数论一
初等数论 1 习题参考答案

附录1 习题参考答案第一章习题一1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b =(a)q,即a b,a b及a b。
反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。
2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mnpq可知m p mq np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。
4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。
5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 =3Q r12r22知r1 = r2 = 0,即3a且3b。
3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。
数论1

7.2 素数和合数
• 由上可知, 若a是合数, 则a一定有大于1且 小于或等于人的因数. 由定理7.2.1知, a的 大于1的最小因数一定是素数, 故本定理 得证. • 素数有多少?公元前三世纪, 古希腊数 学家欧几里德Euclid就证明了素数有无 穷多个.
7.2 素数和合数
定理7.2.3 (Euclid) 素数有无穷多个 素数有无穷多个. 定理 证明(反证法)假设素数是有限多个, 共有n个, 令 证明 它们是p1,p2,…,pn, 并令a= p1p2…pn+1. 若a是素 数, 则因a≠pi; 其中1<i<n, 故素数个数最少是 n+1个, 这与假设素数个数为n个矛盾. 若a不是 素数, 则由定理7.2.2知, l的大于 1的最小因数 b是素数. 由于pi|p1p2…pn, 但pi不能整除1, 故pi 不能整除a, 因此b≠pi, 其中1≤i≤n, 那么a也为素 数. 所以在p1,p2,…,pn,还有素数, 这也与已知共 有n个素数矛盾.
专业基础课程
初等数论
(一) 一
Number Theory (1)
杭州师范学院 沈忠华
• 本章主要介绍整数的整除性和因数分解等内 容. • 在本章或下一章中,如无特别说明,常以小 写英文字母,或有时标以足码或肩码表示整 数.当几个字母写在一起时,表示它们相乘, 如: abc=a×b×c; 但注意数目字写在一起不表 示相乘,如 168不是1×6×8而是一百六十 八.当数目字和字母写在一起时,则表示该 数目字和字母相乘, 如168abc=168×a×b×C.
7.2 素数和合数
• 下面给出关于合数的两个定理. 是合数,则 有一因数 满足: 有一因数d满足 定理 7.2.4 若 a是合数 则a有一因数 满足 是合数 1<d< 1<d<a1/2 证明 由于 a是合数,故存在整数 b和 c使 a =bc, 其中: 1<b<a, 1<c<a.若b和c均大于 a1/2 , 则a=bc>a1/2·a1/2=a, 这是不可能 的. 因此b和c中必有一个小于或等于a1/2.
数论1

1、在下面的数中,哪些能被4整除?哪些能被8整除?哪些能 被9整除? 234,789,7756,8865,3728,8064。 解:能被4整除的数有7756,3728,8064; 能被8整除的数有3728,8064; 能被9整除的数有盖住的十位数分别等于几时,这个四 位数分别能被9,8,4整除? 解:如果56□2能被9整除,那么 5+6+□+2=13+□ 应能被9整除,所以当十位数是5,即四位数是5652时能 被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以当 十位数是3或7,即四位数是5632或5672时能被8整除; 如果56□2能被4整除,那么□2应能被4整除,所以当十 位数是1,3,5,7,9,即四位数是 5612,5632,5652, 5672,5692时能被4整除。
3、从0,2,5,7四个数字中任选三个,组成能同时被2, 5,3整除的数,并将这些数从小到大进行排列。
解:因为组成的三位数能同时被2,5整除,所以个位数字 为0。根据三位数能被3整除的特征,数字和2+7+0与5+ 7+0都能被3整除,因此所求的这些数为270,570,720, 750。
4、五位数 A329B 能被72整除,问:A与B各代表什么数字?
7、abcabc 能否被7、11和13整除?
