数论1
数论1

7.2 素数和合数
• 由上可知, 若a是合数, 则a一定有大于1且 小于或等于人的因数. 由定理7.2.1知, a的 大于1的最小因数一定是素数, 故本定理 得证. • 素数有多少?公元前三世纪, 古希腊数 学家欧几里德Euclid就证明了素数有无 穷多个.
7.2 素数和合数
定理7.2.3 (Euclid) 素数有无穷多个 素数有无穷多个. 定理 证明(反证法)假设素数是有限多个, 共有n个, 令 证明 它们是p1,p2,…,pn, 并令a= p1p2…pn+1. 若a是素 数, 则因a≠pi; 其中1<i<n, 故素数个数最少是 n+1个, 这与假设素数个数为n个矛盾. 若a不是 素数, 则由定理7.2.2知, l的大于 1的最小因数 b是素数. 由于pi|p1p2…pn, 但pi不能整除1, 故pi 不能整除a, 因此b≠pi, 其中1≤i≤n, 那么a也为素 数. 所以在p1,p2,…,pn,还有素数, 这也与已知共 有n个素数矛盾.
专业基础课程
初等数论
(一) 一
Number Theory (1)
杭州师范学院 沈忠华
• 本章主要介绍整数的整除性和因数分解等内 容. • 在本章或下一章中,如无特别说明,常以小 写英文字母,或有时标以足码或肩码表示整 数.当几个字母写在一起时,表示它们相乘, 如: abc=a×b×c; 但注意数目字写在一起不表 示相乘,如 168不是1×6×8而是一百六十 八.当数目字和字母写在一起时,则表示该 数目字和字母相乘, 如168abc=168×a×b×C.
7.2 素数和合数
• 下面给出关于合数的两个定理. 是合数,则 有一因数 满足: 有一因数d满足 定理 7.2.4 若 a是合数 则a有一因数 满足 是合数 1<d< 1<d<a1/2 证明 由于 a是合数,故存在整数 b和 c使 a =bc, 其中: 1<b<a, 1<c<a.若b和c均大于 a1/2 , 则a=bc>a1/2·a1/2=a, 这是不可能 的. 因此b和c中必有一个小于或等于a1/2.
数论1—数的整除

第一讲——数的整除基本概念自然数:像“0、1、2、3、4、……”这样的数叫做自然数。
整数:像“—1、—2、0、1、2……”这样的数叫做整数。
除尽:两个数的商不是无限小数。
比如5÷2=2.5整除:两个数的商是整数。
除尽和整除不一样一、整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b┾a。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。
例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
注:因数和倍数只在非零自然数范围内研究。
零是任何数的倍数。
二、数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
三、数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。
例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。
.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。
例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。
数论第一章 整除理论

第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b 整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明 若a 是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
所以d 1是素数。
证毕。
推论 任何大于1的合数a 必有一个不超过a 的素约数。
证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。
数论1(讲义)

数论 1 知识点严文兰1.符号说明:如无特别说明,下面出现的字母表示的数都是整数2.整数的离散型:整数a <b ⇔a +1 ≤b ,3.n 次方差公式:a n -b n = (a -b)(a n-1 +a n-2b ++b n-1 ) ,4.带余除法:设a, b是两个给定的整数,且b ≠0,则存在唯一一对整数q和r,满足a =qb +r, 0 ≤r <| b |(1)当r=0 时,a =qb ,那么就说a 可被b 整除,记作b | a ,且称a 是b 的倍数,b 是a 的约数(也可称为因数,除数),a 不能被b 整除就记作b /|a ,(2)如果a 为素数,且a n | b, a n+1 /| b, 那么记为a n || b(3)设m ≠ 0 ,如果a, b 被m 除的余数相同,即m | a -b ,则称a 同余于b 模m,b 是a 对模m 的剩余,记为a ≡b(mod m) ,此关系式称为模m 的同余式,不然,则称a 不同余于b 模m,记为a≡/b(mod m),5.整除的性质:(1)a | b, b| c ⇒a | c(2)a | b, a | c ⇒a | bx +cy ,特别地a | b, b | c ⇒a | b ±c ,(3)设m ≠ 0 ,那么a | b ⇔ma | mb ,(4)a | b ⇒b = 0 或| a |≤| b | ,所以 a | b, b | a ⇒b =±a(5)若(a, b) = 1,则a | c, b | c ⇔ab | c ,(6)m | a, m | b ⇒m | (a, b) ,(7)若(a, b) =1, ,则a | bc ⇔a | c ,(8)p 为素数,p | ab ⇒p | a 或p | b6.最大公约数与最小公倍数:同时整除a, b 的整数,叫a, b 的公约数,其中最大的那个,叫a, b 的最大公约数,记为(a, b) ,同样,同时整除a, b, , c 的最大整数,叫a, b, , c 的最大公约数,记为(a, b, , c) ,1 2 1 2同样,同时是 a , b ,, c 的倍数的整数,叫 a , b , , c 的公倍数,其中最小的正整数,叫a ,b , ,c 的最小公倍数,记为[a , b , , c ] 。
数论讲义一:整除

数论讲义一:整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题。
Ⅰ.整数的整除性初等数论的基本研究对象是自然数集合及整数集合。
我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如是整除,,则不一定是整数。
由此引出初等数论中第一个基本概念:整数的整除性。
定理一:(带余除法)对于任一整数和任一整数,必有惟一的一对整数,使得,,并且整数和由上述条件惟一确定,则称为除的不完全商,称为除的余数。
若,则称整除,或被整除,或称的倍数,或称的约数(又叫因子),记为。
否则,| 。
任何的非的约数,叫做的真约数。
0是任何整数的倍数,1是任何整数的约数。
任一非零的整数是其本身的约数,也是其本身的倍数。
由整除的定义,不难得出整除的如下性质:(1)若(2)若(3)若,则反之,亦成立。
(4)若。
因此,若。
(5)、互质,若(6)为质数,若则必能整除中的某一个。
