初三三角函数试题精选

初三三角函数试题精选
初三三角函数试题精选

初三三角函数试题精选

一.选择题(共10小题)

1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()

A.2 B.C.D.

2.(2016?乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()

A.B.C.D.

3.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()

A.B.C.D.

4.(2016?西宁)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始

沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()

A.18cm2B.12cm2C.9cm2 D.3cm2

5.(2016?绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()

A.B.C.D.

6.(2016?福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()

A.(sinα,sinα) B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)

7.(2016?重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

8.(2016?苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()

A.2m B.2m C.(2﹣2)m D.(2﹣2)m

9.(2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()

A.8.1米B.17.2米C.19.7米D.25.5米

10.(2015?扬州)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与

点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>

cos∠D;③tan∠C>tan∠D中,正确的结论为()

A.①②B.②③C.①②③ D.①③

二.填空题(共4小题)

11.(2016?枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=.

12.(2016?新疆)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).

13.(2016?舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为.

14.(2016?岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.

三.解答题(共1小题)

15.(2016?厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.

初三三角函数试题精选

参考答案与试题解析

一.选择题(共10小题)

1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()

A.2 B.C.D.

【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.

【解答】解:如图:,

由勾股定理,得

AC=,AB=2,BC=,

∴△ABC为直角三角形,

∴tan∠B==,

故选:D.

【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.

2.(2016?乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()

A.B.C.D.

【分析】根据锐角三角函数的定义,即可解答.

【解答】解:在Rt△ABC中,∠BAC=90°,sinB=,

∵AD⊥BC,

∴sinB=,

sinB=sin∠DAC=,

综上,只有C不正确

故选:C.

【点评】本题考查了锐角三角函数,解决本题的关键是熟记锐角三角函数的定义.

3.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()

A.B.C.D.

【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.

【解答】解:∵D(0,3),C(4,0),

∴OD=3,OC=4,

∵∠COD=90°,

∴CD==5,

连接CD,如图所示:

∵∠OBD=∠OCD,

∴sin∠OBD=sin∠OCD==.

故选:D.

【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.

4.(2016?西宁)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始

沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()

A.18cm2B.12cm2C.9cm2 D.3cm2

【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可.

【解答】解:∵tan∠C=,AB=6cm,

∴=,

∴BC=8,

由题意得:AP=t,BP=6﹣t,BQ=2t,

设△PBQ的面积为S,

则S=×BP×BQ=×2t×(6﹣t),

S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,

P:0≤t≤6,Q:0≤t≤4,

∴当t=3时,S有最大值为9,

即当t=3时,△PBQ的最大面积为9cm2;

故选C.

【点评】本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.

5.(2016?绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()

A.B.C.D.

【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠

BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式=,

求出AE,然后在△ADE中利用余弦函数定义求出cosA的值.

【解答】解:∵△ABC中,AB=AC=4,∠C=72°,

∴∠ABC=∠C=72°,∠A=36°,

∵D是AB中点,DE⊥AB,

∴AE=BE,

∴∠ABE=∠A=36°,

∴∠EBC=∠ABC﹣∠ABE=36°,

∠BEC=180°﹣∠EBC﹣∠C=72°,

∴∠BEC=∠C=72°,

∴BE=BC,

∴AE=BE=BC.

设AE=x,则BE=BC=x,EC=4﹣x.

在△BCE与△ABC中,

∴△BCE∽△ABC,

∴=,即=,

解得x=﹣2±2(负值舍去),

∴AE=﹣2+2.

在△ADE中,∵∠ADE=90°,

∴cosA===.

故选C.

【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.

6.(2016?福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()

A.(sinα,sinα) B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)

【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.

【解答】解:过P作PQ⊥OB,交OB于点Q,

在Rt△OPQ中,OP=1,∠POQ=α,

∴sinα=,cosα=,即PQ=sinα,OQ=cosα,

则P的坐标为(cosα,sinα),

故选C.

