七年级数学上册第五章相交线与平行线5.1相交线2垂线作业课件华东师大版

合集下载

华东师大版初中七年级上册数学教案 第5章 相交线与平行线 5.1相交线 1.对顶角

华东师大版初中七年级上册数学教案 第5章 相交线与平行线 5.1相交线 1.对顶角

第5章相交线与平行线5.1相交线1.对顶角【基本目标】1.在现实情境中识别对顶角,理解对顶角的性质;能画出对顶角,并能利用对顶角相等的性质进行简单的计算以及解决一些相关的实际问题.2.经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.3.在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强运用数学的意识.【教学重点】通过观察思考,了解对顶角的概念及其性质;进一步发展空间观念和有条理的表达能力.【教学重点】从复杂图形中分解出基础图形,提高数学学习能力.一、情境导入,激发兴趣观察下列图片,你们觉得这些图片有什么共同点吗?二、合作探究,探索新知1.请同学们画两条相交的直线,观察它们有几个交点?形成几个小于平角的角?2.学生画图,观察后回答,教师画图总结.图1(1)两条直线相交,只有一个交点.(2)形成4个小于平角的角:∠1、∠2、∠3、∠4.【教学说明】学生画图解答,教师小结板书.3.你知道∠1与∠2、∠2与∠3、∠3与∠4、∠1与∠4在位置和数量上有什么关系?请填下表.【教学说明】学生自主探究,通过填表找到这些角的位置和数量关系.4.请你根据上面的探究,观察思考∠1与∠3、∠2与∠4位置和数量上有什么关系?请填下表,并说明理由.5.教师归纳总结:(1)对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.如图1,∠1与∠3是对顶角.(2)对顶角的性质: 对顶角相等.【教学说明】这是本节课的重点和难点,对于这些角的位置,学生描述可能不准确,教师一定要结合图形,让学生仔细观察,掌握特征.对顶角相等需要通过推理得到,要求学生写出推理的过程,以训练学生推理的能力.三、示例讲解,掌握新知例1如图,直线AB、CD相交于点O,∠1=30°,求∠2、∠3、∠4的度数.分析:∠1和∠2有什么关系?∠1和∠3有什么关系?∠2和∠4有什么关系?解:∵∠1+∠2=180°,∴∠2=180°—∠1=180°—30°=150°.∠3=∠1=30°,∠4=∠2=150°.【教学说明】要充分应用对顶角相等来解决问题,注意推理格式的规范性.例2如图,直线AB与CD相交于点O,射线OE是∠BOD的平分线,已知∠AOD=110°,求∠COB,∠AOC, ∠BOE,∠EOD的度数.【教学说明】这个图形比较复杂,教师可做适当的引导,注意过程的规范性和合理性.四、练习反馈,巩固提高1.如图,直线AB,CD相交于点O,∠1的对顶角是,∠4的对顶角是 .第1题图第2题图2.如图,直线AB,CD相交于点O,且∠AOC+∠BOD=118°,则∠AOD= .3.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?【教学说明】学生独立完成,对于第3题,图形比较复杂,教师可以做适当的引导.注意解题过程的规范性.【答案】1.∠3,∠22.121°3.解:OF是∠BOD的平分线.∵OE平分∠AOC,∴∠AOE=∠COE.∵∠AOE=∠BOF,∠COE=∠DOF.∴∠BOF=∠DOF∴OF平分∠BOD五、师生互动,课堂小结1.两条直线相交,只有一个交点.2.对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.3.对顶角的性质: 对顶角相等.【教学说明】教师引导学生对本节课知识进行总结,加深印象,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习本节课的教学活动设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的执教理念上,融入了新课标的思想内涵,在重视对数学知识形成过程中发现和探究的同时,也十分重视对学生学习能力的培养,突出了学生的主体地位.使学生学会了将生活问题数学化.教师引导学生观察生活中的相交线,从中抽象出数学模型,然后让学生动手画图——观察——猜想——说理,从而认识了对顶角,发现了“对顶角相等”这一性质.发现数学理论的过程也是不断反思、不断提出问题的过程.这种反思应该始终伴随着活动的进行而开展,否则会丢掉很多很有价值的发现新知识的机会.学生在面对较难问题时,要学会合作交流,学会理性地思考,因为在现代社会中,学会表达与交流尤为重要.。

《相交线与平行线——垂线》数学教学PPT课件(3篇)