特别地,若为质数,(7)如在等式中除开某一项外,其余各项都是的倍数,则这一项也是的倍数。
(8)n个连续整数中有且只有一个是n的倍数。
(9)任何n个连续整数之积一定是n的倍数。
(10)二项式定理:;;经典例题:一、带余除法1.若是形如的数中最小的正整数,求证:;分析:利用带余除法,设2.为质数,,证明:被整除;分析:利用带余除法处理,可以设,再来表示二.若3.设和为自然数,使得被整除,证明:分析:根据恒等式4.为给定正整数,对任意,都有,证明:;分析:注意到,对任意,有三、利用牛顿二项式定理;;5.设都是正整数,,且,证明:;分析:首先由,而,讨论的奇偶性6.已知,定义,证明:;分析:当时,四、配对思想7.设为奇数,证明:;分析:由于,这些数的分子都是,分母都小于,因此想到用配对法做此题;五.反证法8.设,,而是一个不小于的正整数,证明:存在整数,使得;整除作业一1.设为有理数,为最小正整数,使得是整数,如果与是整数,证明:。
5 小学奥数——数论 1 试题及解析

小学奥数——数论一.选择题(共50小题)1.一条大鲸鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半的和.这条大鲸鱼全长( )米.A.12B.24C.36D.482.有一串数,最前面的四个数依次是2、0、1、6.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.在这一组数中,一定不会出现的数组是( )A.2018B.2017C.9472D.41863.在10~1000之间,个位数是3或8的数的个数是( )A.200B.198C.196D.1944.在序列20170⋯中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A.8615B.2016C.4023D.20175.整数1N = 2 3 4 5 6 7 8 9 10 11 12 132010⋯ 2011 2012 2013 2014 2015是由12015-这2015个整数,由小到大的顺序依次写出得到的,那么N 是( )位数.A.5678B.6947C.6950D.6953 6.设666673m ⋯⨯{个得数的各位数字之和为M ,333373n ⋯⨯{个得数的各位数字之和为N ,那么M 与N 的大小关系是( )A.M N >B.M N =C.M N <D.不确定7.如图,飞镖圆靶分成五个部分,每部分得分依次是1,3,5,7,9(分),某小孩掷了六支飞镖,全部击中圆靶,下列得分中可能是他所得总分的是( )A.4B.17C.28D.568.把1~10的所有自然数相乘,得到的积的末尾会有( )个连续的零.A.1B.2C.3D.4 9.算式2016201699999999⋯⨯⋯{{个个的结果中含有( )个数字0.A.2017B.2016C.2015D.201410.有A 、B 两个整数,A 的各位数字之和为36,B 的各位数字之和为25,且两数相加时进位三次,那么A B +的各位数字之和是( )A.33B.34C.35D.3611.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么, 这20间房间里的人轮完一遍后,关着灯的房间有( )间.A.0B.10C.11D.2012.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是( )A.188B.178C.168D.15813.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相同.那么,原来这四个数依次是( )A.10,10,10,10B.12,8,20,5C.8,12,5,20D.9,11,12,1314.三位数N ,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N 有( )个.A.8B.6C.4D.215.老师在黑板上将从1 开始的计数连续地写下去:1,3,5,7,9,11⋯写好后,擦去了其中的两个数,将这些奇数隔成了3 段,如果前两段的和分别是961 和1001,那么,老师擦去的两个奇数之和是( )A.154B.156C.158D.16016.在下列四个算式中:2AB CD ÷=,0E F ⨯=,1G H -=,4I J +=,~A J 代表0~9中的不同数字,那么两位数AB 不可能是( )A.54B.58C.92D.9617.一个五位数,由1,2,3三个数码组成,对于其中任何一个数码,如果这个数码是1,则它后面只能写2;如果这个数码是2,它后面只能写3;如果这个数码是3,它后面可以写1,也可以写3.这样的五位数有()个.A.10B.13C.19D.2818.对一个大于0的自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,那么经过9次操作变为1的数有()个.A.15B.22C.25D.3419.某商品编号是一个三位数,现有5个三位数:123、364、765、874、925.其中每一个数与商品编号恰好在同一数位上有一个相同的数字,这个商品编号是()A.375B.724C.823D.96420.有8个谜语让60个人猜,猜对共338人次.每人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个和7个的人数同样多.8个全猜对的有()人.A.6B.8C.10D.1221.蓝佛德数字是这样一种数字.它的数字中每一个数码都出现两次.并且数码1被一个其他数码分开,数码2被两个其他数码分开,等等.下面四个数是蓝佛德数字的一个是()A.12142334B.41312432C.14132342D.3243214122.2011的各位数字的和为4,具有这种性质的四位数的数共有()A.10B.15C.20D.2123.在下列四个数中,能被77整除的是()A.34987B.68486C.75999D.3298224.若1515153333a=⋯⨯⋯(有1004个15,有2008个3),则整数a的所有数位上的数字和等于()A.18063B.18072C.18079D.1805425.在自然数1,2,3,⋯,2008中,末位是3的所有数的和是()A.201603B.201703C.201803D.20190326.从1、3、5、7、9这五个数字中任选2个,分别写在乘号的两边,组成一道乘法算式.共可得到多少个乘积不同的算式()A.5B.10C.15D.2027.已知一个三位数的百位、十位和个位分别是a,b,c,而且a b c a b c⨯⨯=++,那么满足上述条件的三位数的和为()A.1032B.1132C.1232D.133228.a、b、c、d、e这五个数各不相同,它们两两相乘后的积从小到大排列依次为:0.3,0.6,1.5,1.8,2,5,6,10,12,30.将这五个数从小到大排成一行,那么,左起第2个数是()A.0.3B.0.5C.1D.1.529.a、b、c、d、e这五个数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300.那么,这五个数中从小到大排列第2个数的平方是()A.1B.3C.5D.1030.123456789101112131420052006⋯是()位数.A.6913B.6914C.6915D.691731.