【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.

7.(2016?重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大楼AB的高度.

【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:

则GH=DE=15米,EG=DH,

∵梯坎坡度i=1:,

∴BH:CH=1:,

设BH=x米,则CH=x米,

在Rt△BCH中,BC=12米,

由勾股定理得:x2+(x)2=122,

解得:x=6,∴BH=6米,CH=6米,

∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),

∵∠α=45°,

∴∠EAG=90°﹣45°=45°,

∴△AEG是等腰直角三角形,

∴AG=EG=6+20(米),

∴AB=AG+BG=6+20+9≈39.4(米);

故选:D.

【点评】本题考查了解直角三角形的应用﹣坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.

8.(2016?苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()

A.2m B.2m C.(2﹣2)m D.(2﹣2)m

【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.

【解答】解:在Rt△ABD中,∵sin∠ABD=,

∴AD=4sin60°=2(m),

在Rt△ACD中,∵sin∠ACD=,

∴AC==2(m).

故选B.

【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.

9.(2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()

A.8.1米B.17.2米C.19.7米D.25.5米

【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.

【解答】解:作BF⊥AE于F,如图所示:

则FE=BD=6米,DE=BF,

∵斜面AB的坡度i=1:2.4,

∴AF=2.4BF,

设BF=x米,则AF=2.4x米,

在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,

解得:x=5,

∴DE=BF=5米,AF=12米,

∴AE=AF+FE=18米,

在Rt△ACE中,CE=AE?tan36°=18×0.73=13.14米,

∴CD=CE﹣DE=13.14米﹣5米≈8.1米;

故选:A.

【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.

10.(2015?扬州)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()

A.①②B.②③C.①②③ D.①③

【分析】连接BE,根据圆周角定理,可得∠C=∠AEB,因为∠AEB=∠D+∠DBE,所以∠AEB>∠D,所以∠C>∠D,根据锐角三角形函数的增减性,即可判断.

【解答】解:如图,连接BE,

根据圆周角定理,可得∠C=∠AEB,

∵∠AEB=∠D+∠DBE,

∴∠AEB>∠D,

∴∠C>∠D,

根据锐角三角形函数的增减性,可得,

sin∠C>sin∠D,故①正确;

cos∠C<cos∠D,故②错误;

tan∠C>tan∠D,故③正确;

故选:D.

【点评】本题考查了锐角三角形函数的增减性,解决本题的关键是比较出∠C>∠D.

二.填空题(共4小题)

11.(2016?枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=2.

【分析】连接BC可得RT△ACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答

案.

【解答】解:如图,连接BC,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵AB=6,AC=2,

∴BC===4,

又∵∠D=∠A,

∴tanD=tanA===2.

故答案为:2.

【点评】本题考查了三角函数的定义、圆周角定理、解直角三角形,连接BC构造直角三角形是解题的关键.

12.(2016?新疆)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).

【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.

【解答】解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD?sin∠ADB=60×=30(m).

故答案为:30.

【点评】本题考查的是解直角三角形的应用﹣方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.

13.(2016?舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为4.

【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时(QC⊥AB,C为垂足),点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,

∴AB=2,BO==,

①当点P从O→B时,如图1、图2所示,点Q运动的路程为,

②如图3所示,QC⊥AB,则∠ACQ=90°,即PQ运动到与AB垂直时,垂足为P,

当点P从B→C时,

∵∠ABO=30°

∴∠BAO=60°

∴∠OQD=90°﹣60°=30°

∴cos30°=

∴AQ==2

∴OQ=2﹣1=1

则点Q运动的路程为QO=1,

③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,

④当点P从A→O时,点Q运动的路程为AO=1,

∴点Q运动的总路程为:+1+2﹣+1=4

故答案为:4

【点评】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.

14.(2016?岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.

【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.

【解答】解:根据题意得tan∠A===,

所以∠A=30°,

所以BC=AB=×200=100(m).

