矩阵分析与应用-教学介绍
矩阵分析与应用

编码理论
象层 步特征分 抽象层面的进一步特征分析
12
教学大纲
第 周 第一周 第二周 第三周 周一 周四 周一 周四 周一 周四 周一 第四周 周四 第五周 周一 周 周四 背景介绍,矩阵分析应用 矩阵基础知识复习 向量空间,赋范空间 矩阵标量函数 逆矩阵,伪逆矩阵,MP逆矩阵 矩阵函数 Hermitian矩阵,酉矩阵,Toeplitz矩阵, 循环矩阵 Vandermonde矩阵,Fourier矩阵, Hadamard矩阵,稀疏矩阵 矩阵对角化分解 数值稳定性 矩阵对角化分解,数值稳定性 矩阵三角化分解,三角对角化分解
-1 -1
特征值,特征向量 特征值 特征向量
Ax x
2
矩阵分析课程介绍
起点:线性代数的矩阵基本知识 起点 线性代数的矩阵基本知识 目标:基于分析的语言,学习矩阵理论
特殊矩阵
矩阵 基本理论
矩阵分解
子空间与 投影分析
抽象代数 简介
矩阵特征 分析
3
矩阵基本理论
向量,向量空间,内积空间 加法,标量乘法,闭合 矩阵范数 矩阵“长度” A 矩阵标量函数
13
教学大纲
第六周 第七周 第八周 第九周 第十周 第十一周周 第十 周周 末 周一 周四 周一 周四 周一 周四 周一 周四 周一 周四 特征值,特征向量,Hamilton-Cayley定理 KL变换,主分量分析 广义特征值分解 R l i h商 特征值扰动 Rayleigh商,特征值扰动 子空间理论,子空间投影 投影分析 最小二乘 投影分析,最小二乘 稀疏矩阵表示,压缩感知 稀疏矩阵方程求解,优化理论与方法 抽象代数:群,环 抽象代数:域 第一阶段考核
y {A x, x R N }
《矩阵分析》教学大纲.doc

《矩阵分析》教学大纲(Matrix Analysis, 14xs20012)一、前言1、课程概述本课程内容包括线性空间与线性变换,矩阵的Jordan标准型,内积空间,正规矩阵,Hermite矩阵,二次型,矩阵分解,特征值的估计与计算,矩阵的扰动问题,向量范数与矩阵范数,矩阵序列和级数,广义逆矩阵,矩阵函数等内容。
《矩阵分析》的特点之一是在介绍矩阵论有关基础理论的同时,引入用MATLAB进行计算的相关内容,使读者能将理论与实践相结合,在培养学生理论水平、演绎推理能力的同时还培养了学生的实际动手能力。
实践内容包括MATLAB软件的讲解和实际动手操作。
2、课程性质专业基础课3、学分与学时本课程总学分:6学分,总学时:48学时。
其中理论课40学时;实践:8学时。
本课程针对计算机应用技术专业研究牛的知识结构背景,在其本科阶段所学的《线性代数》的基础之上,进一步深化和提高矩阵理论的相关知识,并着重培养学生运用矩阵分析的知识和方法解决计算机应用领域相关问题的能力。
通过本课程的学习,使学生掌握矩阵理论的基本概念,基本理论和基本方法,全面了解和掌握矩阵的标准形、特征值与特征向量、矩阵分解、范数与矩阵函数等重点内容,了解近代矩阵理论中十分活跃的若干分支,为今后的进一步学习和研究打下扎实的基础。
5、使用对象计算机应用技术专业一年级学历硕士研究生6、知识背景要求线性代数,程序设计二、讲授提纲第1章线性空间与线性变换(-)本章概述本章首先从线性空间的基本概念讲起,逐步介绍基与坐标、坐标变换,线性子空间, 线性映射,线性映射的值域、核,线性变换的矩阵与线性变换的运算,门维线性空间的结构,线性变换的特征值与特征向量,线性变换的不变子空间,矩阵的相似形等重要概念和方法,同时还要对线性方程组解的结构定理进行复习。
实践环节讲解用MATLAB求解线性方程组的方法和技巧。
(二)教学目标介绍教材及全课程内容,使学生对本课有一个总体的印象,对进一步的学习起到提纲挈领的作用。
矩阵分析与应用课程设计