有194盏亮着的灯,各有一个拉线开关控制着;拉一下拉线开关,灯由亮变灭;再拉一下,又由灭变亮,现按顺序将这194盏灯依次编号为1,2,3,4,⋯,194,然后将编号为2的倍数的拉线开关都拉一下;再将编号为3的倍数的灯线都拉一下;最后将编号为5的倍数的灯线都拉一下.三次拉完后,亮着的灯有()盏.A.97B.96C.95D.9432.写有数字6,10,18的卡片各10张,现在从这30张中适当选出9张计算出它们的和,可能的和是()A.93B.98C.104D.10733.下面不能写成10个连续自然数之和的是()A.385B.495C.675D.104034.从1、2、3、⋯、7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法()种.A.6B.7C.8D.935.如图,在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如,在填入的81个数中,()多.A.奇数B.偶数36.房间有红、黄、蓝三种灯,当房间所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红、黄灯都亮;第三次拉开关,红、黄、蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r p g(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为()A.只有红灯亮B.只有红、黄灯亮C.三灯都亮D.三灯都不亮37.在如图的奥运五环图案中,分别填写五个两位数a,b,c,d,e,使得上面的三个数a,b,c是三个连续的偶数,下面的两个数d,e是两个连续的奇数,而且a b c d e++=+,如果填入的五个数的十位数字都是1,那么这五个数的和是()A.80B.76C.72D.6838.数列1,1,2,3,5,8,13,21,34,55,89,144,⋯的前2006个数中,偶数有()A.667个B.668个C.669个D.670个39.任意两个质数的和()A.一定是偶数B.一定是质数C.一定是合数D.可能是偶数,可能是质数,也可能是合数40.如果a ,b ,c 是三个任意整数,那么,,(222a b b c c a +++ ) A.都不是整数B.至少有一个整数C.至少有两个整数D.都是整数41.若三个连续偶数的和是162,则它们的乘积是( )A.157248B.125748C.157284D.17258442.四个同学进行计算比赛,比赛内容是:在9、10、11、⋯、67、68这60个自然数的相邻两数之间任意添加符号“+”或“一”,然后进行计算.四个同学得到的结果分别是2000、2003、2300、2320,老师看后指出:这四个结果中只有一个是正确的.这个正确的结果是( )A.2274B.2003C.23000D.232043.下面三组数中和不同的是( )A.87,76,65,54B.77,66,55,84C.58,86,64,7544.有10个房间,9个开着灯,1个关着灯,如果每次拨动4个不同房间的开关,能不能把所有房间的灯都关上?A.能B.不能C.不能确定 45.三个质数的倒数和为3111001,那么这三个质数的和为( ) A.311 B.35 C.3146.若a 、b 互素,且两个最简分数之和为3135m n a b +=,则1(a b m n m n +-=⨯ ) A.5B.6C.8D.10 47.三个质数的倒数和为3111001,那么这三个质数的和为( ) A.311 B.35 C.31 D.2948.如图,正方体每个面上各写了一个整数,并且相对的两个面上的数之和都相等,现在只看到三个面上写的数8,10与25,如果看不见的三个面上写的都是质数,那么这三个质数之和是( )A.36B.38C.52D.5849.把40写成两个质数之和的形式共有()种方法.A.4B.3C.2D.150.已知4个质数的积是它们和的11倍,则它们的和为()A.46B.47C.48D.没有符合条件的数参考答案与试题解析一.选择题(共50小题)1.一条大鲸鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半的和.这条大鲸鱼全长( )米.A.12B.24C.36D.48【解析】设尾长为x 米,则身长为(3)x +米,得13(3)2x x =++⨯ 3 1.50.5x x =++0.5 4.5x =9x =身长:3912+=(米)大鲸鱼全长:312924++=(米).答:这条大鲸鱼全长24米.故选:B .2.有一串数,最前面的四个数依次是2、0、1、6.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.在这一组数中,一定不会出现的数组是( )A.2018B.2017C.9472D.4186【解析】对2016进行拓展962301607478656528⋯这组数字出现奇偶性的规律为:奇偶偶奇偶,奇偶偶奇偶⋯在2018、2017、9472、4186中只要2017有两个奇数相连,不符合规律.故选:B .3.在10~1000之间,个位数是3或8的数的个数是( )A.200B.198C.196D.194【解析】个位数是3的从10到1000中,每10个数中有一个,所以,一共有(100010)1099-÷=(个),个位数是8的从10到1000中,每10个数中有一个,所以,一共有(100010)1099-÷=(个),所以,个位数是3或8的一共有:9999198+=(个),故选:B .4.在序列20170⋯中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A.8615B.2016C.4023D.2017【解析】枚举法0170的数字和是8下一个数字就是8.1708的数字和是16下一个数字就是6.7086的数字和是21下一个数字就是1.0861的数字和是15下一个数字是5.8615的数字和是20下一个数字是0.6150的数字和为12下一个数字就是2.20170861502⋯ 规律总结:查看数字中奇数的个数,奇数一出现就是2个.故选:B .5.整数1N = 2 3 4 5 6 7 8 9 10 11 12 132010⋯ 2011 2012 2013 2014 2015是由12015-这2015个整数,由小到大的顺序依次写出得到的,那么N 是( )位数.A.5678B.6947C.6950D.6953【解析】一位数有:199⨯=(个)两位数有:290180⨯=(个)三位数有:39002700⨯=(个)四位数有:4(201510001)4064⨯-+=(个)9180270040646953+++=(个)答:N 是6953位数.故选:D .6.设666673m ⋯⨯{个得数的各位数字之和为M ,333373n ⋯⨯{个得数的各位数字之和为N ,那么M 与N 的大小关系是( )A.M N >B.M N =C.M N <D.不确定 【解析】因为606667320001m m ⋯⨯=⋯{{个个;31033373100011n n -⋯⨯=⋯{{个个,所以213M =+=,1113N =++=,所以M N =,故选:B .7.如图,飞镖圆靶分成五个部分,每部分得分依次是1,3,5,7,9(分),某小孩掷了六支飞镖,全部击中圆靶,下列得分中可能是他所得总分的是( )A.4B.17C.28D.56【解析】由题意得分至少是166⨯=,至多是6954⨯=,故A 、B 排除. 