解:因为 abcabc=abc×1001,1001 是7、11和13的倍数, 所以 abcabc 能被7、11和13整除。 能被7,11和13整除的数的特征:数A的末三位数字所表 示的数与末三位数以前的数字所表示的数之差(大数减小数) 能被7或11或13整除,那么数A能被7或11或13整除。否则, 数A就不能被7或11或13整除。
解:已知 A329B能被72整除。因为72=8×9,8和9是互质 数,所以 A329B 既能被8整除,又能被9整除。根据能被8 整除的数的特征,要求 29B 能被8整除,由此可确定B=6。 再根据能被9整除的数的特征,A329B 的各位数字之和为 A+3+2+9+B=A+3-f-2+9+6=A+20, 因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27 能被9整除,所以A=7。
《数论》第一章补充例题

《数论》第一章补充例题整除性理论是初等数论的基础.本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用.1整数的整除性例1设A={d1,d2,···,dk}是n的所有约数的集合,则}{nnn,,···,B=d1d2dk也是n的所有约数的集合.解由以下三点理由可以证得结论:(i)A和B的元素个数相同;(ii)若di∈A,即di|n,则(iii)若di=dj,则问:d(1)+d(2)+···+d(1997)是否为偶数?n解对于n的每个约数d,有n=d·n,因此,n的正约数d与是成对地出现的.只有n2当d=n,即d=n时,d和才是同一个数.故当且仅当n是完全平方数时,d(n)是奇数.nini|n,反之亦然;=nj.例2以d(n)表示n的正约数的个数,例如:d(1)=1,d(2)=2,d(3)=2,d(4)=3,···.因为442<1997<452,所以在d(1),d(2),···,d(1997)中恰有44个奇数,故d(1)+d(2)+···+d(1997)是偶数.问题d2(1)+d2(2)+···+d2(1997)被4除的余数是多少?例3证明:存在无穷多个正整数a,使得n4+a(n=1,2,3,···)都是合数.??例题中引用的定理或推论可以在教材相应处找到.1解取a=4k4,对任意的n∈N,有n4+4k4=(n2+2k2)2?4n2k2=(n2+2k2+2nk)(n2+2k2?2nk).由n2+2k2?2nk=(n?k)2+k2??k2,所以,对于任意的k=2,3,···以及任意的n∈N,n4+a是合数.例4设a1,a2,···,an是整数,且n∑k=1ak=0,n∏k=1ak=n,则4|n.解如果2??n,则n,a1,a2,···,an都是奇数.于是a1+a2+···+an是奇数个奇数之和,不可能等于零,这与题设矛盾,所以2|n,即在a1,a2,···,an中至少有一个偶数.如果只有一个偶数,不妨设为a1,那么2??ai(2??k??n).此时有等式a2+···+an=?a1,在上式中,左端是(n?1)个奇数之和,右端是偶数,这是不可能的,因此,在a1,a2,···,an 中至少有两个偶数,即4|n.例5若n是奇数,则8|n2?1.解设n=2k+1,则n2?1=(2k+1)2?1=4k(k+1),在k与k+1中有一个偶数,所以8|n2?1.2带余数除法例1设a,b,x,y是整数,k和m是正整数,并且a=a1m+r1,0??r1<m,b=b1m+r2,0??r2<m,则ax+by和ab被m除的余数分别与r1x+r2y和r1r2被m除的余数相同.特别地,ak与k被m 除的余数相同.r1解由ax+by=(a1m+r1)x+(b1m+r2)y=(a1x+b1y)m+r1x+r2y可知,若r1x+r2y被m除的余数是r,即r1x+r2y=qm+r,0??r<m,2则ax+by=(a1x+b1y+q)m+r,0??r<m,即ax+by被m除的余数也是r.例2设a1,a2,···,an为不全为零的整数,以y0表示集合A={y|y=a1x1+···+anxn,xi∈Z,1??i??n}中的最小正数,则对任何的y∈A,y0|y;特别地,y0|ai,1??i??n.′解设y0=a1x′1+···+anxn,?y∈A,由带余除法,?q,r0∈Z,使得y=qy0+r0,0??r0<y0.因此′r0=y?qy0=a1(x1?qx′1)+···+an(xn?qxn)∈A.如果r0=0,那么,因为0<r0<y0,所以r0是A中比y0还小的正数,这与y0的定义矛盾.所以r0=0,即y0|y.显然ai∈A(1??i??n),所以y0整除每个ai(1??i??n).例3任意给出的五个整数中,必有三个数之和被3整除.解设这五个数是ai,i=1,2,3,4,5,记ai=3qi+ri,0??ri<3,i=1,2,3,4,5.分别考虑以下两种情形:(i)若r1,r2,···,r5中数0,1,2都出现,不妨设r1=0,r2=1,r3=2,此时a1+a2+a3=3(q1+q2+q3)+3可以被3整除;(ii)若r1,r2,···,r5中数0,1,2至少有一个不出现,这样至少有三个ri要取相同的值,不妨设r1,r2,r3=r(r=0,1或2),此时a1+a2+a3=3(q1+q2+q3)+3r可以被3整除.