Prebiotic effects of inulin and oligofructose

合集下载

吡仑帕奈中国儿童应用的相关研究

吡仑帕奈中国儿童应用的相关研究

吡仑帕奈中国儿童应用的相关研究发布时间:2023-03-10T14:04:08.756Z 来源:《医师在线》2022年11月22期作者:李冰聂磊通讯作者王兴赵冬梅刘慧敏[导读]吡仑帕奈中国儿童应用的相关研究李冰 聂磊通讯作者王兴 赵冬梅 刘慧敏(佳木斯大学;黑龙江佳木斯154003)摘要:吡仑帕奈(Perampanel,PER)是日本卫材公司于2012年10月研发的 Fycompa品牌。

它是目前为止,惟一对AMPA的受体起效的新一代新药,是第一批用于治疗12岁及以上难治性部分性癫痫发作患者的添加药物,是一种AMPA受体拮抗剂,具有高选择性并调节中枢神经系统中的谷氨酸活性。

临床上可用于单药或联合用药治疗。

常见的不良事件包括头晕、嗜睡、头痛、疲劳、共济失调等。

关键词:吡仑帕奈;AMPA;癫痫1.药物概况吡仑帕奈是突触后神经元上离子型α-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)受体拮抗剂,通过与AMPA受体非竞争性结合,抑制谷氨酸诱导的过度神经传递,发挥作用,是第一个获得监管批准的AMPA受体拮抗剂。

2012年,FDA批准吡仑帕奈口服片剂上市,并仅可作为添加治疗用于12岁及以上的局灶性癫痫发作患者。

2019年9月在我国上市,每天一次用于12岁及以上局灶性癫痫的添加治疗。

2.儿童药代学特点PER口服给药后,吸收迅速且完全,空腹状态药物作用的峰值时间为0.5~2.5h。

进食会减慢吸收速度,药物的峰值浓度较空腹状态时低28%~40%,半衰期平均为105h,肝功能不全者半衰期延长;具有较高的蛋白质结合率(>95%)和较长的半衰期(~105h),该药在体内的排泄30%经尿液,约70%经粪便,另有少量可经唾液。

相较于成人,儿童药代动力学有其特殊性,体内药物代谢的速度通常较成人更快。

但是,过高的血药浓度可能带来更高的不良事件发生率。

3.中国儿童临床应用的安全性及有效性PER对儿童癫痫患者的局灶性发作、特发性全面性强直阵挛发作、等多种发作类型均有一定疗效。

【2017年整理】不同益生元功效对比

【2017年整理】不同益生元功效对比

不同益生元功效对比益生元,是指可以选择性刺激肠道中已定植的有益菌群的繁殖或活性的一种膳食补充剂。

成功的益生元应是在通过上消化道时,大部分不被消化而能被肠道菌群所发酵的。

最重要的是它不仅刺激有益菌群的生长,而且能抑制有害菌繁殖。

目前市场上常见的益生元有:低聚异麦芽糖( IMO)、低聚果糖(FOS)、低聚半乳糖(GOS)、低聚木糖(XOS )、低聚乳果糖(LACT)、大豆低聚糖(SOS)、菊粉(Inulin)等。

虽然这些低聚糖都属于益生元,但多项研究证明它们的结构、组成及糖苷键都存在差异,最后导致它们的功效也不一样。

下面是现在市面上流行的益生元种类做出的功效对比分析,消费者在购买时应认清各种益生元的功效,有针对性地购买。

一、对双歧杆菌(有益菌)的增殖效果双歧杆菌是肠内最有益的菌群,被誉为“人体健康的晴雨表”。

人体内双歧杆菌数量的减少乃消失是“不健康”状态的标志。

人体肠道内的双歧杆菌共有8种,其中以两歧双歧杆菌、婴儿双歧杆菌、青春双歧杆菌、长双歧杆菌和短双歧杆菌的数量最多。

微生态学研究发现在健康人体的消化道中的细菌数有100种,其数量达100兆以上。

人体肠道内细菌群随着人的年龄增加变化显著。

不同年龄阶段人群的肠内双歧杆菌,其组成和比例有一定不同,如儿童阶段主要是婴儿双歧杆菌、两歧双歧杆菌和长双歧杆菌,青壮年和老年人肠道中则主要是青春双歧杆菌和长双歧杆菌。