故答案为100.

【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式

三.解答题(共1小题)

15.(2016?厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.

【分析】过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=,根据勾股定理得到结论.

【解答】解:过D作DE⊥BC交BC的延长线于E,

则∠E=90°,

∵sin∠DBC=,BD=,

∴DE=2,

∵CD=3,

∴CE=1,BE=4,

∴BC=3,

∴BC=CD,

∴∠CBD=∠CDB,

∵BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ABD=∠CDB,

∴AB∥CD,

同理AD∥BC,

∴四边形ABCD是菱形,

连接AC交BD于O,

则AC⊥BD,AO=CO,BO=DO=,

∴OC==,

∴AC=2.

【点评】本题考查了菱形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

初中数学锐角三角函数的难题汇编及解析

初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( ) A . 12 B . 2 C . 3 D . 3 【答案】A 【解析】 【分析】 首先连接OC ,由CE 是⊙O 切线,可证得OC ⊥CE ,又由圆周角定理,求得∠BOC 的度数,继而求得∠E 的度数,然后由特殊角的三角函数值,求得答案. 【详解】 如图,连接OC , ∵CE 是⊙O 的切线, ∴∠OCE=90°, ∵OA=OC , ∴∠OCA=∠A=30°, ∴∠COE=∠A+∠OCA=60°, ∴∠E=180°-90°-60°=30°, ∴sinE=sin30°=12 . 故选A. 2.如图,在ABC ?中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且1 2 MN BC = ,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ?的面积减去CNE ?的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )

A . B . C . D . 【答案】A 【解析】 【分析】 设a =1 2BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD ?S △CNE ,即可求解. 【详解】 解:设a = 1 2 BC ,∠B =∠C =α,则MN =a , ∴CN =BC?MN?BM =2a?a?x =a?x ,DM =BM·tanB =x·tanα,EN =CN?tanC =(a?x )·tanα, ∴y =S △BMD ?S △CNE = 1 2 (BM·DM?CN·EN )=()()2 21tan tan 22 2x a x a tan x a ααα????-?=? ? --, ∵ 2 a tan α ?为常数, ∴上述函数图象为一次函数图象的一部分, 故选:A . 【点睛】 本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.

初三数学三角函数知识点

三角函数知识点及同步练习 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值; 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90B 90∠-?=∠? =∠+∠得由B A 对边 邻边 C b A 90 B 90∠-?=∠? =∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l = 。坡度一般写成1:m 的形式,如1:5i =等。把坡面与水平面的夹角记作α(叫做坡角),那么 tan h i l α= =。 【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。(1)求AB 的长;(2)求sinA 、cosA 的值; (3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。 变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b , 则sinA = 。 (2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。 【例2】计算:020045sin 30cot 60sin +? :i h l =h l α

【全】初中数学 三角函数知识点总结

锐角三角函数 锐角三角函数 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边 正割(sec)等于斜边比邻边 余割(csc)等于斜边比对边 正切与余切互为倒数 互余角的三角函数间的关系。 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 同角三角函数间的关系 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ?积的关系: sinα=tanα?cosα cosα=cotα?sinα tanα=sinα?secα cotα=cosα?cscα secα=tanα?cscα cscα=secα?cotα ?倒数关系: tanα?cotα=1 sinα?cscα=1 cosα?secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ←sinα 1 √3/ 2 √2/2 1/2 0 ←cosα 0 √3/3 1 √3 None ←tanα None √3 1 √3/3 0 ←cotα 解直角三角形 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

九年级数学锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA=, ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 2、取值范围】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边 ) (sin = A =______, 斜边)(sin = B =______; ②斜边 )( cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