矩阵分析与应用课程设计一、背景介绍在大学数学课程中,矩阵分析成为一个非常重要的内容。
矩阵分析作为现代数学的一个重要分支,被广泛应用于物理、经济、组合优化、图形图像处理以及其他数学领域中。
因此,矩阵分析课程的教学往往也是大学数学课程中不可或缺的一部分。
二、课程设计目标本课程设计旨在通过编写矩阵分析代码实践和应用,帮助学生深入了解矩阵分析的原理和应用。
希望通过本次课程设计,学生能够掌握以下技能:1.熟练掌握Python等语言中进行矩阵计算的基本操作;2.掌握矩阵分析的基本理论和应用;3.熟悉Python等语言中常见的矩阵分析工具,如numpy、scipy等,并能够灵活应用。
三、课程设计内容本课程设计涵盖以下内容:•在Python等语言中利用numpy等工具编写矩阵计算程序,包括矩阵求逆、矩阵乘法、矩阵求秩等操作;•矩阵分析的基本理论和应用,包括线性方程组求解、矩阵特征值和特征向量、最小二乘法等;•利用Python等语言中的matplotlib等工具实现二维、三维图形的矩阵可视化,如矩阵的热度图、散点图等;•矩阵分析的实践应用,如图像处理、信号处理、金融风险评估等。
四、课程设计方案本课程设计采用以下方式进行:第一阶段:矩阵计算程序的编写本阶段主要通过引导学生编写Python等语言中的矩阵计算程序,来帮助学生加深对矩阵计算基本操作的掌握。
此阶段具体内容包括:1.矩阵求逆的实现;2.矩阵乘法的实现;3.矩阵求秩的实现。
第二阶段:矩阵分析理论的学习本阶段将重点介绍矩阵分析的基本理论和应用,并通过具体的例子来加深学生对理论的理解。
此阶段具体内容包括:1.线性方程组求解;2.矩阵特征值和特征向量的求解;3.最小二乘法的应用。
第三阶段:矩阵可视化的实现本阶段将介绍Python等语言中的matplotlib等工具,来帮助学生实现二维、三维图形的矩阵可视化。
此阶段具体内容包括:1.矩阵的热度图;2.矩阵的散点图。
第四阶段:矩阵分析的实践应用本阶段将以图像处理、信号处理和金融风险评估为例,介绍矩阵分析的实践应用。
矩阵分析教程第二版教学设计 (2)

矩阵分析教程第二版教学设计矩阵分析是一门重要的数学课程,也是许多高级数学、物理学、计算机科学以及工程学科的基础。
本文将介绍矩阵分析教程第二版的教学设计,帮助学生更好地学习和应用矩阵分析知识。
课程概述矩阵分析是一门在计算机科学、工程学、物理学以及其他学科中广泛应用的基础数学课程。
本教程旨在介绍矩阵分析的基本概念、原理与应用,包括矩阵的基本运算、矩阵的特征值与特征向量、行列式等。
教学内容第一章:基本概念与运算本章主要介绍矩阵的基本概念和运算,包括矩阵与向量的区别、矩阵元素的表示方法、矩阵的加减法和数乘运算等。
通过实例演示,学生可以更好地理解矩阵的基本运算规则。
第二章:矩阵乘法矩阵乘法是矩阵分析中一个非常重要的运算,本章将详细介绍矩阵乘法的定义和性质,包括如何进行乘法规则的推导、矩阵乘法的结合律、分配律、逆元素和零因子等概念。
第三章:矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵分析中的一个重要概念,本章将对其进行详细介绍。
学生将学习如何计算矩阵的特征值和特征向量,以及如何根据特征值和特征向量计算矩阵的幂。
第四章:行列式行列式是矩阵分析中另一个重要的概念,本章将对行列式的定义和性质进行详细介绍。
学生将学习如何计算行列式以及如何使用行列式来求解线性方程组等问题。
教学方法本教程采用讲授和实践相结合的方法,以案例教学为主,辅以实验课程。
在课堂上,老师将通过丰富的教学资源和教学技巧来讲解矩阵分析的知识点,帮助学生更好地理解和应用所学知识。
此外,本课程还将辅以实验,让学生通过实践来加深对矩阵分析的理解和掌握。
考核方式本教程将采用闭卷考试的方式进行考核,考试内容包括底层数学知识、算法和编程能力。
