二次根式经典练习题初二
(必考题)初中八年级数学下册第十六章《二次根式》经典习题(含答案解析)

一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
八年级下册二次根式计算题

八年级下册二次根式计算题一、二次根式计算题20题及解析。
1. 计算:√(12) - √(3)- 解析:- 先将√(12)化简,√(12)=√(4×3)=2√(3)。
- 则原式= 2√(3)-√(3)=√(3)。
2. 计算:√(27)+√(48)- 解析:- 化简√(27)=√(9×3)=3√(3),√(48)=√(16×3)=4√(3)。
- 原式= 3√(3)+4√(3)=7√(3)。
3. 计算:√(18)-√(8)- 解析:- √(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 原式= 3√(2)-2√(2)=√(2)。
4. 计算:√(50)-√(32)- 解析:- √(50)=√(25×2)=5√(2),√(32)=√(16×2)=4√(2)。
- 原式= 5√(2)-4√(2)=√(2)。
5. 计算:√(frac{1){2}}+√(frac{1){8}}- √(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2),√(frac{1){8}}=(√(1))/(√(8))=(√(2))/(4)。
- 原式=(√(2))/(2)+(√(2))/(4)=(2√(2)+ √(2))/(4)=(3√(2))/(4)。
6. 计算:√(12)+√(frac{1){3}}- 解析:- √(12)=2√(3),√(frac{1){3}}=(√(1))/(√(3))=(√(3))/(3)。
- 原式= 2√(3)+(√(3))/(3)=(6√(3)+√(3))/(3)=(7√(3))/(3)。
7. 计算:(√(3)+1)(√(3)-1)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1。
- 原式=(√(3))^2-1^2=3 - 1=2。
8. 计算:(√(5)+√(2))^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=√(5),b=√(2)。
二次根式专题训练。(完整版)

二次根式专题训练。
(完整版)二次根式专题训练一、最简二次根式:满足以下两个条件的二次根式是最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含开得尽方的因数或因式。
例1:下列根式中最简二次根式的个数有()3xy^2.y^2ab。
22/33.5(a-b)。
75xy。
x+y。
2x。
5c^2/2A。
2个 B。
3个 C。
4个 D。
5个二、同类二次根式:含有相同最简二次根式的一类二次根式。
例2:下列根式中,与3是同类二次根式的是()A。
24 B。
12 C。
3 D。
18例3:如果最简二次根式3a-8与17-2a是同类二次根式,则a=_____三、二次根式a的双重非负性质:①被开方数a是非负数,即a≥0②二次根式a是非负数,即a≥0例4.要使(3-x+1)/(2x-1)有意义,则x应满足().A。
≤x≤3 B。
x≤3且x≠ C。
<x<3 D。
<x≤3例5.(1)化简x-1+1-x=_______.2)若x-1-1-x=(x+y)^2,则x-y的值为()A。
-1 B。
1 C。
2 D。
3例6.(1)若a、b为实数,且满足|a-2|-b^2=0,则b-a的值为( )A。
2 B。
-2 C。
0 D。
以上都不是2)已知x,y是实数,且(x+y-1)与2x-y+4互为相反数,求实数y的负倒数。
四、二次根式的运算常考公式:⑴a×b=a×b(a,b≥0)⑵a/b=a/(a≥0,b>0)⑶a^2=a=a(-a)⑷(a)^2=a(a≥0)例7.(1)下列运算正确的是().A。
6/a^2=3a^2 B。
-2√3=(-2)^2×3C。
a^1/a=a D。
18-8=22)下列各式计算正确的是().A。
m^2×m^3=m^6 B。
16^(1/4)=16×(1/3) C。
32+3√3=2+3 D。
(a-1)/(a+1)=(a-1)/(a+1) 3)下列等式成立的是()1/(1-a)=-1/(1-a)^2=-1-a/(1-a)A、a^2+b^2=a+bB、a-b=-ab/aC、a/a=1D、-a^2b^2=-ab/b^2例8.(1)若a<0,化简a-3-a^2=______.2)若整数m满足条件(m+1)^2=m+1且m<25,则m的值是.。
八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。
本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。
【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。
故选C 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。
A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。
【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。
【解题过程】先将两数分子有理化,然后比较分母。
都是正数时分母大的,原二次根式小。
解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。
二次根式的练习题初二