2.如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点, ?= ∠4 3 sin AOC 求AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: 1.在Rt △ABC 中,∠C =90°,若BC =1,AB =5,则tan A 的值为 A . 5B .25 C .12 D .2 2.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B .45 C .34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2.求:sin B 、cos B 、tan B . 2. 如图,直径为10的⊙A 经过点(05)C , 和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A . 12 B .32 C .35 D .4 5 D C B A O y x 第8题图

中考数学(锐角三角函数提高练习题)压轴题训练及答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,矩形OABC中,A(6,0)、C(0, 23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60o. (1)点B的坐标是,∠CAO= o,当点Q与点A重合时,点P的坐标 为; (2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围. 【答案】(1)(6,23). 30.(3,33)(2) () () () () 2 43 x430x3 31333 x x3x5 S{ 23 x1235x9 543 x9 x +≤≤ -+-<≤ = -+<≤ > 【解析】 解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时, 如图1, OI=x,IQ=PI?tan60°=3,OQ=OI+IQ=3+x;

由题意可知直线l∥BC∥OA, 可得 EF PE DC31 == OQ PO DO3 33 ==,∴EF= 1 3 (3+x), 此时重叠部分是梯形,其面积为: EFQO 14343 S S EF OQ OC3x x43 233 ==+?=+=+梯形 ()() 当3<x≤5时,如图2, () HAQ EFQO EFQO 22 1 S S S S AH AQ 2 43331333 x43x3=x x 32232 ? =-=-?? =+---+- 梯形梯形 。 当5<x≤9时,如图3, 12 S BE OA OC312x 23 23 =x123 =+?=- -+ ()() 。 当x>9时,如图4, 11183543 S OA AH6 22 =?=?.

初中数学总复习三角函数

初中三角函数 〖考试要求〗 通过实例认识锐角三角函数(sinA,cosA,tanA),知道300,450,600角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角. 度数sinαcosαtanα 30° 2 1 2 3 3 3 45° 2 2 2 2 1 60° 2 3 2 1 3 1.1 正弦和余弦 例1已知0°≤α≤90°.(1)求证:sin2α+cos2α=1; (2)求证:sinα+cosα≥1,讨论在什么情形下等号成立; (3)已知sinα+cosα=1,求sin2α+cos2α的值. 证明(1)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/AB,所以在这种情形下 A B C A B C

当α=0°时,sinα=0,cosα=1;当α=90°,sinα=1,cosα=0.所以在这两种情形下仍有 sin2α+cos2α=1. (2)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/AB.所以在这种情形下 当α=0°时,sinα+cosα=0+1=1;当α=90°时,sinα+cosα=1+0=1.所以当0°≤α≤90°时,总有 sinα+cosα≥1, 当并且只当α=0°或α=90°时,等号成立. (3)由于已知sina+cosα=1.由(2)可知α=0°或α=90°,所以总有 sin2α+cos2α=1. 例2 求证:对于0°≤α≤90°, 1.2 正切和余切 证明(1)当0°<α<90°时,如图6-2,

当α=0°时,tgα=0,sinα=0,cosα=1.所以仍有tgα= (2)α必须满足不等式: 0°<α<90°. 如图6-2, 所以tgα·ctgα=1. 例2 已知锐角α,且tgα是方程x2-2x-3=0的一个根,求 解: x2-2x-3=0的两根为3和-1.这里只能是tgα=3.如图6-3,由于tgα=3.因此可设BC=3,AC=1,从而

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

初中数学竞赛:三角函数

初中数学竞赛:三角函数 直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这佯便定义了直角三角形中锐角的三角函数(如图3-14),常用的有: 利用比例的变形并且结合勾股定理,可以从三角函数定义中推出同角三角函数间的关系式: (1)倒数关系 tgα·ctgα=1; (2)商的关系 (3)平方关系 sin2α+cos2α=1. 这些同角三角函数关系式对任意锐角都成立,它们在求值、化简以及三角式的变形中有着重要的应用. 如图3-15所示,在直角三角形ABC中,∠A与∠B互为余角,根据三角函数定义不难得到互为余角的三角函数之间的关系:

sinB=sin(90°-A)=cosA, cosB=cos(90°-A)=sinA, tgB=tg(90°-A)=ctgA, ctgB=ctg(90°-A)=tgA. 上述四个公式可以概括为:一个锐角的余角的三角函数值,等于该锐角相应的余函数的函数值 由图3-16可以看到,在直角三角形ABC中,如果斜边长度不变,当锐角A增大时,sinA 与tgA的值也随之增大,而cosA与ctgA的值随之减小.特别地,当A=0时,sin0=0,tg0=0,cos0=1,ctg0值不存在;当A=90°时,sin90°=1,tg90°值不存在,cos90°=0,ctg90°=0. 由于一个角的正弦或余弦值等于直角边与斜边的比,而直角三角形的斜边总是大于直角边,所以,当α为锐角时,总有 0<sinα<1,0<cosα<1. 我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题. 例1 不查表,求15°的四种三角函数值. 分析 30°,45°,60°这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15°角的三角函数值,也可以利用直角三角形的性质将其推出.

初三数学九下锐角三角函数所有知识点总结和常考题型练习题

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、特殊角的三角函数值 5、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。 2、应用举例: ①仰角:视线在水平线上方的角; ②俯角:视线在水平线下方的角。 对边 邻边 b

③坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。用字母i表示, 即 h i l = 。坡度一般写成1:m的形式,如1:5 i=等。把坡面与水平面 的夹角记作α(叫做坡角),那么 tan h i l α== 。 ④从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。 如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。 ⑤指北或指南方向线与目标方向线所成的小于90°的水平角,叫 做方向角。 如图4:OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向), 南偏东45°(东南方向),南偏西60°(西南方向),北偏西60° (西北方向)。 锐角三角函数练习 一、选择题 1、把Rt△ABC各边的长度都扩大2倍得Rt△A′B′C′,那么锐角A、A′的正弦值的关系为().A.sinA=sinA′ B. sinA=2sinA′ C.2sinA=sinA′ D.不能确定 2、在Rt△ABC中,∠C=90°,若AB=5,AC=4,则sinA的值是() A.3 5 B. 4 5 C. 3 4 D. 4 3 3、如图,△ABC的顶点都是正方形网格中的格点,则sin∠BAC等于() A. B . C. D. 1 3 4、如果∠α是等腰直角三角形的一个锐角,则COSα的值是() A.1 2 B.2C.1 5、如图,在△ABC中,∠ACB=90°,CD⊥AB于D, 若AC= AB=则tan∠ACD的值为() : i h l = h l α D C B A

初三数学三角函数复习

锐角三角函数: 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边 )( sin =A ②斜边 )(cos =A ③的邻边 A A ∠=)( tan . 例2.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

2. 如图,直径为10的⊙A 经过点(05)C , 和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B . 3 2 C .35 D .4 5 3.(2009·中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32 ,2AC =,则sin B 的值是( ) A .23 B .32 C .34 D .43 4. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知 8AB =,10BC =,则tan EFC ∠的值为 ( ) A.3 4 B.4 3 C.35 D. 45 A D E C B F 5. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一 D C B A O y x 第8题图

点,若1 tan 5 DBA ∠=,则AD的长为( ) A.2 B.2 C.1D.22 类型三. 化斜三角形为直角三角形 例1.已知:如图,在△ABC中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC的值. 2.已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B. 特殊角的三角函数值 锐角30° 45° 60° sin

最新初中数学三角函数综合练习题(1)

三角函数综合练习题 一.选择题(共10小题) 1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是() A.2 B.C.D. 2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=() A.B.C.D. 3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是() A.msin35° B.mcos35° C.D. 4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()

A.B.C.D. 5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)の长是() A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米 6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要() A.米2B.米2C.(4+)米2D.(4+4tanθ)米2 7.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为() A.160m B.120m C.300m D.160m 8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()

A.8()m B.8()m C.16()m D.16()m 9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)() A.8.1米B.17.2米C.19.7米D.25.5米 10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是() A.B.C.D. 二.解答题(共13小题) 11.计算:(﹣)0+()﹣1﹣|tan45°﹣| 12.计算:.