此外,本课程还将提供练习课和期中综合实验,帮助学生巩固所学内容,同时对学生进行定期评估和反馈。
总结矩阵分析是一门重要的数学课程,本教程旨在通过案例教学和实践课程,帮助学生更好地理解和掌握矩阵分析的基本概念、原理与应用。
矩阵分析与应用 第1章

矩阵的代数性质1.矩阵是线性映射的表示:线性映射的相加表示为矩阵的相加线性映射的复合表示为矩阵的相乘2.矩阵是一种语言,它是表示复杂系统的有力工具。
学习矩阵理论的重要用途之一就是学会用矩阵表示复杂系统的关系,培养根据矩阵推演公式的能力是学习矩阵论的目的之一。
定义一个矩阵有几种方式:可以通过定义矩阵的每一个元素来定义一个矩阵,也可以通过矩阵具有的性质来定义一个矩阵。
如:对称矩阵可以定义为:a ij=a ji也可以定义为: (x, Ay)=(Ax,y),还可以定义为:Ax= f(x), 其中f(x)=x T Ax/2,即它对向量x 的作用相当于函数f(x)在x处的梯度。
3. 矩阵可以表示为图像矩阵的大小可以表示为图像。
反之,一幅灰度图像本身就是矩阵。
图像压缩就是矩阵的表示问题. 这时矩阵相邻元素间有局部连续性,既相邻的元素的值大都差别不大。
4. 矩阵是二维的(几何性质)矩阵能够在二维的纸张和屏幕等平面媒体上表示,使得用矩阵表示的问题显得简单清楚,直观,易于理解和交流。
很多二元关系很直观的就表示为矩阵,如关系数据库中的属性和属性值,随机马尔科夫链的状态转移概率矩阵,图论中的有向图或无向图的矩阵表示等。
第一章:线性空间和线性变换1.线性空间集合与映射集合是现代数学最重要的概念,但没有严格的定义。
集合与其说是一个数学概念,还不如说是一种思维方式,即用集合(整体)的观点思考问题。
整个数学发展的历史就是从特殊到一般,从个体到整体的发展历程。
集合的运算及规则,两个集合的并、交运算以及一个集合的补;集合中元素没有重合,子集,元素设S,S'为集合映射:为一个规则σ:S → S', 使得S中元素a和S'中元素对应,记为a'=σ(a),或σ:a→a'.映射最本质的特征在于对于S中的任意一个元素在S'中仅有唯一的一个元素和它对应。
映射的原象,象;映射的复合。
满射,单射,一一映射。
矩阵分析与计算教学大纲

编号:070111A16 课程名称:矩阵分析与计算英文名称:Matrix Analysis and Computation一、课内学时: 32 学分: 2二、适用专业:理工科硕士生,经济学硕士生三、预修课程:线性代数,微积分四、教学目的:任何涉及数学的领域(包括工程学,最优化,经济学,控制论,电子学,网络等等)都需要矩阵的知识。
本课程介绍矩阵分析及计算的基本概念和基本方法,力求花较少的时间,使学生了解到较多的实用的概念和方法,做到知识面广,使学生有能力处理在各自学科研究中出现的矩阵基本问题。
五、教学方式:课堂授课六、大纲内容(包括实验内容)及学时分配、对学生的要求:(注:“*”表示重点,“#”表示难点,“★”表示涉及学科前沿,“●”表示研究性内容)1、矩阵的标准型(6学时)1.1矩阵的相似对角形1.2矩阵的Smith标准形,不变因子,初等因子#1.3Jordan 标准型*1.4Hamilton-Cayley定理1.5酉空间,酉矩阵1.6酉相似标准型2、向量范数,矩阵范数(6学时)2.1 向量范数2.2 矩阵范数*2.3 矩阵范数与向量范数的相容性2.4 矩阵的谱半径及应用2.5 矩阵的条件数及应用3、矩阵分解(3学时)3.1 三角分解3.4 矩阵的满秩分解*3.5 矩阵的奇异值分解#4、矩阵特征值的估计与计算(3学时)3.1 盖尔圆定理3.2 特征值的隔离*3.3 幂迭代法与逆幂迭代法5、广义逆矩阵(3学时)5.1 Penrose 方程5.2 {1}-逆的计算及性质5.3 