因为6个奇数的和是偶数,所以B 排除,故选:C .8.把1~10的所有自然数相乘,得到的积的末尾会有( )个连续的零.A.1B.2C.3D.4【解析】因为2510⨯=,在1~10中,只有5和10两因数含有因数5,即把1~10的所有自然数相乘,得到的积的末尾会有2个连续的零.故选:B .9.算式2016201699999999⋯⨯⋯{{个个的结果中含有( )个数字0. A.2017B.2016C.2015D.2014 【解析】2016201699999999⋯⨯⋯{{个个201602016100019999⎛⎫ ⎪=⋯-⨯⋯ ⎪⎝⎭{{个个2016020162016100099999999=⋯⨯⋯-⋯{{{个个个20169020169990009999=⋯-⋯{{个和个个位0减9不够减,需要连续退位,个位数得1,所以数字0的个数是: 201612015-=(个)故选:C .10.有A、B两个整数,A的各位数字之和为36,B的各位数字之和为25,且两数相加时进位三次,那么A B+的各位数字之和是()A.33B.34C.35D.36【解析】362593+-⨯=-6127=34答:A B+的各位数字之和是34.故选:B.11.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.20【解析】因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.12.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是()A.188B.178C.168D.158【解析】设第一段有n个,则第2段有1n+个,那么第一个擦的奇数是21n+,n+,第二个擦的奇数是45被划去的两个奇数的和为:214566+++=+,n n n66n+是6的倍数,在四个选项中只有168是6的倍数,符合要求.故选:C.13.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相同.那么,原来这四个数依次是( )A.10,10,10,10B.12,8,20,5C.8,12,5,20D.9,11,12,13【解析】设相同的结果为2x ,根据题意有:2222445x x x x -++++=,解得5x =,所以原来的4个数依次是8,12,5,20.14.三位数N ,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N 有( )个.A.8B.6C.4D.2【解析】考虑到一定会有进位、退位,设原数数字和为a ,则3-,4+定不是差7,否则无法成为连续4个自然数,5÷说明末位为0或5,当末位为5时,3-,4+均不进位退位;当末位为0时,3-退位,符合,所以3-相当于数字和多6,6a +;4+相当于数字和多4,4a +;5÷相当于数字和2⨯,2a ⨯;2a ⨯,2a +,4a +连续,2a ⨯为7a +,5a +,3a +中的一个,分类讨论得到25a a ⨯=+成立,所以5a =,数字和为5,尾数为0的有:500(舍去),410,320,230,140,共4个.故选:C .15.老师在黑板上将从1 开始的计数连续地写下去:1,3,5,7,9,11⋯写好后,擦去了其中的两个数,将这些奇数隔成了3 段,如果前两段的和分别是961 和1001,那么,老师擦去的两个奇数之和是( )A.154B.156C.158D.160【解析】因为296131=,所以擦去的第一个奇数为3121263⨯-+=.而9616310012025++=,因为2202545=,所以擦去的第二个奇数数为4521291⨯-+=.所以,两个数的和为6391154+=,故选:A .16.在下列四个算式中:2AB CD ÷=,0E F ⨯=,1G H -=,4I J +=,~A J 代表0~9中的不同数字,那么两位数AB 不可能是( )A.54B.58C.92D.96【解析】由条件可知:E、F中至少有一个为0,假设E为0;另一个可以是任何数;I和J有一个是3,有一个是1;那么0~9中的数字还剩下2、4、5、6、7、8、9;因为:1G H-=①GH是9,8时则54272÷=此时6F=②GH是8,7时则92462÷=此时5F=③GH是7,6时则58292÷=此时4F=④G、H是6,5此时不满足条件⑤时G、H是5,4时,此时不满足条件所以两位数AB可能是54、58、92;不可能是96故选:D.17.一个五位数,由1,2,3三个数码组成,对于其中任何一个数码,如果这个数码是1,则它后面只能写2;如果这个数码是2,它后面只能写3;如果这个数码是3,它后面可以写1,也可以写3.这样的五位数有()个.A.10B.13C.19D.28【解析】如果最高位(万位)是1,那么根据题意,千位上只能是2,百位上只能是3,十位上可以是1或3,得到3种情况:12312、12331、12333;如果最高位(万位)是2,那么根据题意,千位上只能是3,百位上可以是1或3,通过列举,可以得到3种情况:23123、23312、23331;如果最高位(万位)是3,那么根据题意,千位上可以是1或3,千位上如果是1,可以得到2种情况:31231、31233;千位上如果是3,可以得到2种情况:33123、33312综上所述,符合题意的五位数有:12312、12331、12333、23123、23312、23331、31231、31233、33123、33312故选:A.18.对一个大于0的自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,那么经过9次操作变为1的数有()个.A.15B.22C.25D.34【解析】通过1次操作变为1的数有1个,即2;经过2次操作变为1的数有2个,即4、1;经过3次操作变为1的数有2个,即3、8;⋯;经过5次操作变为1的数有8个,即11、24、10、28、13、64、31、30;经过1、2、3、4、5⋯次操作变为1的数依次为1、2、3、5、8⋯,这即为斐波拉契数列,则第6次后是:5813+=个.+=个,第七次后是13821+=个,第8次后是211334即经过8次操作变为1的数有34个.答:经过8次操作变为1的数有34个.故选:D.19.某商品编号是一个三位数,现有5个三位数:123、364、765、874、925.其中每一个数与商品编号恰好在同一数位上有一个相同的数字,这个商品编号是()A.375B.724C.823D.964【解析】选项A,375与123对应位置上的数字没有一个相同,故错误.选项B,符合要求;选项C,823与765对应位置上的数字没有一个相同,故错误.选项D,964123对应位置上的数字没有一个相同,故错误.综上所述故选:B.20.有8个谜语让60个人猜,猜对共338人次.每人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个和7个的人数同样多.8个全猜对的有()人.A.6B.8C.10D.12【解析】设猜对5个和7个的人数各为x人,3641057(606102)8338x x x ⨯+⨯+++---⨯=5812(442)8338x x ++-⨯=581235216338x x ++-=472x =18x =6061026061021844368x ---=---⨯=-=答:8个谜语全猜对的有8人.故选:B .21.蓝佛德数字是这样一种数字.它的数字中每一个数码都出现两次.并且数码1被一个其他数码分开,数码2被两个其他数码分开,等等.