《相交线与平行线——垂线》数学教学PPT课件(3篇)
a
在相交线的模型中,固定木
条a,转动木条b,当b的 位置变化时,a、b所成的角 α 也会发生变化.
探究新知
当∠α=90°时,a与b垂直; 当∠α≠90°时,a与b不垂直,叫斜交.
斜交 两条直线相交
垂直
垂直是相交的特殊情况
探究新知
问 题 如 图 , 当 ∠ AOC = 90°时 , ∠ BOD 、 ∠ AOD、 ∠BOC的度数是多少?为什么?
解: ∵ AB⊥OE (已知)
∴ ∠EOB=90°(垂直的定义)
∵ ∠BOD= ∠1=55° (对顶角相等)
∴ ∠ EOD= ∠ EOB+ ∠ BOD =90 °+55 °=145 °
CE
1(
AO
B
D
探究新知
A O
垂线的画法
如图,已知直线 l ,作 l 的垂线。
工具:直尺、三角板
l
0
1
2
3
4
5
6
7
垂线
人教˙七年级(下册)
课时目标
1.了解垂直概念,能说出垂线的性质,会用三角尺或量角 器过一点画一条直线的垂线。 2.了解垂线段的概念和性质,体会点到直线的距离的意义, 并会度量点到直线的距离。
情景导入
观察下面图片,你能找出其中相交的直线吗?它们 有什么特殊的位置关系?
探究新知
b b
bb b
α )α
如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,
∠DOE=50°,求∠AOC、 ∠EOF、 ∠COF的度数.
解: 因为AB⊥OE (已知) 所以 ∠EOB=90°(垂直的定义) 因为∠DOE= 50° (已知)
A
D

华东师大版七年级数学上册第5章第1节垂线优质课件

华东师大版七年级数学上册第5章第1节垂线优质课件

知2-练
1 下列选项中,过点P画AB的垂线CD,三角板放法 正确的是( )
2 下列说法正确的是( )
知2-练
A.在同一平面内,过直线外一点向该直线画垂线,
垂足一定在该直线上
B.在同一平面内,过线段或射线外一点向该线段
或射线画垂线,垂足一定在该线段或射线上
C.过线段或射线外一点不一定能画出该线段或射
知3-讲
线的垂线
D.过直线外一点与直线上一点画的一条直线与该
直线垂直
知识点 3 垂线的基本事实
知3-讲
关于垂线的基本事实: (1)在同一平面内,过一点有且只有一条直线与已知直线
垂直. (2)连接直线外一点与直线上各点的所有线段中,垂线段
最短,简单说成:垂线段最短.(过直线外一点画已 知直线的垂线,连接这点与垂足之间的线段,叫这点 到已知直线的垂线段)
知3-讲
例4 如图所示,AB是一条河流,要铺设管道将河水引 到C、D两个用水点,现有两种铺设管道的方案: 方案一:分别过点C,D作AB的垂线,垂足分别 为点 E,F,沿CE,DF铺设管道; 方案二:连接CD交AB于点P,沿PC,PD铺设管 道.这两种铺设管道的方案哪一种更节省材料? 为什么?(忽略河流的宽度)
知1-练
1 当两条直线相交所成的四个角中,有一个角是___ 时,就说这两条直线互相垂直,其中的一条直线叫 做另一条直线的________,它们的交点叫做______.
2 垂直定义的应用格式:如图, (1)因为∠AOC=90°,所以______. (2)因为AB⊥CD,所以∠AOC=_____°.
知1-练
第5章 相交线与平行线
5.1 相交线
第2课时 垂线——垂线 的定义与性质
1 课堂讲解 2 课时流程

华东师大版数学七年级上册第5章《5.同位角、内错角、同旁内角》课件

华东师大版数学七年级上册第5章《5.同位角、内错角、同旁内角》课件
图1
范例
如图2,直线__A_B_、_C_D__被直线_E__F_所截,其中_E__F_ 是截线,_A__B_与_C__D_是被截直线,每条被截直线与截 线产生了__4__个角,相邻两个角的关系是__互__补__.
图2
知识模块二 同位角、内错角、同旁内角 阅读教材 P166~P167“视察”以下的部分,完成下面的内容. 如图,直线l截直线a、b产生的八个角中,从直线l来看,
∠1与∠5,∠3与∠5,∠2与∠5的位置有什么关系?
∠1与∠5处于直线l的____同__一__侧,且分别在直线a、b的______,
具同有一这方样位置关系的一对角是同位角,在上图中,同位角还有
__________∠__2、与_∠__6______∠_、4与__∠__8____;∠3与∠7
∠3与∠5处于直线l的___异_,侧且分别在直线a、b的
仿例
如图,已知直线a、b被直线c所截,那么∠1的同位
角是( D )
A.∠2 B.∠3 C.∠4 D.∠5
变例
如图,下列说法正确的是( D )
A.∠2和∠3是同位角 B.∠3和∠4是同旁内角 C.∠1和∠2是内错角 D.∠1和∠3是同旁内角
课堂练习
1 . 如图,直线a,b被直线c所截,∠1与
∠2的位置关系是B( )
归纳
同位角、内错角、同旁内角各自的关系如下表:
角的名称
位置特征
同位角
在两条被截直线的同一 方,在截线的同一侧
基本图形
图形结构特征
ቤተ መጻሕፍቲ ባይዱ形如字母“F”(满足 任何形状的放置)
内错角
在两条被截直线的内部, 在截线的两侧内部交错
同旁内角
在两条被截直线的内部, 在截线的同侧

华师大版七年级上册数学第5章 相交线与平行线含答案(实用)

华师大版七年级上册数学第5章 相交线与平行线含答案(实用)