例4设a0,a1,···,an∈Z,f(x)=anxn+···+a1x+a0,已知f(0)与f(1)都不是3的倍数,证明:若方程f(x)=0有整数解,则3|f(?1)=a0?a1+a2?···+(?1)nan.证对任意整数x,都有x=3q+r,r=0,1或2,q∈Z.(i)若r=0,即x=3q,q∈Z,则f(x)=f(3q)=an(3q)n+···+a1(3q)+a0=3Q1+a0=3Q1+f(0),3其中Q1∈Z,由于f(0)不是3的倍数,所以f(x)=0;(ii)若r=1,即x=3q+1,q∈Z,则f(x)=f(3q+1)=an(3q+1)n+···+a1(3q+1)+a0=3Q2+an+···+a1+a0=3Q2+f(1),其中Q2∈Z.由于f(1)不是3的倍数,所以f(x)=0.因此若f(x)=0有整数解x,则必是x=3q+2=3q′?1,q′∈Z,于是0=f(x)=f(3q′?1)=an(3q′?1)n+···+a1(3q′?1)+a0=3Q3+a0?a1+a2?···+(?1)nan.其中Q3∈Z.所以3|f(?1)=a0?a1+a2?···+(?1)nan.例5设n是奇数,则16|n4+4n2+11.证我们有n4+4n2+11=(n2?1)(n2+5)+16.由上节例题知道,8|n2?1,由此及2|n2+5得到16|(n2?1)(n2+5).例6证明:若a被9除的余数是3,4,5或6,则方程x3+y3=a没有整数解.证?x,y∈Z,记x=3q1+r1,y=3q2+r2,0??r1,r2<3.则存在Q1,R1,Q2,R2∈Z,使得x3=9Q1+R1,y3=9Q2+R2,3和r3被9除的余数相同,即其中R1和R2被9除的余数分别与r12R1=0,1或8,R2=0,1或8.因此x3+y3=9(Q1+Q2)+R1+R2.(2.1)又由式(2.1)可知,R1+R2被9除的余数只可能是0,1,2,7或8,所以,x3+y3不可能等于a .例7证明:方程22a21+a2+a3=1999(2.2)无整数解.证若a1,a2,a3都是奇数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+1,a3=8A3+1,于是22a21+a2+a3=8(A1+A2+A3)+3.4由于1999被8除的余数是7,所以a1为奇数.由式(2.2),a1,a2,a3中只有一个奇数,设a1为奇数,a2,a3为偶数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+r,a3=8A3+s,于是22a21+a2+a3=8(A1+A2+A3)+1+r+s,22其中r和s是整数,而且只能取值0或4.这样a21+a2+a3被8除的余数只可能是1或5, 但1999被8除的余数是7,所以这样的a1,a2,a3也不能使式(2.2)成立.3最大公约数例1(105,140,350)=(105,(140,350))=(105,70)=35.21n+4例2证明:若n是正整数,则是既约分数.14n+3证由辗转相除法得到(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,1)=1.??4辗转相除法例1用辗转相除法求(125,17),以及x,y,使得125x+17y=(125,17).解作辗转相除法:125=7×17+6,17=2×6+5,6=1×5+1,5=5×1,q1=7,r1=6,q2=2,r2=5,q3=1,r3=1,q4=5.由推论1.1,(125,17)=r3=1.利用定理1计算(这里n=3)P0=1,P1=7,P2=2·7+1=15,P3=1·15+7=22,Q0=0,Q1=1,Q2=2·1+0=2,Q3=1·2+1=3,取x=(?1)3?1Q3=3,y=(?1)3P3=?22,则125·3+17·(?22)=(125,17)=1.例2在m个盒子中放若干个硬币,然后以下述方式往这些盒子里继续放硬币:每一次在n(n<m)个盒子中各放一个硬币.证明:若(m,n)=1,那么无论开始时每个盒子中有多少个硬币,经过若干次放硬币后,总可使所有盒子含有同样数量的硬币.5证由于(m,n)=1,所以存在整数x,y,使得mx+ny=1.因此对于任意的自然数k,有1+m(?x+kn)=n(km+y),这样,当k充分大时,总可找出正整数x0,y0,使得1+mx0=ny0.上式说明,如果放y0次(每次放n个),那么在使m个盒子中各放x0个后,还多出一个硬币.把这个硬币放入含硬币最少的盒子中(这是可以做到的),就使它与含有最多硬币的盒子所含硬币数量之差减少1.因此经过若干次放硬币后,必可使所有盒子中的硬币数量相同.5素数与算术基本定理例1写出51480的标准分解式.