二次根式的练习题初二在初中数学学习中,二次根式是一个重要的概念。
理解和熟练运用二次根式的求解方法,对于解决一些实际问题以及其他数学题目非常有帮助。
本文将提供一些有关二次根式的练习题,帮助初二学生巩固学习成果。
练习题一:简化二次根式1. 简化 $\sqrt{36}$2. 简化 $\sqrt{81}$3. 简化 $\sqrt{16}$4. 简化 $\sqrt{25}$5. 简化 $\sqrt{144}$练习题二:二次根式的加减法1. 计算 $\sqrt{16} + \sqrt{9}$2. 计算 $\sqrt{25} - \sqrt{16}$3. 计算 $2\sqrt{9} + 3\sqrt{4}$4. 计算 $4\sqrt{16} - 2\sqrt{25}$5. 计算 $\sqrt{36} - \sqrt{49}$练习题三:二次根式的乘法与除法1. 计算 $\sqrt{25} \cdot \sqrt{16}$2. 计算 $\sqrt{49} \cdot \sqrt{64}$3. 计算 $2\sqrt{9} \cdot 5\sqrt{4}$4. 计算 $4\sqrt{16} \div 2\sqrt{25}$5. 计算 $\sqrt{36} \div \sqrt{4}$练习题四:混合运算1. 计算 $\sqrt{25} + \sqrt{16} \div \sqrt{49}$2. 计算 $(2\sqrt{16} - \sqrt{9}) \cdot \sqrt{25}$3. 计算 $\sqrt{81} - \sqrt{64} \div \sqrt{36}$4. 若 $\sqrt{a} = 3$,$\sqrt{b} = 4$,计算 $\sqrt{a^2} + \sqrt{b^2}$5. 若 $\sqrt{m} = 5$,计算 $\sqrt{5m} + \sqrt{4m}$以上练习题旨在让学生巩固和提高对二次根式的理解与运用能力。
二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。
人教版初二数学8年级下册 第16章(二次根式)经典好题专题训练(含答案)

人教版八年级数学下册第16章二次根式经典好题专题训练(附答案)1.下列二次根式中,能与合并的是( )A.B.C.D.2.下列等式正确的是( )A.=3B.=﹣3C.=3D.=﹣3 3.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+44.式子在实数范围内有意义,则x的取值范围是( )A.x≤1B.x<1C.x>1D.x≥1 5.若,,则x与y关系是( )A.xy=1B.x>y C.x<y D.x=y6.+()2的值为( )A.0B.2a﹣4C.4﹣2a D.2a﹣4或4﹣2a7.设,,则a、b的大小关系是( )A.a=b B.a>b C.a<b D.a+b=08.若x=2﹣5,则x2+10x﹣2的值为( )A.10+1B.10C.﹣13D.19.若代数式有意义,则x的取值范围是( )A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣310.若实数x、y满足:y=++,则xy= .11.若有意义,则x的取值范围为 .12.若x=+1,y=﹣1,则的值为 .13.计算的结果是 .14.计算(﹣)×的结果为 .15.已知a+b=﹣8,ab=6,则的值为 .16.已知实数a满足+|2020﹣a|=a,则a﹣20202= .17.化简﹣()2的结果是 .18.已知y=+﹣,则x2021•y2020= .19.若x=3+,y=3﹣,则x2+2xy+y2= .20.如果=,则a的取值范围是 .21.当b<0时,化简= .22.计算:(1)2•÷5;(2).23.24.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.25.先化简,再求值:(+)﹣(+),其中x=,y=27.26.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.27.已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.28.已知关于x、y的二元一次方程组,它的解是正数.(1)求m的取值范围;(2)化简:.参考答案1.解:A、不能与合并,本选项不合题意;B、==2,不能与合并,本选项不合题意;C、==2,不能与合并,本选项不合题意;D、==2,能与合并,本选项符合题意;故选:D.2.解:A、()2=3,本选项计算正确;B、=3,故本选项计算错误;C、==3,故本选项计算错误;D、(﹣)2=3,故本选项计算错误;故选:A.3.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.4.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.5.解:∵==2+,,∴x=y.故选:D.6.解:要使有意义,必须2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.7.解:a=(﹣)2=3,b==3,则a=b,故选:A.8.解:x2+10x﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=2﹣5时,原式=(2﹣5+5)2﹣27=28﹣27=1,故选:D.9.解:由题意得,3x﹣2≥0,x﹣3≠0,解得,x≥且x≠3,故选:C.10.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.11.解:由题意得:1﹣2x≥0,且x+1≠0,解得:x≤且x≠﹣1,故答案为:x≤且x≠﹣1.12.