随着年龄增长,或不良饮食习惯及疾病等的影响,肠内双歧杆菌数量和比例很有可能会大幅下降,不利于人体健康状态的保持。

众多研究已分别证实:低聚异麦芽糖、低聚果糖、低聚半乳糖、低聚木糖等有明显的双歧杆菌增殖作用。

肠内的不同的双歧杆菌对不同低聚糖的可利用性和利用率也各有不同。

低聚半乳糖和低聚异麦芽糖是能被各种双歧杆菌良好利用,且增殖率较高的益生元,但低聚异麦芽糖被长双歧杆菌和青春双歧杆菌的利用程度更高。

而低聚木糖除了可被青春双歧杆菌和长双歧杆菌所利用外,其它双歧杆菌的可利用性都较差。

益生元菊粉的生理功能研究进展

益生元菊粉的生理功能研究进展

Hans Journal of Food and Nutrition Science 食品与营养科学, 2020, 9(3), 229-235Published Online August 2020 in Hans. /journal/hjfnshttps:///10.12677/hjfns.2020.93030Research Progress on PhysiologicalFunction of Probiotics InulinHuan Xiong1,2*, Aibiao Zou1,2, Hualin Wang1,31Wuhan Inuling Biotechnology Co., Ltd., Wuhan Hubei2Cross-Srait Tsinghua Research Institute Medical Nutrition Therapy Research Center, Xiamen Fujian3School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan HubeiReceived: Jul. 11th, 2020; accepted: Jul. 23rd, 2020; published: Jul. 30th, 2020AbstractInulin is one of the most widely studied prebiotics, which is known to have physiological benefits on intestinal health, glycolipid metabolism, obesity and immune system. In this paper, the recent progress of inulin physiological function was reviewed, which can be used as a guide and refer-ence for future research.KeywordsInulin, Prebiotics, Physiological Function益生元菊粉的生理功能研究进展熊欢1,2*,邹爱标1,2,王华林1,31武汉英纽林生物科技有限公司,湖北武汉2清华海峡研究院医学营养(MNT)研究中心,福建厦门3武汉轻工大学生物与制药工程学院,湖北武汉收稿日期:2020年7月11日;录用日期:2020年7月23日;发布日期:2020年7月30日摘要菊粉是研究最广泛的一种益生元,目前已知对肠道健康、糖脂代谢、肥胖、免疫系统等均有生理益处。

菊粉的功能与利用

菊粉的功能与利用

菊粉的功能与利用彭英云;郑清;张涛【摘要】菊粉是一种广泛存在于自然界的生物多糖,主要由果糖和葡萄糖构成,其中果糖分子通过β-(2,1)糖苷键连接.作为一种水溶性生物多糖,具有多种生理活性功能,且菊粉凝胶具有类似脂肪的质构与口感,可应用于食品、饲料、生物、化工等多个工业领域.【期刊名称】《食品研究与开发》【年(卷),期】2012(033)010【总页数】5页(P236-240)【关键词】菊粉;膳食纤维;益生素;脂肪替代品【作者】彭英云;郑清;张涛【作者单位】盐城工学院化生学院食品系,江苏盐城224003;盐城工学院化生学院食品系,江苏盐城224003;江南大学食品科学与技术国家重点实验室,江苏无锡214122【正文语种】中文菊粉(inulin)又称菊糖,土木香粉,是一种生物多糖,以能量的形式存在于多种植物和蔬菜里,尤其大量存在于菊科植物例如菊芋,菊苣等的块根中。

它由果糖分子通过β-(2,1)糖苷键连接,聚合程度从2~60,一般平均为10,其终端为葡萄糖单位,分子式可用GFn表示,其中G为终端葡萄糖单位,F代表果糖分子,n则代表果糖分子数。

当聚合度较低时(DP=2~9)可以称为低聚果糖(Fructo Oligo Saccharide)。

菊粉在自然界中分布很广,某些真菌和细菌中含有菊粉,但其主要来源是植物。

全世界超过36000种植物,包括双子叶植物中的菊科、桔梗科、龙胆科等11个科以及单子叶植物的百合科、禾木科,都含有丰富的菊粉。

一些常见植物中的菊粉含量见表1[1-2]。

表1 一些常见植物中的菊粉含量Table 1 The content of inulin in some plants植物名称菊粉含量/% 植物名称菊粉含量/%小麦 1~4 菊苣 13~20洋葱 2~6 婆罗门参 15~20韭葱 10~15 菊芋 15~20芦笋 10~15 大丽花块茎 15~20大蒜15~25 天冬 10~151 菊粉的性质1.1 物理性质从菊芋中提取的菊粉是一种不同聚合度低聚糖的混合物。

菊粉的特性、功能及其在食品中的应用

菊粉的特性、功能及其在食品中的应用

中国果菜China Fruit &Vegetable第42卷,第8期2022年8月综合利用Comprehensive Utilization 菊粉又称菊糖,是植物贮藏多糖之一,也是除淀粉外植物的另一种能量储存形式,广泛分布于植物组织中[1-3]。

菊粉是一类天然果糖聚合物(果聚糖,Fructan),属于非消化性碳水化合物,是优质的天然水溶性膳食纤维和益生元(Prebiotic),具有一定的甜度,热量低,与水结合易形成凝胶;同时具有降血糖血脂、调节肠道菌群、增强胃肠功能及促进维生素及微量元素吸收等多种生理功能[4-7]。

