☆x =m ,1
()4
x ☆3=n (其中x 为有理数),试比较m , n 的大小.。

相关文档
最新文档