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.13.解:﹣4=3﹣2=,故答案为:.14.解:(﹣)×=×﹣×=4﹣=3.故答案为:3.15.解:∵a+b=﹣8,ab=6,∴a<0,b<0,∴+=﹣﹣=﹣×=﹣×()=,故答案为:.16.解:要使有意义,则a﹣2021≥0,解得,a≥2021,∴+a﹣2020=a,∴=2020,∴a=20202+2021,∴a﹣20202=2021,故答案为:2021.17.解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.18.解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,则y=﹣,∴x2021•y2020=x•x2020•y2020=2×(﹣×2)2020=2,故答案为:2.19.解:x+y=3++3﹣=6,∴x2+2xy+y2=(x+y)2=62=36,故答案为:36.20.解:∵=,∴a﹣5≥0,且6﹣a≥0,∴5≤a≤6,则a的取值范围是5≤a≤6.故答案为:5≤a≤6.21.解:当b<0时,==﹣b.故答案为:﹣b .22.解:(1)原式=4••=;(2)原式=(6×﹣5×)(×2﹣)=(3﹣)(﹣)=3﹣6﹣+=﹣.23.解:原式=5+(24﹣3)﹣(27﹣6+2)=5+21﹣29+6=6﹣3.24.解:(1)x ===2+,则=2﹣,∴x +=2++2﹣=4;(2)(7﹣4)x 2+(2﹣)x +=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.25.解:原式=6x ×+×y ﹣4y ×﹣6=6+3﹣4﹣6=﹣,当x =,y =27时,原式=﹣=﹣=﹣3.26.解:(1)由题意得,x ﹣2020≥0,2020﹣x ≥0,解得,x =2020,则y =﹣2019,∴x +y =2020﹣2019=1,∵1的平方根是±1,∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0,解得,a =﹣,则a +2=﹣+2=﹣,∴x=(﹣)2=.27.解:(1)m2+4m+4=(m+2)2,当m=﹣1时,原式=(﹣1+2)2=(+1)2=3+2;(2)∵m=﹣1,∴m+1=,∴m3+m2﹣3m+2020=m3+2m2+m﹣m2﹣4m+2020=m(m+1)2﹣m2﹣4m+2020=2m﹣m2﹣4m+2020=﹣m2﹣2m﹣1+2021=﹣(m+1)2+2021=﹣2+2021=2019.28.解:(1)解关于x、y的二元一次方程组,得,∵方程组的解是一对正数,∴,解得;(2),当时,m﹣2<0,m+1>0,m﹣1<0,∴=2﹣m﹣(m+1)﹣(1﹣m)=2﹣m﹣m﹣1﹣1+m=﹣m;当时,m﹣2<0,m+1>0,m﹣1≥0,∴=2﹣m﹣(m+1)﹣(m﹣1)=2﹣m﹣m﹣1﹣m+1=2﹣3m.。
【初二数学】二次根式练习题(共4页)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式练习题一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=3 3.若x<0,则x x x 2-的结果是( )A .0B .—2C .0或—2D .24.下列说法错误的是 ( )A .962+-a a 是最简二次根式 B.4是二次根式C .22b a +是一个非负数 D.162+x 的最小值是4524n n 的最小值是( ).5 C6.化简6151+的结果为( )A .3011B .33030C .30330D .1130 7..把a a 1-根号外的因式移入根号内的结果是( )A 、 a -B 、a --C 、aD 、a -8. 对于所有实数,a b ,下列等式总能成立的是( ) A. 2a b a b =+ B. 22a b a b +=+C. ()22222a b a b +=+D. ()2a b a b +=+9. 29x + )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 10. 下列式子中正确的是( ) A. 527= B. 22a b a b -=-C. (a x b x a b x =-D.683432+==二、填空题11.①=-2)3.0( ;②=-2)52( 。
12.化简:计算=--y x y x _______________;13.计算3393a a a a -+= 。
14)2211x x x-+的结果是 。
15. 当1≤x <5()215_____________x x --=。
16. )()200020013232______________+=。
17.若0≤ a ≤1,则22)1(-+a a = ;18.先阅读理解,再回答问题: 2112,122,+<211+1; 2226,263,+=222+的整数部分为2; 23312,3124,+=<<233+3;2(n n n +为正整数)的整数部分为n 。
5x ,小数部分是y ,则x -y =______________。
三、计算(1)225241⎪⎪⎭⎫ ⎝⎛-- (2))459(43332-⨯(3)2332326-- (4)219234x x x(5)(()274373351+-- (6). ((((222212131213+-(7)计算:1031 (231)321211++++++++四、 解答题1.已知:的值。
求代数式2,211881+++-+-=x y y x x x y2. 当1<x <522211025x x x x -+-+3.2440x y y y --+=,求xy 的值。