菊粉已被美国食品药品监督管理局(FDA)确认菊粉的特性、功能及其在食品中的应用张之握(山东农业大学食品科学与工程学院,山东泰安271018)摘要:菊粉是一类主要由植物产生的果聚糖,也是一种优质的天然水溶性膳食纤维和益生元,具有调节血糖血脂、改善肠道功能等生理功效,在食品、保健品等领域应用前景广阔。

本文概述了菊粉的来源和物化特性,分析了其生理功能和在食品中的应用现状,以促进对菊粉的深入研究及新型菊粉产品的开发。

关键词:菊粉;物化特性;生理功能;应用中图分类号:TS255.2文献标志码:A文章编号:1008-1038(2022)08-0051-05DOI:10.19590/ki.1008-1038.2022.08.008Properties and Functions of Inulin and Its Application in FoodZHANG Zhi-wo(College of Food Science and Engineering,Shandong Agricultural University,Tai’an 271018,China)Abstract:Inulin is a kind of fructan mainly produced by plants and a kind of high-quality natural water-solubledietary fiber and prebiotic.It has many beneficial physiological functions such as regulating blood sugar and blood lipid and improving intestinal function.It has a broad application prospect in food and health products.In this paper,the sources and physicochemical characteristics of inulin were summarized,and its physiological functions and application in food were analyzed,so as to promote the in-depth study of inulin and the development of new types of inulin food.Keywords:Inulin;physicochemical properties;physiological function;application收稿日期:2022-01-18基金项目:山东省自然科学基金青年基金项目(ZR2020QC238)第一作者简介:张之握(2001—),男,在读本科,专业为食品质量与安全中国果菜为GRAS(公认安全物质)[1],并被我国批准为新资源食品[4],目前已在食品、饲料、保健品等领域广泛应用。

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了 临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了  临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉。

能让你管住嘴的减肥神药真的来了临床大发现“管住嘴,迈开腿”简简单单六个字,就道出了减肥的真谛。

然而,面对那么多的美食诱惑,光这前三个字就足以让无数人的减肥大业半途而废了。

不过,好消息来了!最近,肥胖研究领域中的著名期刊《糖尿病,肥胖和代谢》杂志刊登的一项临床研究[1]显示,诺和诺德公司开发的索马鲁肽,可以抑制食欲,让你轻松“管住嘴”。

只需一周注射1次,连续注射12周后,就可减重10斤!而且,在这减轻的体重中,主要还是体内的脂肪组织,药物对除脂肪以外的去脂体重影响很小。

不光有效,还很安全!这项研究的通讯作者,来自英国利兹大学的John Blundell 教授表示,“索马鲁肽的作用是非常令人惊讶的,我们在12周内就观察到了其他减肥药物需要6个月才能达到的效果。

它减少了饥饿感和食欲,让患者能更好地控制饮食摄入。

”[2] John Blundell教授索马鲁肽(Semaglutide)本身是一款针对2型糖尿病的降糖药,主要成分为胰高血糖素样肽-1(GLP-1)类似物。

GLP-1是一种由小肠分泌的激素,在血液中葡萄糖水平升高时促进胰岛素的合成和分泌。

GLP-1进入人体后很容易被酶降解,天然的GLP-1半衰期仅有几分钟,所以,为了让它更长久的工作,研究人员会对它进行一些结构上的改造,在保留功能的同时不那么容易被酶降解。

这样得到的GLP-1类似物药物,比如大名鼎鼎的利拉鲁肽,可以将注射频率减缓到每天1~2次。

而索马鲁肽可以说是它们的“升级版”,在经过改造后,它的半衰期可延长至大约1周,因此注射一次的效果可以维持大约一周的时间[3],对于患者来说更方便。

在不久前公布的全球大型III期临床试验中,索马鲁肽表现优秀,既能控制血糖,还可以保护心血管,这为它在上周赢得了FDA内分泌及代谢药物专家咨询委员会16:0的支持率,不出意外的话,索马鲁肽上市在即[4]。

不少分析人士预测它未来十年内的销售峰值将超百亿,成为治疗2型糖尿病中最好的降糖药。

专业知识—碳水化合物(英文有翻译)