下面四个数是蓝佛德数字的一个是( )A.12142334B.41312432C.14132342D.32432141【解析】A 、两个3连在一起,错误;B 、41312432被4个数分开,1被1个数分开,2被两个数分开,3被3个数分开,符合要求;C 、两个3中间只有一个数字隔开,错误;D 、两个3之间只有两个数字隔开,错误.故选:B .22.2011的各位数字的和为4,具有这种性质的四位数的数共有( )A.10B.15C.20D.21【解析】分5种情况讨论,①,4个数字都为1时,即1111,有1个四位数符合题意,②,4个数字为2、0、1、1时,0不能放在首位,有3种放法,则2有3种方法,剩余的2个1,放在其余两个位置,有1种情况,则共有339⨯=个四位数符合题意,③,4个数字为3、0、0、1时,首位必须是3或1,有2种情况,在剩余的3个位置取出2个来放数字0,有233C =种情况,剩余的1个数字放在最后位置,有1种情况,则共有236⨯=个四位数符合题意,④,4个数字为2、2、0、0时,首位必须是2,有1种情况,在剩余的3个位置种取出2个来放数字0,有233C =种情况,剩余的1个数字2放在最后位置,有1种情况,则共有133⨯=个四位数符合题意,⑤,4个数字为4、0、0、0时,即4000,只有1个四位数符合题意,综合,共有1936120++++=个四位数符合题意,故选:C .23.在下列四个数中,能被77整除的是( )A.34987B.68486C.75999D.32982【解析】34987,(397)(48)7++-+=,不能被11整除,则不能被77整除.68486,(646)(88)0++-+=,能被11整除,6846626834-⨯=,个数是4,不能被7整除,则不能被77整除.75999,(799)(59)11++-+=,能被11整除,7599927581-⨯=,能被7整除,所以75999能被77整除.32982,(392)(28)4++-+=,不能被11整除,则不能被77整除,故选:C .24.若1515153333a =⋯⨯⋯(有1004个15,有2008个3),则整数a 的所有数位上的数字和等于( )A.18063B.18072C.18079D.18054【解析】1515153333⋯⨯⋯505050533333=⋯⨯⨯⋯,50505059999=⋯⨯⋯,(50505⋯共2007位数,9999⋯共2008位数)5050505(10000001)=⋯⨯⋯-,50505050000005050505=⋯⋯-⋯,5050505049494949495=⋯⋯;(前面505050504⋯共有2007位,中间9有1位,最后494949495⋯共2007位) 前面505050504⋯加最后494949495⋯正好为2007个9,再算是中间的一个9,因此所有数位上的和为9200818072⨯=.故选:B .25.在自然数1,2,3,⋯,2008中,末位是3的所有数的和是()A.201603B.201703C.201803D.201903【解析】313232003(12200)103201201603+++⋯+=++⋯+⨯+⨯=,故选:A.26.从1、3、5、7、9这五个数字中任选2个,分别写在乘号的两边,组成一道乘法算式.共可得到多少个乘积不同的算式()A.5B.10C.15D.20【解析】54210⨯÷=答:共可得到10个乘积不同的算式.故选:B.27.已知一个三位数的百位、十位和个位分别是a,b,c,而且a b c a b c⨯⨯=++,那么满足上述条件的三位数的和为()A.1032B.1132C.1232D.1332【解析】足a b c a b c⨯⨯=++=,⨯⨯=++的只有1,2,3,即1231236所以这些三位数是123,132,213,231,312,321;和为1231322132313123211332+++++=.故选:D.28.a、b、c、d、e这五个数各不相同,它们两两相乘后的积从小到大排列依次为:0.3,0.6,1.5,1.8,2,5,6,10,12,30.将这五个数从小到大排成一行,那么,左起第2个数是()A.0.3B.0.5C.1D.1.5【解析】设a b c d e<<<<,则0.3ce=,de=,12ac=,30ab=,0.6可得2a b=÷,=,0.3d c=, 2.5c b可得5个数为:÷,b,2b,5b,6b÷,0.3b再根据这几个数两两相乘的积分别为:0.3,0.6,1.5,1.8,2,5,6,10,12,30进行比较,得出1b=于是5个数为0.3,1,2,5,6,所以左起第2个数是1.故选:C.29.a 、b 、c 、d 、e 这五个数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300.那么,这五个数中从小到大排列第2个数的平方是( )A.1B.3C.5D.10【解析】设a b c d e <<<<,则:3ab =,3a b=, 6ac =;36c b=, 2c b =;120ce =2120be =60e b=; 300de =300d e =÷60300b=÷ 5b =; 那么这五个数就可以表示为:3b,b ,2b ,5b ,300b . 最大最小的四个乘积已经讨论过,再来讨论剩下的乘积,剩下的乘积就有可能表示为: 222bc b b b ==g ,255bd b b b ==g ,6060be b b==g , 22510cd b b b ==g3515ad b b==g , 2360180ae b b b==g ; 这些积就是:3,6,15,2180b,22b ,25b ,60,210b ,120,300; 显然:210b =.故选:D .30.123456789101112131420052006⋯是( )位数.A.6913B.6914C.6915D.6917【解析】1~9,共有9个数字组成,10~99共有290180⨯=个数字组成,100~999,共有39002700⨯=个数字组成,1000~2006共有410074028⨯=个数字组成.所以123456789101112131420052006⋯是由:9180270040286917+++=个数字组成.则其是6917位数.故选:D .31.有194盏亮着的灯,各有一个拉线开关控制着;拉一下拉线开关,灯由亮变灭;再拉一下,又由灭变亮,现按顺序将这194盏灯依次编号为1,2,3,4,⋯,194,然后将编号为2的倍数的拉线开关都拉一下;再将编号为3的倍数的灯线都拉一下;最后将编号为5的倍数的灯线都拉一下.三次拉完后,亮着的灯有( )盏.A.97B.96C.95D.94【解析】依题意可知:194盏灯亮着.2的倍数有194297÷=(盏).3的倍数有194364÷=(盏)2⋯.5的倍数有194538÷=(盏)4⋯.既是2的倍数又是3的倍数的共有194632÷=(盏)2⋯.既是2的倍数又是5的倍数的共有1941019÷=(盏)4⋯.既是3的倍数有是5的倍数有1941512÷=(盏)14⋯.同时是2,3,5的倍数的有194306÷=(盏)14⋯.拉1次的灯的,973219652--+=(盏).643212626--+=(盏).381219613--+=(盏).拉3次的共有6盏.194522613697----=.故选:A .32.写有数字6,10,18的卡片各10张,现在从这30张中适当选出9张计算出它们的和,可能的和是( )A.93B.98C.104D.107【解析】根据题意可知:6,10,18被4除,余数都是2,同余;所以选出9张卡片求和,余数变为了18.