解我们有51480=2·25740=22·12870=23·6435=23·5·1287=23·5·3·429=23·5·32·143=23·32·5·11·13.例2设a,b,c是整数,证明:(i)(a,b)[a,b]=ab;(ii)(a,[b,c])=[(a,b),(a,c)].证为了叙述方便,不妨假定a,b,c是正整数.(i)设a=pααβ11pα22···p1β2βkk,b=p1p2···pkk,其中p1,p2,···,pk是互不相同的素数,αi,βi(1??i??k)都是非负整数.由推论3.3,有(a,b)=pλ11pλ22···pλkk,λi=min{αi,βi},1??i??k,[a,b]=pμ11pμ22···pμkk,μi=max{αi,βi},1??i??k.由此知∏k(a,b)[a,b]=pλi+μi∏kαi=pmin{αi,βi}+max{αi,βi}∏ki=pii+βi=ab;i=1i=1i=1(ii)设a=∏kpα∏kii,b=∏kpβii,c=pγii,i=1i=1i=1其中p1,p2,···,pk是互不相同的素数,αi,βi,γi(1??i??k)都是非负整数.由推论3.3,有(a,[b,c])=∏kpλii,[(a,b),(a,c)]=∏kpμii,i=1i=16其中,对于1??i??k,有λi=min{αi,max{βi,γi}},μi=max{min{αi,βi},min{αi,γi}},不妨设βi??γi,则min{αi,βi}??min{αi,γi},所以μi=min{αi,γi}=λi,即(a,[b,c])=[(a,b),(a,c)].7。
初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。
例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。
.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。
例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。
数论第一章 整除理论

第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b 整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明 若a 是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
所以d 1是素数。
证毕。
推论 任何大于1的合数a 必有一个不超过a 的素约数。
证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。
数论讲义一:整除

数论讲义一:整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题。
Ⅰ.整数的整除性初等数论的基本研究对象是自然数集合及整数集合。
我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如是整除,,则不一定是整数。
由此引出初等数论中第一个基本概念:整数的整除性。
定理一:(带余除法)对于任一整数和任一整数,必有惟一的一对整数,使得,,并且整数和由上述条件惟一确定,则称为除的不完全商,称为除的余数。
若,则称整除,或被整除,或称的倍数,或称的约数(又叫因子),记为。
否则,| 。
任何的非的约数,叫做的真约数。
0是任何整数的倍数,1是任何整数的约数。
任一非零的整数是其本身的约数,也是其本身的倍数。
由整除的定义,不难得出整除的如下性质:(1)若(2)若(3)若,则反之,亦成立。
(4)若。
因此,若。
(5)、互质,若(6)为质数,若则必能整除中的某一个。
特别地,若为质数,(7)如在等式中除开某一项外,其余各项都是的倍数,则这一项也是的倍数。
(8)n个连续整数中有且只有一个是n的倍数。
(9)任何n个连续整数之积一定是n的倍数。
(10)二项式定理:;;经典例题:一、带余除法1.若是形如的数中最小的正整数,求证:;分析:利用带余除法,设2.为质数,,证明:被整除;分析:利用带余除法处理,可以设,再来表示二.若3.设和为自然数,使得被整除,证明:分析:根据恒等式4.为给定正整数,对任意,都有,证明:;分析:注意到,对任意,有三、利用牛顿二项式定理;;5.设都是正整数,,且,证明:;分析:首先由,而,讨论的奇偶性6.已知,定义,证明:;分析:当时,四、配对思想7.设为奇数,证明:;分析:由于,这些数的分子都是,分母都小于,因此想到用配对法做此题;五.反证法8.设,,而是一个不小于的正整数,证明:存在整数,使得;整除作业一1.设为有理数,为最小正整数,使得是整数,如果与是整数,证明:。
数论一

数论(一)一:整除1、(1)如果一个数的个位上的数能被2或5整除,那么这个数能被2或5整除.(2)如果一个数末两位能被4或25整除,那么这个数能被4或25整除.(3)如果一个数末三位能被8或125整除,那么这个数能被8或125整除.(4)如果一个数各个数位上的数字和能被3或9整除,那么这个数能被3或9整除.(5)如果一个自然数能同时被两个互质的数整除,也能被他们的乘积整除。