专业知识—碳水化合物(英文有翻译)

carbohydratesThe food scientist has a many-sided interest in carbohydrates. He is concerned with their amounts in various foods, availability (nutritional and economic), methods of extraction and analysis, commercial forms and purity, nutritional valve, physiological effects, and functional properties in foods. Understanding their functional properties in processed foods requires not only knowledge of the physical and chemical properties of isolated carbohydrates, but also knowledge of the reactions and interactions that occur in situs between carbohydrates and other food constituents and the effects of these changes upon food quality and acceptance. This is a tall order for knowledge. Because processing affects both nutritional and esthetic values of food, knowledge of the changes that carbohydrates undergo during milling, cooking, dehydration, freezing, and storage is especially important.Students are advised to study the fundamental chemistry underlying useful carbohydrates properties Of service will be an understanding of the association of polar molecules through hydrogen bonding, ionic effects, substituent effects, chelation with inorganic ions, complexing with lipids and proteins, and decomposition reaction. This background will provide an understanding of properties that affect the texture and acceptance of processed foods (e.g., solubility, hygroscopicity, diffusion, osmosis, viscosity, plastity, and flavor production), properties that enable the formation or high quality pastries, gels, coatings, confections, and reconstitutable dehydrated and frozen foods.Ability to predict what changes in functional properties are likely to ensue from incorporating various types of carbohydrates into processed foods is a practical goal of the food scientist.Such forecasting requires either a wealth of experience with trial-and-error methods or a deep knowledge of carbohydrate properties as related to structure—perhaps both. However, scientific knowledge of cause and effect is highly respected when it shortens industrial development timeSource, Types, and TerminologyThe layman‟s conception of carbohydrates generally involves only the sugars and starches of foods—those that generate calories and fat. The food chemist knows many other types that are ingested.Because most people enjoy the sweetness of sugars and the mouth feel of cooked starches, they become familiar by association with table sugar (sucrose), invert sugar‟s hydrolyzed sucrose, corn syrup sugars (D-glucose and maltose), milk sugar (lactose), and the more starchy foods. These carbohydrates are nutritionally available; i .e., they are digested (hydrolyzed to component monosaccharides) and utilized by the human body。

菊粉寡糖促进嗜酸乳杆菌生长的研究

菊粉寡糖促进嗜酸乳杆菌生长的研究

菊粉寡糖促进嗜酸乳杆菌生长的研究3张 帆 王建华 刘立恒 杨雅麟 滕 达(中国农业科学院饲料研究所;国家饲料工程技术研究中心,北京,100081)摘 要 对菊粉可促进嗜酸乳杆菌的生长进行了初步研究。

结果表明,用菊粉代替培养基中部分葡萄糖,嗜酸乳杆菌的生长得到明显的促进,当MRS 培养基中葡萄糖与菊粉的质量比为1∶1时,嗜酸乳杆菌的生物量及酸度得到提高,在37℃下培养48h ,活菌的数量及酸度比对照组分别提高1010CFU/m L 和10°T 。

关键词 菊粉,嗜酸乳杆菌 第一作者:学士,助理研究员(王建华为通讯作者)。

3国家863计划2001AA246041和2004AA246040 收稿时间:2003-11-10 嗜酸乳杆菌(Lactobacillus acidophilus )属革兰氏阳性菌,杆状、两端圆,通常为(016~019)×(115~6)μm ,以单个、成双和短链出现,不运动,无鞭毛。

其最适生长温度为35~38℃,最适pH 为512~6118,是人体肠道中的重要微生物,它能调节人体肠道内微生物菌群平衡,增强机体免疫力,降低胆固醇水平,缓解乳糖不耐症以及抑制肿瘤细胞的形成,有利于控制成人和儿童腹泻等,对人体健康特别是对维持胃肠道正常生理功能具有重要作用。

菊粉是果糖聚合物,存在于多种植物和微生物中,可刺激人或动物肠道内双歧杆菌及乳酸菌的增殖,抑制腐生菌和某些病原菌在肠道的生长和繁殖,能够显著降低结肠细胞癌变发生率。

笔者研究了以菊粉作为培养基碳源对嗜酸乳杆菌生物量和产酸量的影响。

1 材料与方法111 培养基11111 菌 种嗜酸乳杆菌(Lactobacillus acidophilus )购于中国农业科学院土肥所,为斜面菌种,代号“土54”,简称LA 21;Mjll 为本室保存的嗜酸乳杆菌菌株,简称LA 22。