因为减去18,剩下的数可以被4整除即为答案..931875A -=,不能整除4,故错误选项..981880B -=,能整除4,故正确选项..1041886C -=,不能整除4,故错误选项..1071889D -=,不能整除4,故错误选项.故选:B .33.下面不能写成10个连续自然数之和的是( )A.385B.495C.675D.1040【解析】任意10个连续自然数中有5个偶数,5个奇数,5个奇数的和是奇数,5个偶数的和是偶数,因为奇数+偶数=奇数,所以任意10个连续自然数的和一定是奇数;因为385、495、675都是奇数,而1040是偶数,所以10个连续自然数之和不可能是1040.故选:D .34.从1、2、3、⋯、7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法( )种.A.6B.7C.8D.9【解析】1,2,3,4,5,6,7中1,3,5,7是奇数,2,4,6是偶数,134+=156+=3746+=+3526+=+1726+=+1524+=+57246+=++共7种故选:B .35.如图,在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如,在填入的81个数中,( )多.A.奇数B.偶数【解析】因为:奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数,所以,第一行填的数中由偶数开始,偶数结束,偶数比奇数多1个,第二行填的数中由奇数开始,数数结束,偶数比奇数少1个,同样,第三得填的数中偶数比奇数多1个,第四行填的数中偶数比奇数少1个,即前8行中奇数和偶数的个数一样多,而第九行中偶数多一个.所以,81个数字中偶数多. 答:81个数中偶数多.故选:B .36.房间有红、黄、蓝三种灯,当房间所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红、黄灯都亮;第三次拉开关,红、黄、蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r p g (其中p 为正奇数,r 为正整数),就拉p 次,当100人都走过房间后,房间中灯的情况为( )A.只有红灯亮B.只有红、黄灯亮C.三灯都亮D.三灯都不亮【解析】奇数和为135992500+++⋯+=,编号为2p 者有21⨯,23⨯,25⨯,⋯,249⨯,次数为13549625+++⋯+=; 编号为22p 者有221⨯,223⨯,225⨯,⋯,2225⨯,拉开关次数为13525169+++⋯+=; 同理可得编号32p 者拉36次;42p 者9次,52p 与62p 者拉开关次数1315++=次.总计2500625169369533444836+++++==⨯.所以最后三灯全关闭.故选:D.37.在如图的奥运五环图案中,分别填写五个两位数a,b,c,d,e,使得上面的三个数a,b,c是三个连续的偶数,下面的两个数d,e是两个连续的奇数,而且a b c d e++=+,如果填入的五个数的十位数字都是1,那么这五个数的和是()A.80B.76C.72D.68【解析】Q三个连续偶数之和等于两个连续奇数之和且都在0到20之间,∴只需使两个奇数的和为3的倍数即可,∴.Q填入的五个数的十位数字都是1,++++=,∴这五个数的和是101214171972故选:C.38.数列1,1,2,3,5,8,13,21,34,55,89,144,⋯的前2006个数中,偶数有()A.667个B.668个C.669个D.670个【解析】每三个数是一组,每组中有1个偶数;÷=⋯2006366822006个数中有668个这样的一组,还余2个数,余下的这两个数都是奇数,所以一共有668个偶数.故选:B.39.任意两个质数的和()A.一定是偶数B.一定是质数C.一定是合数D.可能是偶数,可能是质数,也可能是合数【解析】如:235+=,5是质数;358+=,8是偶数也是合数;279+=,9是合数;所以,任意两个质数的和可能是偶数、可能是质数、也可能是合数.故选:D .40.如果a ,b ,c 是三个任意整数,那么,,(222a b b c c a +++ ) A.都不是整数B.至少有一个整数C.至少有两个整数D.都是整数【解析】当a ,b ,c 都为偶数时,则a b +,a c +,c b +的和为偶数, 那么,,222a b b c c a +++都为整数; 当a ,b ,c 都为奇数时,则a b +,a c +,c b +的和为偶数, 那么,,222a b b c c a +++都为整数; 当a ,b ,c 中有一个偶数,两个奇数时,a b +,a c +,c b +的和中有两个为奇数,一个为偶数, 那么,,222a b b c c a +++只有一个为整数; 当a ,b ,c 中有一个奇数,两个偶数时,a b +,a c +,c b +的和中有两个为奇数,一个为偶数, 那么,,222a b b c c a +++只有一个为整数; 所以,如果a ,b ,c 是三个任意整数,那么,,222a b b c c a +++中至少有一个为整数. 故选:B .41.若三个连续偶数的和是162,则它们的乘积是( )A.157248B.125748C.157284D.172584【解析】162354÷=,54252-=,54256+=,525456157248⨯⨯=. 答:它们的积是157248.故选:A .42.四个同学进行计算比赛,比赛内容是:在9、10、11、⋯、67、68这60个自然数的相邻两数之间任意添加符号“+”或“一”,然后进行计算.四个同学得到的结果分别是2000、2003、2300、2320,老师看后指出:这四个结果中只有一个是正确的.这个正确的结果是( )A.2274B.2003C.23000D.2320【解析】由于91011682310+++⋯=,23202310>,所以D错误、(23102274)218-÷=,1829÷=,所以在9前是减号即可,符合题意.(23102003)30768-=>,错误.(23102000)215568-÷=>,错误.故选:A.43.下面三组数中和不同的是()A.87,76,65,54B.77,66,55,84C.58,86,64,75【解析】选项A、B都是2奇2偶,所以得数是偶数;只有选项C都是1奇3偶,所以得数是奇数;故选:C.44.有10个房间,9个开着灯,1个关着灯,如果每次拨动4个不同房间的开关,能不能把所有房间的灯都关上?A.能B.不能C.不能确定【解析】每次拨动4个开关,拨动的总次数是偶数;要把9个开着的灯关闭,拨动的总次数是一个奇数;偶数≠奇数故选:B.45.三个质数的倒数和为3111001,那么这三个质数的和为()A.311B.35C.31【解析】由题意可知,这三个质数的最小公倍数是三者的积,又因为它们的倒数之和的分母是1001,所以把1001就是这三个质数的最小公倍数.100171113=⨯⨯7111331++=故选:C .46.若a 、b 互素,且两个最简分数之和为3135m n a b +=,则1(a b m n m n +-=⨯ ) A.5 B.6 C.8 D.10【解析】因为若a 、b 互素,且计算结果的分母为35,则35就是这两个质数的乘积, 3557=⨯,所以,5a =,7b =,则7531m n +=,解得,3m =,2n =,所以,1a b m n m n+-⨯ 5713223=+-⨯ 5=;故选:A .47.三个质数的倒数和为3111001,那么这三个质数的和为( ) A.311 B.35 C.31 D.29【解析】因为,100171113=⨯⨯所以,这三个质数分别是:7、11、13,所以,这三个质数的和是:7111331++=,答:这三个质数的和为31.故选:C .48.如图,正方体每个面上各写了一个整数,并且相对的两个面上的数之和都相等,现在只看到三个面上写的数8,10与25,如果看不见的三个面上写的都是质数,那么这三个质数之和是( )A.36B.38C.52D.58【解析】设和10相对的数是a ,和8相对的数是b ,和25相对的数是c ,。