Moore.Penrose逆的计算及性质*6、矩阵函数(3学时)6.1 矩阵函数的定义与计算*6.2 矩阵函数的导数和积分6.3 利用矩阵函数求解线性常系数微分方程组7、线性方程组的直接解法(3学时)7.1 Gauss 消去法7.2 直接三角分解解法8、线性最小二乘问题(1学时)8.1 基本理论结果*8.2 法方程组的方法9、线性方程组的迭代解法(4学时)9.1 迭代法的一般概念9.2 Jacobi 迭代法,Gauss-Seidel 迭代法*9.3 松弛迭代法9.4 极小化方法#七、参考书及学生必读参考资料:教材:朱元国,饶玲,严涛,张军,李宝成编,矩阵分析与计算,北京:国防工业出版社,2010年8月八、大纲撰写人:朱元国九、任课教师:朱元国,饶玲,严涛,张军,李宝成,徐元,张峥嵘等。
研究生矩阵分析课程课件

矩阵分析
02
矩阵的三角分解
三角分解是一种将一个矩阵分解为一个下三角矩阵和一个上三角矩阵之和的方法,这种方法在解决线性方程组、计算行列式和求逆矩阵等问题中有着广泛的应用。
矩阵的QR分解
QR分解是一种将一个矩阵分解为一个正交矩阵和一个上三角矩阵之积的方法,这种方法在解决最小二乘问题、求解线性方程组和计算矩阵的范数等问题中有着重要的应用。
神经网络是一种模拟人脑神经元结构的计算模型,由多个神经元组成,用于处理复杂的数据模式。参数矩阵在神经网络中起到传递信息的作用,通过调整参数矩阵的值,可以训练神经网络以适应不同的任务和数据集。参数矩阵的学习和优化是神经网络训练过程中的核心步骤。
课程总结与展望
06
矩阵基本概念:矩阵作为线性代数中的基本概念,是解决实际问题的有力工具。课程中详细介绍了矩阵的定义、性质以及矩阵的运算规则,如矩阵加法、数乘、乘法等。
矩阵的范数
线性方程组与矩阵
03
高斯消元法是一种求解线性方程组的直接方法,通过消元和回代步骤求解方程组。
高斯消元法的基本思想是将增广矩阵通过行变换化为阶梯形矩阵,然后回代求解未知数。在每一步消元过程中,通过将某一行的倍数加到其他行上,使得当前未知数的系数变为0,从而简化方程组。
总结词
详细描述
总结词
大数据与矩阵分析
在大数据时代,如何有效地处理和分析大规模数据成为亟需解决的问题。矩阵分析作为处理线性代数问题的有力工具,未来可以进一步研究如何将其应用于大数据处理和分析中。
数值计算与矩阵分析
数值计算是解决各种数学问题的重要手段,而矩阵分析作为数值计算的基础,其重要性不言而喻。未来可以进一步研究如何提高矩阵分析的数值计算精度和效率,以满足各种复杂数学问题的求解需求。
矩阵分析教学设计 (2)

矩阵分析教学设计一、教学目标本次矩阵分析教学的目标主要分为三个方面:1.了解矩阵分析的基本概念和理论知识;2.掌握矩阵分析的基本技能和实际应用能力;3.培养学生分析与解决实际问题的能力。
二、教学内容1.矩阵基础知识–矩阵的定义、运算法则;–矩阵的迹、行列式;–线性方程组的矩阵表示和求解;2.矩阵分析基本方法–矩阵的特征值和特征向量;–矩阵的相似变换和对角化;–矩阵的奇异值分解;3.矩阵分析应用实例–线性回归问题的矩阵分析解法;–离散傅里叶变换的矩阵分析解法;–图像压缩中的矩阵分析应用。
1.讲授法:通过PPT和讲解介绍矩阵分析的基本概念、基本方法和应用实例;2.互动式教学法:采用小组讨论、研讨和案例分析等形式来促进学生的思维和理解;3.实验式教学法:通过实际操作,让学生亲自体验矩阵分析的应用方法,提升实际运用能力。
四、教学评估1.听课笔记:学生需要每节课认真听讲,并作好相应的笔记;2.个人作业:每个学生需要按时完成相应的学习任务和小组讨论;3.实验报告:学生需要完成一份实验报告,详细介绍实际操作中的问题和解决方法;4.期末考试:学生需要参加期末考试,包括选择题和简答题两种形式。