11112 培养基MRS (琼脂)培养基:蛋白胨10g ,酵母提取物5g ,牛肉膏10g ,葡萄糖20g ,乙酸钠5g ,柠檬酸二铵2g ,T ween801m L ,MgS O 4・7H 2O 0158g ,MnS O 4・4H 2O 0125g ,K 2HPO 42g ,琼脂粉17g ,水1000m L ,灭菌前自然pH 6112~612,于121℃,1×105Pa 灭菌20min 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Prebiotic effects of inulin and oligofructoseS.Kolida*,K.Tuohy and G.R.GibsonFood Microbial Sciences Unit,School of Food Biosciences,The University of Reading,Whiteknights,Reading,RG66AP,UKPrebiotics are non-digestible food ingredients that target certain components within the micro-biota of the human large intestine.Efficient prebiotics need to have a specific fermentation therein and thereby have the ability to alter the faecal microflora composition towards a more ‘beneficial’community structure.This should occur by the stimulation of benign or poten-tially health promoting genera but not the harmful groups.Because of their positive attributes bifidobacteria and lactobacilli are the most frequent target organisms.Both inulin and oligofruc-tose have been demonstrated to be effective prebiotics.This has been shown through both in vitro and in vivo assessments in different laboratories.Because of their recognised prebiotic properties,principally the selective stimulation of colonic bifidobacteria,both inulin and oligo-fructose are increasingly used in new food product developments.Examples include drinks,yoghurts,biscuits and table spreads.Because of the recognised inhibitory effects that bifidobac-teria can exert against gut pathogens,one of the most important aspects of prebiotic ingestion is fortification of the gut flora to resist acute infections.Human gut microflora:Prebiotics:InulinIntroductionOligosaccharides are major components of various dietary products (e.g.plant cells,milk)and since 1980their use in functional foods has been increasingly researched (Rober-froid,2002).Certain non-digestible (in the upper gastro-intestinal tract)oligosaccharides are prebiotics.A prebiotic is a non-digestible food ingredient that benefi-cially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bac-teria in the colon,that can improve the host health (Gibson &Roberfroid,1995).For a food ingredient to be classified as a prebiotic it must fulfil the following criteria:.Neither be hydrolyzed,nor absorbed in the upper part of the gastrointestinal tract..Be selectively fermented by one or a limited number of potentially beneficial bacteria commensal to the colon,e.g.bifidobacteria and lactobacilli,which are stimulated to grow and/or become metabolically activated..Prebiotics must be able to alter the colonic microflora towards a healthier composition,for example by increasing numbers of saccharolytic species while redu-cing putrefactive microorganisms.Thus,prebiotic fermentation should be directed towards bacteria seen as health promoting,with indigenous lacto-bacilli and bifidobacteria currently being the preferred tar-gets (Gibson,1998).The ultimate aim of supplementation of the human diet with prebiotics is beneficial management of the gut micro-biota.The resident bacterial microflora of the human colon comprises approximately 95%of the total cells of the body and plays a key role in the host nutrition,health and dis-ease.More than 500different bacterial species have been cultured from human faeces belonging to fifty different genera (Blaut et al.2002;Tannock,2002).Of these,there are indications that bifidobacteria are the main health promoting group.Bifidobacteria are thought to play an important role in the improved health and develop-ment of breast-fed infants as compared to those which are formula-fed.Bifidobacterium sp.dominate the gut micro-flora of breast-fed infants.Among the beneficial effects of bifidobacteria are thought to be:.Protection from enteric infection..Lowering of intestinal pH by formation of acids after assimilation of carbohydrates..Suppression of putrefactive and pathogenic bacteria..Production of vitamins..Activation of intestinal function,assistance of digestion and absorption..Stimulation of the immune response.Note:For the definition of the terms inulin and oligofructose please refer to the introductory paper (p.S139)and its footnote.*Corresponding author:Dr S.Kolida,fax +44(0)1189357222,email afr99sk@Abbreviations:GOS,galacto-oligosaccharide;SCFA,short-chain fatty acid;TOS,transgalactosylated oligosaccharide.British Journal of Nutrition (2002),87,Suppl.2,S193–S197DOI:10.1079/BJN/2002537q The Authors 2002Because bifidobacteria are susceptible to oxygen and heat,their application in foods,as probiotics,has been lim-ited in comparison to the lactobacilli.Therefore,there has been much interest in food-grade bifidogenic factors,which endure normal processing and show effectiveness in the human body after ingestionThe prebiotic market is expanding rapidly and the demand for novel compounds may not be limited to oligo-saccharides although these are the current market leaders (Crittenden &Playne,1996).A variety of products con-taining inulin and/or oligofructose formulations,claiming to have beneficial effects on gut health and general well-being,are starting to become prevalent in the European market.Table 1gives examples of foodstuffs containing the ingredients,whilst numerous other products existing in supplement form are available in many health food stores.Inulin and oligofructose are legally classified as food or food