2、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除,否则就不能。
3、(1)如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7,11或13整除,那么这个数就能被7、11或13整除,否则就不能。
(2)熟记131171001⨯⨯=(3)100010001,1001,10101⨯=⨯=⨯=abcd cd abcdabcdab abc abcabc ab ababab二:质数与合数1、质数:约数只有1和它本身。
合数:至少有3个约数。
2、(1)1既不是质数也不是合数(2)2是最小的质数,也是唯一的偶质数;3是最小的奇质数;4是最小的合数。
3、判断质数与合数的方法(1)100以内25个质数:(2)“N 法”:找出大于N 且最接近N 的平方数2k ,用小于k 的所有质数去除N,如果这些质数都不能整除N ,那么N 是质数;如果这些质数中至少有一个能整除N ,那么N 就是合数。
4、分解质因数例一:在□里填上适当的数字,使五位数字5872□能被2整除,这样的五位数有多少个?练习:1、在□里填上适当的数字,使四位数字139□能被5整除,这样的四位数有哪几个?2、六位数字16249□能被4整除,这样的六位数有哪几个?例二:在□里填上适当的数字,使六位数字69547□能被4或25整除。
练习:1、在□里填上适当的数字,使五位数字31□26能被3或9整除。
2、□2020□能被8,9整除,这个数是多少?例三:在865后面补上三个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能的大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论
数论是研究数学计算,数字余数等规律的一个类别。
研究整除,余数,因数倍数等。
整除:
是2的倍数的特征:
是5的倍数的特征:
是4的倍数的特征:
是25的倍数的特征:
是8的倍数的特征:
是125的倍数的特征:
是3的倍数的特征:
是9的倍数的特征:
是7的倍数的特征:
是11的倍数的特征:
是13的倍数的特征:
练习题
1.判断47382能否被3或9整除?
2.判断42559,7295871能否被11整除?
3.32335能否被7整除?
4.把516至少连续写几次,所组成的数能被9整除?
5.四位数36AB能同时被2、3、4、5、9整除,则A= B= ?
6.173□是一个四位数,在这个□中先后填入3个数,所得到的3个四位数依
次能被9、11、6整除,先后填入的3个数分别是几?
7.九位数8765□4321能被21整除,□中应填几?
8.用1~7七个数字组成不重复数字且能被11整除的七位数,最大的七位数与
最小七位的数差是多少?
9.一个五位数a236b能被63整除,这个五位数是多少?
10.如果六位数1992口口能被105整除,那么它的最后两位数是多少?
11.有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数可能
是多少?
12.一个六位数23□56□是88的倍数,这个数除以88所得的商可能是多少?
13.42□28□是99的倍数,这个数除以99所得的商是多少?
14.三年级共有75名学生参加春游,交的总钱数为一个五位数“2□7□5”元,
求每位学生最多可能交多少元?
15.小勤想在电脑上恢复已经删除掉的72个文件,可是他只记得这些文件的总
大小是“*679.*KB”,“*”表示小勤忘掉的第一个和最后一个数字(两个数字可能不同),你能帮他算出这两个数字吗?
16.能被5、4、3整除的最大四位数是
17.在5、46、2、15、18、47、30、210中,
(1)能被2整除的有( )。
(2)能被3整除的有( )。
(3)能被5整除的有( )。
(4)能同时被3、5整除的有( )。
(5)能同时被2、3、5整除的有( )。
18.有一个能同时被2、3、5整除的数,已知这个数的各个数位上的数字加在一
起是12,那么,这个数的个位上的数字是( )。
19. 1~100内,所有不能被3整除的数的和是( )。
20.能被3整除的最小三位数是( )。
21.在150以内,一个数除以18和12,正好都能整除,这个数最大是( )。
22.上课时,小丸子的老师告诉大家:“数字中存在这样一些四位数,将它从中
间划分成前后两个两位数时,前面的数能被4整除,后面的数能被5整除。
而这个四位数本身还能被7整除。
”小丸子通过一系列计算知道了所有这样的四位数中最小的一个,那么它应该是( )。
23.一个两位数或三位数,是11的倍数,且它的各位数字和为17,这样的数最
大是 ( )。
24.在1~1040间选出一些数,使任意两数之和是34的整数倍,最多可选( )
个。