五、教学资源1.PPT课件:包括矩阵分析基础、基本方法和应用实例的讲解PPT;2.代码实现:提供Python语言实现相关代码;3.相关书籍:(1)《矩阵分析与应用》(高新科技出版社),(2)《线性代数及其应用》(机械工业出版社)。
章节内容课时安排第一章矩阵基础知识 3第二章矩阵分析基本方法 6第三章矩阵分析应用实例 6第四章复习巩固 1合计16七、教学反思在本次教学中,我们注重理论与实践相结合的方法,让学生通过大量的案例分析和实际操作来掌握矩阵分析的基本方法和实际应用技能,同时强化学生的分析、解决问题的能力。
然而,也需要注意的是,矩阵分析作为一门比较抽象和高深的数学理论,对学生的要求也比较高。
因此,在教学过程中,我们需要不断激发学生的学习兴趣,引导学生主动参与课上讨论和课下实验,提升学生的自主学习和实际操作能力,以期达到教学目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课本内容是基础,
教学手段和目标
课堂教学不注重知识的灌输; 重在掌握知识体系的建立,数学概念定义的逻辑合理
性; 定理在矩阵理论中的地位(定理的条件和结论的细节
一般需要大家自学,通过课后练习和复习掌握,定理 证明我们主要分析证明思路(为什么这样证明),证明 细节留给大家)。
矩阵理论与应用的基本内容
误差f(x)- f (x)分析很困难;
例如:
Ax=b ;
x’=f(A,b)。
计算机计算过程精确(函数 f())精 确,但是输入x有误 差,
用函数映射的语言就是:
求x,使得f (x)= f(x); 向后误差分析的方法
就是在此假设下分析
| f(x) - f(x)| 从而重点在于分析误差x-x。 Ax=b,x’=(A+△A)\(b+△b)
修有“修养、修炼”
上课教学的目标就是主 要针对那些没有天份只
悟需要天份,机遇;
有努力才能学好的同学
修只要勤奋,刻苦,所以 的思维特点的。
人人可以做到。
期末时,有的同学不上课同 样可以考高分,成立!
数学推理训练
归纳
从特殊到一般 创新多出于归纳 课堂教学更多识基本都是演绎的,
计算方法设计的原理是 什么?
矩阵计算的推导过程是 学习矩阵分析应该掌握 的基本技术,考察矩阵 计算是否过关的标志之 一。
向后误差分析法
真实的场景
假设的场景
计算机字长有限,输入数 据x 精确,计算过程由于截 断误差影响不精确,因此 输出结果有误差;
用函数映射的语言就是: xf(x) (x精确, f()不能精 确实现)
《矩阵分析与应用》教学介绍
教学设计的背景:
研究生阶段数学学习和本科生的区别: 本科学数学重在知识:
学习的结果就是我知道了什么? 研究生学习数学重在思考:
知道什么和不知道什么? 例如:数学的基础是集合论. 集合的概念是一种思维的方法:整体的、 综合的方 法;
矩阵论教学特点与学习方法
矩阵理论教学和学习的特点在于: 知识简单,结构清晰,所以我们可以轻松学习矩阵的知识;
基本理论
基本计算
基本理论体系结构后的建立,
上课一般不重点重复课本上的 知识,主要讲解知识之间的联 系,讲解概念背后的逻辑性, 定理的意义和矩阵理论的体系 构建,学会怎样学习数学。
考查矩阵理论学好与否的标志 之一: 你能否提出一个有意义的关于 矩阵的问题?不管你能否解决 它?你如何想到这个问题的, 问题的背景是什么? 怎么 分析的,考虑解决问题的出发 点在哪里?解决问题的难点在 哪里?
重点和难点: 初步掌握数学思维的特点和研究生数学学习的方法。 获取知识只是我们知道自己不知道什么的手段和途径, 书本知识主要告诉我们知道什么, 学习的难点在于我们不知道什么?
需要上课么?
数学学得好的基本都是自学的 谁应该上课?
认知学上所谓“悟”和练,
佛家所谓的“修”;
有天份的人可以不上;
悟有感悟,体悟,顿悟; 没有天份的应该上,