ingredients in all countries in which they are used.They are well accepted for food use without limitations (Coussement,1999).Inulin and oligofructose are amongst the most studied and well-established prebiotics.Fig.1summarises their behaviour and effects in the gastrointestinal tract.As previously mentioned inulin and oligofrustose escape digestion in the upper gastrointestinal tract and reach the large intestine virtually intact.This attribute constitutes them as being ideal for fermentation in the colon by the saccharolytic resident microbiota.Whilst variable data have ensued on the different application of inulin and oligo-fructose,it is incontestable that they act as prebiotics.The effects of inulin and oligofructose on the human gut micro-biota has been extensively studied both in vivo and in vitro and the majority of the studies report selective fermentation by the beneficial flora,namely bifidobacteria and to lesser extent lactobacilli (Table 2).Gibson &Wang (1994)confirmed the prebiotic effects of inulin and oligofructose in an in vitro study.The fer-mentability was compared to a range of reference carbo-hydrates in batch culture.Bacterial growth data showed preferential fermentation by bifidobacteria while popu-lations of Escherichia coli and Clostridium perfringens were maintained at relatively low levels.Further pure cul-ture studies confirmed increased ability of bifidobacteria populations to ferment these substrates when compared to glucose.In a later study,Gibson &Wang (1994)deter-mined the bifidogenic effect of oligofructose in single stage continuous culture systems containing human faecal bacteria.Oligofructose preferentially enriched for bifido-bacteria when compared to inulin and sucrose.Experi-ments with a three-stage continuous culture model of the human colon further confirmed the bifidogenic effect of oligofructose.Karppinen et al.(2000)compared the in vitro fermentability of inulin by human faecal bacteria to that of rye,wheat and oat bran.Inulin was the most rapidly fermented of the test substrates giving most butyrate pro-duction and the largest decrease in pH,but also the highest and fastest gas production.Again,the butyrate generating capacity,as well as increased gas formation,does not agree with metabolic profiles exhibited by bifidobacteria.Kaplan &Hutkins (2000)screened a selection of twenty-eight lactic acid bacteria and bifidobacteria for their ability to ferment inulin and oligofructose on MRS agar.Twelve of sixteen Lactobacillus strains and seven of eight Bifido-bacterium strains tested were able to ferment the sub-strates.Hopkins et al.(1998)also documented the ability of seven Bifidobacterium isolates to utilise a selection of fifteen different carbohydrate sources in 48h batch culture experiments.In a continuous culture study Sghir et al.(1998)demonstrated,through molecular techniques,that inulin and oligofructose were selectively fermented not only by bifidobacteria but also by lactobacilli.Oligofruc-tose and galacto-oligosaccharides preferentially supported growth of the test bacteria.The effect of inulin on faecal bifidobacteria in eight healthy free living humans was investigated by Kruse et al.(1999).Subjects consumed a typical Western diet (45%energy as fat,40%energy as carbohydrate)followed by a reduced fat diet (30%energy as fat)using inulin as fat replacement (maximum inulin consumed 34g per day).Controls consumed identical diets but without inulin sup-plementation.The effect on faecal flora was monitored using fluorescent probes targeting diagnostic regions of the 16S rRNA molecule.A significant increase in bifido-bacterial populations was observed,while short-chain fatty acids (SCFA),blood lipids and gas production remained unaffected.Bouhnik et al.(1999)assessed the tolerance and threshold dose of oligofructose (from sucrose)that significantly increased faecal bifidobacteria counts in a 7-day study of forty healthy human volunteers.They reported that the optimal dose for increased bifido-genesis without significant side effects,such as flatulence,was 10g per day.Gibson et al.(1995)studied the selective stimulation of bifidobacteria by inulin and oligofructose inTable 1.Examples of fructo-oligosaccharide containing foodstuffs in the European market (after Young,1998)ProductCompanyActive IngredientsSymbalance (yogurt)Tonilait (Switzerland)Three Lactobacillus strains plus inulinJour apres Jour (milk)Lactel (France)Vitamins plus oligofructose (from sucrose)Probiotic plus Oligofructose (yogurt)Bauer (Germany)Two Lactobacillus strains plus oligofructose Actiline (spread)Vamdermoortele (Belgium)inulinLigne Bifide dietetic range (biscuits,ready meals)Vivis (France)Oligofructose (from sucrose)Aviva (biscuits and chocolate drink)Novartis (Switzerland)Oligofructose (from sucrose)Low-sugar sorbetThiriet (France)Oligofructose (from sucrose)Actimel (Cholesterol control yogurt)Danone (Belgium)L.acidophilus plus oligofructose (from sucrose)Fysiq (dairy drink)Mona (Holland)L.acidophilus plus inulinS.Kolida et al.S194a 45-day study of eight healthy male human subjects.Vol-unteers were fed controlled diets of 15g/d sucrose for the first 15days followed by 15g/d oligofructose for a further 15days.Four volunteers went on to consume 15g/d inulin for the final 15days of the study.Both oligofructose and inulin caused significant increases in faecal bifidobacteria.Bacteroides,clostridia and fusobacteria all decreased during oligofructose supplementation and Gram-positive cocci were reduced during inulin supplementation.Total bacterial levels remained unaffected,while little change was observed in faecal SCFA and breath CH 4.Wet and dry matter nitrogen and energy excretion was increased with both inulin and oligofructose.Kleessen et al.