4. 观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+; ③34)34)(34(34341-=-+-=+;…… 利用你观察到的规律,化简:11321+ 5.已知a 、b 、c 满足0235)8(2=-+-+-c b a求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.6. 当a 211a +取值最小,并求出这个最小值。
7.若a ,b 分别表示10的整数部分与小数部分,求41++b a 的值。
二次根式综合一、例题讲解(一)、二次根式中的两个“非负”I .二次根式中被开方数(或被开方式的值)必须是非负数,这是二次根式有意义的条件,也是进行二次根式运算的前提,如公式(a )2=a,仅当a≥0时成立。
例1.下列各式有意义时,求表示实数的字母的取值范围: 52a ; ⑵2)4(x - ⑶x +x -例2.求值: 2007||11||3111a a a a aII..二次根式a 的值为非负数,是一种常见的隐含条件。
例3.若2)2(-x =2-x 求x 的取值范围例4.若82--y x +12++y x =0 求x y根据a 是非负数这一结论,课本上给出一个重要公式: 2a =|a|=⎩⎨⎧<-≥)0()0(a a a a在应用这个公式时,先写出含绝对值的式子|a|,再根据a 的取值范围进行思考,可避免错误,这类题目一般有以下三点:①.被开方数是常数例5. 化简2)21(- ② 被开方数是含有字母的代数式,但根据给出的条件,先确定被开方式a 2中的a 的符号。
例6.已知a=-2 b=-3 求a b a 350-a 2b 2318b a 的值 例7. 已知0 <x <1,化简:4)1(2+-x x -4)1(2-+xx例8.如果2)3(x -=x -3 2)5(-x =5-x 化简21236x x +-+100202+-x x③.被开方数是含有字母的代数式,必须根据字母的取值范围进行分类讨论例9.化简(a -3)a-31 练习:1.求下列各式中,x 的取值范围:⑴x 251- ; ⑵12-x +x 21-2.若962+-x x -3+x=0 求x 的取值范围3.当a=23时,求|1-a|+442+-a a 的值 4.化简 x x 1-(二)、二次根式运算的合理化1.根据数的特点合理变形例1.化简:535614++例2.化简26261812-+-+2.先化简,后求值 例3.已知:x=321+,y=321-,求110110+++y x 的值3、从整体着手例4. 已知x -8+x +5=5,求)5)(8(x x +-的值例5. 已知215x +-225x +=2,求215x ++225x -的值二、课堂训练1.填空题(1).化简:2)21(-=__________________;(2).化简:b a 23(b <0)=_________________;(3).化简:ba c 5394=_____________________; (4).当a <-7时,则2)7(+a =__________;当a >3时,22)3()2(a a --=_______________;(5).当x 取________时,2-x -5的值最大,最大值是________;(6).在实数范围内分解因式:x 2-22x+2=_________;(7).若(4a +5)2+b a -2=0 则a+b=__________。
2、选择题 (1) 与2是同类二次根式的是( )(A)42 (B)32 (C)1232 (D)52 (2) 是最简二次根式的是( )(A)18 (B)4 (C)32 (D)32- (3) 当21<<a 时,计算22)1()2(a a -+-的结果是( )(A)2a -3 (B)-1(C)1 (D)2a -1 (4) 下列各式中,正确的是( ) (A)15335= (B)15335±= (C)3535= (D)153135= (5) 若ab aa b 1-=,则( ) (A)0,0≤<b a(B)0,0≤≤b a (C)0,0≥>b a (D)0,0>>b a (6) 22)1(+a 化简的结果是( )(A))1(2+±a (B)12+a (C))1(2+-a (D)2)1(+a (7) 下列各式中,最简二次根式是( )(A)221y x x + (B)x a (C)x 12 (D)3x(8) 若1<a ,则226921a a a a ++++-的结果是( )(A)-2a -2 (B)2a +2 (C)4 (D)-4(9) 化简324-的结果是( )(A)13- (B)31- (C)23- (D)32-(10) 如果m <0,那么化简mm m 22)(-的结果是( ) (A)-2 (B)1(C)-1 (D)2 3.把下列各式分母有理化:(1).7103+ ; (2).y x xy- ; (3).b b a a +1(a≠b)4.计算(1).3231+821-5051 (2).32()625(-÷-) (3).)321(++(321--) (4).11111+-+++++a a a a a a 5.化简 (1).22)1()4(-+-x x (1<x <4) (2).(x+y)xy y x xy y x 222222++-+ (x <y <0) 6.已知:x=211- ,求代数式3-442+-x x 的值7.已知a =231+,求414122-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-a a a a 的值。
8、已知:a ,b 为实数,且22222+-+-=a a a b 。
求()222a b a b ---+-的值。
9.如图,在矩形ABCD 中,CE ⊥BD ,E 为垂足连AE若AB=a ,BC=1 ,求△AED 的面积。