七大模块能力诊断--数论(1)

七大模块能力诊断—数论1、两个自然数,它们的最大公约数是6,最小公倍数是180,这样的自然数有组(2008年百外真题)2、已知P,Q都是质数,并且11932003⨯=(希望杯真题)-Q,则P QP⨯⨯=3、5×15×25×口,要使这个连乘积的最后4 个数字都是0,那么在方框内最小应填(希望杯真题)4、自然数N有20个因数,N的最小值为(2017年深中真题改编)5、40 台电脑,按编号1-40 号,每个电脑密码第一个数是它的编号除以7 的余数,第二位是它的编号除以9 的余数,密码为25 的是第台电脑(2015年深外真题)6、某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是。
(2018年深中真题改编)7、一个四位数,各位数字互不相同,所有数字之和等于6,并且这个数是11 的倍数,则满足这种要求的四位数共有个.8、1234567891011121314…20082009除以9,商的个位数字是(2018年深中真题改编)9、在一个自然数的所有因数中,能被7 整除的因数比奇因数多5 个,那么这个自然数最小是________.(2019年高级真题改编)10、六位自然数,1082□□能被12整除,末两位数有种情况。
(希望杯真题)11、若69,90和125被大于1的整数m除的余数都相同。
则2020被m除的余数是(2017年鹏程杯改编)12、一个两位数,数字和是质数.而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数.满足条件的两位数为(华杯真题)13、设a=1+21+22+23+⋯+2999+21000,则a被3除的余数是(2016年鹏程杯真题)14、一个两位数能被它的数字之积整除,则所有满足条件的两位数之和是(2019年深中真题)15、设a,b,c,d是1到9中间的四个不同数字,用这四个数字(不能重复)可以组成很多不同的四位数,小明把所有可能组成的四位数加起来,但他不小心把其中一个四位数多加了一遍,结果为128313.那么,正确的结果应该是(2019年鹏程杯真题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在下面的数中,哪些能被4整除?哪些能被8整除?哪些能 被9整除? 234,789,7756,8865,3728,8064。 解:能被4整除的数有7756,3728,8064; 能被8整除的数有3728,8064; 能被9整除的数有盖住的十位数分别等于几时,这个四 位数分别能被9,8,4整除? 解:如果56□2能被9整除,那么 5+6+□+2=13+□ 应能被9整除,所以当十位数是5,即四位数是5652时能 被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以当 十位数是3或7,即四位数是5632或5672时能被8整除; 如果56□2能被4整除,那么□2应能被4整除,所以当十 位数是1,3,5,7,9,即四位数是 5612,5632,5652, 5672,5692时能被4整除。
3、从0,2,5,7四个数字中任选三个,组成能同时被2, 5,3整除的数,并将这些数从小到大进行排列。
解:因为组成的三位数能同时被2,5整除,所以个位数字 为0。根据三位数能被3整除的特征,数字和2+7+0与5+ 7+0都能被3整除,因此所求的这些数为270,570,720, 750。
4、五位数 A329B 能被72整除,问:A与B各代表什么数字?
7、abcabc 能否被7、11和13整除?
解:因为 abcabc=abc×1001,1001 是7、11和13的倍数, 所以 abcabc 能被7、11和13整除。 能被7,11和13整除的数的特征:数A的末三位数字所表 示的数与末三位数以前的数字所表示的数之差(大数减小数) 能被7或11或13整除,那么数A能被7或11或13整除。否则, 数A就不能被7或11或13整除。
解:已知 A329B能被72整除。因为72=8×9,8和9是互质 数,所以 A329B 既能被8整除,又能被9整除。根据能被8 整除的数的特征,要求 29B 能被8整除,由此可确定B=6。 再根据能被9整除的数的特征,A329B 的各位数字之和为 A+3+2+9+B=A+3-f-2+9+6=A+20, 因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27 能被9整除,所以A=7。
10.一位采购员买了72只桶,在记账本上记下这笔账。由于他 不小心,火星落在账本上把这笔账的总数烧掉了两个数字。账 本是这样写的:72只桶,共用去□67.9□元(□为被烧掉的数 字),请你帮忙把这笔账补上。应是____元。
解:72只桶共用去a67.9b元,把它改写成a679b分后,应 能被72整除。72=8×9,8和9互质,若8能整除它,9能整 除它,72就一定能整除它。 由能被8整除的数的特征(末三位数能被8整除)知, 79b能被8整除,则b=2;由能被9整除的数的特征知,a+ 6+7+9+2=a+24能被9整除,则a=3。 故这笔账应是367.92元。
分析:奇数,5*30+15=165 165-6N-4M=奇数减去偶数= 奇数 99*奇数=奇数 。
6、下式的和是奇数还是偶数? 1+2+3+4+…+1997+1998
解:本题当然可以先求出算式的和,再来判断这个和的奇偶 性。但如果能不计算,直接分析判断出和的奇偶性,那么解 法将更加简洁。根据奇偶数的性质(2),和的奇偶性只与 加数中奇数的个数有关,与加数中的偶数无关。1~1998中 共有999个奇数,999是奇数,奇数个奇数之和是奇数。所 以,本题要求的和是奇数。
6、要使六位数 15ABC6 能被36整除,而且所得的商最小,问A, B,C各代表什么数字? 解:因为36=4×9,且4与9互质,所以这个六位数应既能被 4整除又能被9整除。六位数 15ABC 能被4整除,就要 C6 能 被4整除,因此C可取1,3,5,7,9。 要使所得的商最小,就要使 15ABC6 这个六位数尽可能 小。因此首先是A尽量小,其次是B尽量小,最后是C尽量小。 先试取A=0。六位数 15ABC6 的各位数字之和为12+B+C。 它应能被9整除,因此B+C=6或B+C=15。因为B,C应尽 量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使 15ABC6 尽可能小,应取B=1,C=5。 当A=0,B=1,C=5时,六位数能被36整除,而且所得 商最小,为150156÷36=4171。
例1 用l、2、3、4、5这五个数两两相乘,可以得到10个不同 的乘积。问乘积中是偶数多还是奇数多?