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版 【本讲主要内容】 锐角三角函数 包括:正弦、余弦、正切。 【知识掌握】 【知识点精析】 1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。 即 c a A A sin == 斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c b A A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即 b a A A A t an =∠∠=的邻边的对边。 2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。 3. 特殊角的三角函数值: 30° 45° 60° sin α 1 2 22 32 cos α 32 22 12 tan α 33 1 3 4. 记忆方法: 【解题方法指导】 例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。 锐 角 α 三 角 函 数

分析:在Rt △ABC 中,由∠ABC =60°,可知3BC AC 60tan == ,即AC =3BC ,又CD = 1 2 AC ,tan ∠DBC 可求。 解:在△ABC 中, ∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BC AC =, ∴AC =3BC 。 又D 是AC 中点, ∴DC = 12AC =32 BC 。 ∴2 3 BC BC 23 BC DC DBC tan = ==∠。 评析:在解题中紧紧扣住tan α的定义。 例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知3 2 ACD sin = ∠,那么=AB BC ______。 分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD = 2 3 ,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。 解:∵∠ACB =90°,CD ⊥AB 于D , ∴∠ACD =∠B 。 又sin ∠ACD =sinB = 23 , 可设AC =2,AB =3, ∴BC =32522-=。

初中数学三角函数难题(含答案)

1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为() A.1 B.C. D. 2.在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.3.观察下列等式 ①sin30°=cos60°= ②sin45°=cos45°= ③sin60°=cos30°= … 根据上述规律,计算sin2a+sin2(90°﹣a)= . 4.有四个命题: ①若45°<a<90°,则sina>cosa; ②已知两边及其中一边的对角能作出唯一一个三角形; ③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数; ④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个. 其中正确命题的序号是(注:把所有正确命题的序号都填上). 5.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.

6.在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= . 7.如果α是锐角,且sin2α十cos235°=1,那么α=度. 8.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣; 因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣; 猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于. 9.在△ABC中,已知sinA=,cosB=,则∠C= . 10.在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A= . 11.若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β; ②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是.(多填或错填得0分,少填的酌情给分) 12.附加题:如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

初三数学锐角三角函数含答案

锐角三角函数 中考要求 重难点 1.掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2.知道锐角三角函数的取值范围以及变化规律; 3.同角三角函数、互余角三角函数之间的关系; 4.将实际问题转化为数学问题,建立数学模型. 课前预习 “正弦”的由来 公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献.尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了.三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表. 托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的.印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了.印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB的一半(AC) 为“阿尔哈吉瓦”.后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib”.十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus”.三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学.在《大测》中,首先将sinus译为“正半弦”,简称“正弦”,这就成了正弦一词的由来.

例题精讲 模块一 三角函数基础 一、锐角三角函数的定义 如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边. (1)正弦:Rt ABC ?中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a A c =. (2)余弦:Rt ABC ?中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ?中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =. 注意: ① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、 cos 与A 、tan 与A 的乘积. ③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、特殊角三角函数 这些特殊角的三角函 数值一定要牢牢记住! 三、锐角三角函数的取值范围 在Rt ABC ?中,90C ∠=?,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a A b =,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 a A

中考数学易错题精选-锐角三角函数练习题及答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3AB DE ADE = ==≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC. (1)求证:∠AEC=90°; (2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由; (3)若DC=2,求DH的长. 【答案】(1)证明见解析; (2)四边形AOCD为菱形; (3)DH=2. 【解析】 试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得 ,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出 ∠AEC=90°; (2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形); (3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由 DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长. 试题解析:(1)连接OC,

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

相关文档
最新文档