(1997)studied the effect of dietary supplementation on faecal flora,microbial activity and bowel habit in thirty-five elderly constipated patients.Groups of fifteen and ten patients received lactose and inulin supplements,respect-ively for 19days.They were initially administered a 20g/d dose for days 1–8which was gradually increased to 40g/d during days 9–11and was maintained at these levels until the end of the study.A significant increase was observed in bifidobacterial levels in the inulin group while a decrease in enterococci numbers and enterobacteria ctose had no effect on bifidobacteria while it increased enterococci counts and decreased lactobacilli levels.A better laxative effect was reported with inulin.Den Hond et al.(2000)investigated the effect of high per-formance inulin on constipation in six healthy humans with a low stool frequency in a double-blind placebo control crossover study.Subjects consumed an active diet of 15g/d inulin and a placebo of 15g/d sucrose.A significant increase in stool frequency and faecal bulk was observed with inulin administration.Hunter et al.(1993)carried out a double-blind crossover trial using oligofructose against sucrose,at a dose of 6g/d,for the management of irritable bowel syndrome,but no gastrointestinal effects were evident.In a double-blind placebo controlled cross-over study of thirty-one healthy human volunteers,the pre-biotic effects of biscuits containing a blend of partially hydrolysed guar gum and oligofructose were confirmed using fluorescently labelled molecular probes targeting 16S rRNA for the bacteriology.A significant increase in bifidobacterial numbers occurred while bacteroides,lacto-bacilli,clostridia and total bacteria remained unaffected throughout the study (Tuohy et al.2001).Bouhnik et al.(1996)studied the effect of a fermented milk product contain-ing Bifidobacterium sp.with or without inulin on faecal bac-teriology of twelve healthy human volunteers.The authors observed that addition of the Bifidobacterium fermented milk substantially increased bifidobacterial levels after 12days,but addition of 18g/d inulin to this formulation did not enhance the effect.Buddington et al.(1996)studied the influence of oligofructose (from sucrose)supplementation on the faecal flora of twelve healthy adult humans.Subjects were fed a controlled diet for 42days which was sup-plemented with 4g/d oligofructose (from sucrose)between days 7and 32.The controlled diet increased bifidobacterial levels but highest increases were observed during oligofruc-tose (from sucrose)supplementation.In a similar study on the effects of 4g/d oligofructose (from sucrose)on ten healthy adult humans,Williams et al.(1994)reported a significant increase in bifidobacteria levels and an increase in lactobacilli in six volunteers.Le Blay et al.(1999)studied the effect of the prolonged intake of oligofructose (from sucrose)in rats.Subjects were fed either a low fibre diet (basal)or the basal diet supplemented with 9g/100g body weight daily for 2,8or 27-week periods.Supplementation with oligofructose (from sucrose)led to an increase in lactic acid bacteria after 2weeks without changing total anaerobic bacterial levels.The majority of the effects were however abolished by weeks 8and 27of oligofructose (from sucrose)consump-tion.Djouzi &Andrieux (1997)performed a trial on germ-free rats inoculated with human faecal flora fed either control or active diets with 40g/kg of oligofructose,galacto-oligo-saccharide (GOS),or transgalactosylated oligosaccharide (TOS).A significant increase in bifidobacterial levels was observed with oligofructose and TOS as well as increases in H 2and CH 4excretion.In two studies,the effect of inulin on dextran sulphate sodium (DSS)induced colitis rats was reported (Videla et al.1998;Videla,1999).It was established that dietary inulin promoted growth of lactobacilli in the rat colon,reduced the severity of DSS induced colitis and reduced the luminal pH in a wide area extending from left to rightcolon.Fig.1.Behaviour of inulin and oligofructose,as prebiotics,in the human gut.Prebiotic effects of inulin and oligofructose S195ConclusionThe prebiotic effects of inulin and oligofructose have been confirmed in numerous laboratory and human trials.New developments in molecular procedures for diagnostic bac-teriology will help determine health applications,and explain mechanisms of effect.A further desirable attribute for prebiotics is the ability to persist towards the distal region of the colon.This is the site of origin of several chronic disease states including colon cancer and ulcerative colitis.It is thought that the microflora in this region of the gut may play an important role in the onset or maintenance of such disorders.Dietary carbohydrate is the main fermen-table substrate in the proximal colon and as this is degraded during bacterial fermentation,protein takes over as the dominant fermentable substrate towards distal areas.The products of bacterial protein