讲析:如果两个整数的积是奇数,那么这两个整数都必须是 奇数。在这五个数中,只有三个奇数,两两相乘可以得到3个 不同的奇数积。而偶数积共有7个。所以,乘积中是偶数的多。
2、小华买了一本共有96张练习纸的练习本,并依次将它的各 面编号(即由第1面一直编到第192面)。小丽从该练习本中 撕下其中25张纸,并将写在它们上面的50个编号相加。试问, 小丽所加得的和数能否为2000?
数论问题 -------奇偶分析
整数按照能不能被2整除,可以分为两类: (1)能被2整除的自然数叫偶数,例如 0, 2, 4, 6, 8, 10, 12, 14, 16,… (2)不能被2整除的自然数叫奇数,例如 1,3,5,7,9,11,13,15,17,… 整数由小到大排列,奇、偶数是交替出现的。相邻 两个整数大小相差1,所以肯定是一奇一偶。因为偶数能 被2整除,所以偶数可以表示为2n的形式,其中n为整数; 因为奇数不能被2整除,所以奇数可以表示为2n+1的形 式,其中n为整数。
解:因为15=3×5,且3和5互质。所以,只需分别考察能被 3和5整除的情形。 由能被5整除的数的特征知,组成的四位数的个位上是5 或0。 再据能被3整除的数的特征试算,若个位上是5,则有3 +2+5=10。可推知,百位上最大可填入8。即组成的四位数 是3825;若个位上是0,则有3+2+0=5。可推知,百位上 最大可填入7。即组成的四位数是3720。 故知,这个数是3825。
8、已知10□8971能被13整除,求□中的数。
解:10□8-971=1008-971+□0=37+□0。 上式的个位数是7,若是13的倍数,则必是13的9倍, 由13×9-37=80,推知□中的数是8。
9.在3□2□的方框里填入合适的数字,使组成的四位数是能 被15整除的数中最大的一个,这个数是多少?
5、六位数 3ABABA 是6的倍数,这样的六位数有多少个?
解:因为6=2×3,且2与3互质,所以这个整数既能被2 整除又能被3整除。由六位数能被2整除,推知A可取0,2, 4,6,8这五个值。再由六位数能被3整除,推知 3+A+B+A+B+A=3+3A+2B 能被3整除,故2B能被3整除。B可取0,3,6,9这4 个值。由于B可以取4个值,A可以取5个值,题目没有要 求A≠B,所以符合条件的六位数共有5×4=20(个)。
7、用0~9这十个数码组成五个两位数,每个数字只用一次, 要求它们的和是奇数,那么这五个两位数的和最大是多少? 解:要使组成的五个两位数的和最大,应该把十个数码中最 大的五个分别放在十位上,即十位上放5,6,7,8,9,而 个位上放0,1,2,3,4。根据奇数的定义,这样组成的五 个两位数中,有两个是奇数,即个位是1和3的两个两位数。 要满足这五个两位数的和是奇数,根据奇、偶数相加减 的运算规律,这五个数中应有奇数个奇数。现有两个奇数, 即个位数是1,3的两位数。所以五个数的和是偶数,不合要 求,必须调整。调整的方法是交换十位与个位上的数字。要 使五个数有奇数个奇数,并且五个数的和尽可能最大,只要 将个位和十位上的一个奇数与一个偶数交换,并且交换的两 个的数码之差尽可能小,由此得到交换5与4的位置。满足题 设要求的五个两位数的十位上的数码是4,6,7,8,9,个 位上的数码是0,1,2,3,5,所求这五个数的和是 (4+6+7+8+9)×10+(0+1+2+3+5)=351。
数论
——整除、奇偶性
一、整除的概念:
如果整数a除以非0整数b,除得的商正好是整数而且余数 是零,我们就说a能被b整除(或b能整除a),记作b/a,读作 “b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约 数(或因数)。
二、整除的五条基本性质:
(1)如果a与b都能被c整除,则a+b与a-b也能被c整除; (2)如果a能被b整除,c是任意整数,则积ac也能被b整 除; (3)如果a能被b整除,b能被c整除,则积a也能被c整除; (4)如果a能同时被b、c整除,且b与c互质,那么a一定 能被积bc整除,反之也成立; (5)任意整数都能被1整除,即1是任意整数的约数;0能 被任意非0整数整除,即0是任意非0整数的倍数。
三、数的整除特征:
1. 能被2、5整除:末位上的数字能被2、5整除。 2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。 3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。 4. 能被3、9整除:各个数位上数字的和能被3、9整除。 5. 能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整 除。 ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。 6. 能被11整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11 整除。 ②奇数位上的数字和与偶数位数的数字和的差能被11整除。 ③逐次去掉最后一位数字并减去末位数字后能被11整除。 7. 能被13整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13 整除。 ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。奇偶数有 如下一些重要性质: (1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的 数的和(或差)一定是奇数。反过来,两个数的和(或差)是偶数,这两个 数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。 (2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。 任意多个偶数的和(或差)是偶数。 (3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。 (4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如 果所有因数都是奇数,那么积就是奇数。反过来,如果若干个数的积是偶数, 那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数 都是奇数。 (5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶 数,也可能得奇数。奇数肯定不能被偶数整除。 (6)偶数的平方能被4整除;奇数的平方除以4的余数是1。 因为(2n)2=4n2=4×n2,所以(2n)2能被4整除; 因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。 (7)相邻两个自然数的乘积必是偶数,其和必是奇数。 (8)如果一个整数有奇数个约数(包括1和这个数本身),那么这个数 一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数。