metabolism include toxic and potentially carcinogenic compounds such as amines,ammonia and phenolic compounds.There is cur-rently much scientific interest in developing prebiotics, which target this region of the colon.This may include FOS of differing molecular sizes,such that the lower degree of polymerisation oligomers are proximally fermen-ted thereby leaving the longer chain prebiotic for more distal colonic activity.ReferencesBlaut M,Criggs C,Collins MD,Welling GW,Dore´J,Van Loo J &de Vos W(2002)Molecular biological methods for studying the gut microbiota:the EU human gutflora project.British Journal of Nutrition87,S203–S211,this issue.Bouhnik Y,Flourie B,Andrieux C,Bisetti N,Briet F&Rambaud JC(1996)Effects of Bifidobacterium sp.fermented milk ingested with or without inulin on colonic bacteria and enzy-matic activities in healthy humans.European Journal of Clini-cal Nutrition50,269–273.Bouhnik Y,Vahedi K,Achour L,Attar A,Salfati J,Pochart P, Marteau P,Flourie B,Bornet F&Rambaud JC(1999)Short-chain fructo-oligosaccharide administration dose dependently increases fecal bifidobacteria in healthy humans.Journal of Nutrition129,113–116.Buddington RK,Williams CH,Chen SC&Witherly SA(1996) Dietary supplement of neosugar alters the faecalflora and decreases the activities of some reductive enzymes in human subjects.American Journal of Clinical Nutrition63,709–716. Coussement PAA(1999)Inulin and oligofructose:Safe intakes and legal status.Journal of Nutrition129,S1412–S1417. Crittenden RG&Playne MJ(1996)Production,properties and applications of food-grade oligosaccharides.Trends in Food Science and Technology7,353–361.Den Hond E,Geypens B&Ghoos Y(2000)Effect if high per-formance chicory inulin on constipation.Nutrition Research 20,731–736.Djouzi Z&Andrieux C(1997)Compared effects of three oligo-saccharides on metabolism of intestinal microflora in rats inoculated with a human faecalflora.British Journal of Nutri-tion78,313–324.Gibson GR(1998)Dietary modulation of the human gut micro-flora using prebiotics.British Journal of Nutrition80, S209–S212.Gibson GR&Roberfroid MB(1995)Dietary modulation of the human colonic microflora:introducing the concept of prebio-tics.Journal of Nutrition125,1401–1412.Gibson GR&Wang X(1994)Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiology Letters118,121–128.Gibson GR,Berry Ottaway P&Rastall RA(2000)Prebiotics: New Developments in Functional Foods.Oxford:Chandos Publishing Limited.Gibson GR,Beatty ER,Wang X&Cummings JH(1995)Select-ive stimulation of bifidobacteria in the human colon by oligo-fructose and inulin.Gastroenterology108,975–982. Hopkins MJ,Cummings JH&Macfarlane GT(1998)Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources.Journal of Applied Micro-biology85,381–386.Hunter JO,Tuffnel Q&Lee AJ(1993)Controlled trial of oligo-fructose management of irritable bowel syndrome.Journal of Nutrition129,1451–1453.Kaplan H&Hutkins RW(2000)Fermentation of fructooligosac-charides by lactic acid bacteria and bifidobacteria.Applied and Environmental Microbiology66,2682–2684.Karppinen S,Liukkonen K,Aura AM,Forsell P&Poutanen K (2000)In vitro fermentation of polysacharides of rye,wheat and oat brans and inulin by human faecal bacteria.Journal of the Science of Food and Agriculture80,1469–1476. Kleessen B,Sykura B,Zunft HJ&Blaut M(1997)Effects of inulin and lactose on faecal microflora,microbial activity and bowel habit in elderly constipated persons.American Journal of Clinical Nutrition65,1397–1402.Kruse HP,Kleessen B&Blaut M(1999)Effects of inulin on faecal bifidobacteria in human subjects.British Journal of Nutrition82,375–382.Le Blay G,Michael C,Blottiere HM&Cherbut C(1999)Pro-longed intake of fructo-oligosaccharides induces a short–term elevation of lactic acid producing bacteria and a persistent increase in cecal butyrate in rats.Journal of Nutrition129, 2231–2235.Roberfroid MB(2002)Functional foods:concepts and application to inulin and oligofructose.British Journal of Nutrition87, S139–S143,this issue.Sghir A,Chow JM&Mackie RI(1998)Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. Journal of Applied Microbiology85,769–777.Tannock G(2002)Methodologies for quantification of faecal bac-teria:application to prebiotic effects.British Journal of Nutri-tion87,S199–S201,this issue.Tuohy KM,Kolida S,Lustenberger A&Gibson GR(2001)The prebiotic effects of biscuits containing partially hydrolyzed guar gum and fructooligosaccharides—a human volunteer study.British Journal of Nutrition86,341–348.Videla S(1999)Deranged luminal pH homeostasis in experimen-tal colitis can be restored by a prebiotic.Gastroenterology116, A942.Videla S,Vilaseca J,Garcia-Lafuente A,Antolin M,Crespo E, Guarner F&Malagelada JR(1998)Dietary inulin prevents distal colitis induced by dextran sulfate sodium(DSS).Gastro-enterology114,A1110.Wang X&Gibson GR(1993)Effects of the in vivo fermentation of oligofructose and inulin by bacteria growing in the human large intestine.Journal of Applied Bacteriology75,373–380. Williams CH,Witherly SA&Buddington RK(1994)Influence of dietary Neosugar on selected bacteria groups of the human fecal microbiota.Microbial Ecology in Health and Disease7, 91–97.Young J(1998)European market developments in prebiotic-and probiotic-containing foodstuffs.British Journal of Nutrition80, S231–S233.Prebiotic effects of inulin and oligofructose S197。

相关文档
最新文档