华师大版七年级上册数学第5章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,直线相交于点于点,则的度数是()A. B. C. D.2、给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.3、如图,把教室中墙壁的棱看做直线的一部分,那么下列表示两条棱所在的直线的位置关系不正确的是()A.AB⊥BCB.AD∥BCC.CD∥BFD.AE∥BF4、如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个5、菱形的对角线,相交于点O,且,,则四边形是()A.梯形B.矩形C.菱形D.正方形6、如图,AB∥CD,且∠1=15°,∠2=35°+a,∠3=50°- a,∠4=30°-a,∠5=20°.则a的值为()A.20°B.25°C.40°D.35°7、体育课上,老师测量跳远成绩的依据是( )A.垂直的定义B.两点之间线段最短C.垂线段最短D.两点确定一条直线8、在下列四个选项中,∠1与∠2属于对顶角的是()A. B. C. D.9、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.一定成立的是()A.①②B.①③④C.①②③D.①②④10、如图,下列说法中,错误的是()A.∠4与∠B是同位角B.∠B与∠C是同旁内角C.∠2与∠C是同位角D.∠1与∠3是内错角11、如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20 °B.40 °C.50°D.70°12、如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°13、如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°14、已知:如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是()A.40°B.80°C.90°D.100°15、如图,直线a,b被直线c所截,,若,则等于()A.  B.C.D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=________.17、如图,已知A(0,-4)、B(3,-4),C为第四象限内一点且∠AOC=60°,若∠CAB=10°,则∠OCA=________.18、如图,△AOB和△ACD均为正三角形,顶点B,D在双曲线y= (x>0)上,则=________.19、如图,,相交于点,,如果,那么等于________.20、如图,从点P向直线l所画的4条线段中,线段________最短,理由是________.21、如图所示,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,若∠1=20°,则∠2的度数是 ________。

七年级数学上册第五章相交线与平行线5.1.2垂线作业新版华东师大版

七年级数学上册第五章相交线与平行线5.1.2垂线作业新版华东师大版

5.1.2垂线1.如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是( )A.相等B.互余C.互补D.互为对顶角2.如图,点A在直线BC外,AC⊥BC,垂足为C,AC=3,点P是直线BC上的一个动点,则AP的长不可能是( )A.2.5B.3C.4D.53.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是( )A.60°B.120°C.60°或90°D.60°或120°4.如图,AB⊥CD,垂足为O,EF经过点O,∠2=2∠1,那么∠2=________度,∠3=________度.5.如图所示,AO⊥OB于点O,∠AOB∶∠BOC=3∶2,则∠AOC=________度.6.如图,BD⊥AC于D,DE⊥BC于E,若DE=9cm,AB=12cm,不考虑点与点重合的情况,则线段BD 的取值范围是________.7.如图所示,已知AO⊥OB于O,DO⊥OC于O,∠AOC=∠α,求∠BOD(用∠α表示).8.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C,线段AB,BC,CD的大小顺序如何?说明理由.参考答案:1.【解析】因为AB⊥CD,所以∠BOD=90°.又因为∠1+∠2+∠BOD=180°,所以∠1+∠2=90°,所以∠1与∠2互余.【答案】B2.A3.【解析】①如图1,当OC,OD在AB的同一侧时,因为OC⊥OD,所以∠COD=90°.又因为∠AOC=30°,所以∠BOD=180°-∠COD-∠AOC=60°;②如图2,当OC,OD在AB的两侧时,因为OC⊥OD,∠AOC=30°,所以∠AOD=60°,所以∠BOD=180°-∠AOD=120°.【答案】D4.【解析】因为AB⊥CD,所以∠2+∠1=90°.因为∠2=2∠1,所以2∠1+∠1=90°,所以∠1=30°,∠2=60°.因为∠1与∠3是对顶角,所以∠3=∠1=30°.【答案】60 305.【解析】因为AO⊥OB,所以∠AOB=90°.又因为∠AOB∶∠BOC=3∶2,所以∠BOC=60°,所以∠AOC=∠AOB+∠BOC=150°.【答案】1506.【解析】因为BD⊥AC,所以AB>BD,因为AB=12cm,所以BD<12cm.又因为DE⊥BC,所以BD>DE.因为DE=9cm,所以BD>9cm,所以9cm<BD<12cm.【答案】9cm<BD<12cm7.解:因为OA⊥OB于O,所以∠AOC+∠BOC=90°.因为∠AOC=∠α,所以∠BOC=90°-∠α.又因为OC⊥OD于O,所以∠COD=90°.因为∠BOD=∠COD+∠BOC,所以∠BOD=90°+90°-∠α=180°-∠α.8.解:AB>BC>CD.理由:因为CD⊥AB,垂足为D,所以BC>CD.因为AC⊥BC,垂足为C,所以AB>BC.所以AB>BC>CD.。

华师大版数学七年级上册第5章《相交线与平行线》教学设计

华师大版数学七年级上册第5章《相交线与平行线》教学设计

华师大版数学七年级上册第5章《相交线与平行线》教学设计一. 教材分析《相交线与平行线》是华师大版数学七年级上册第5章的内容,本章主要让学生掌握相交线与平行线的概念,学会用平行线与相交线的性质解决实际问题。

教材通过丰富的图片和实例,引导学生探究和发现平行线与相交线的性质,培养学生的观察能力、操作能力和推理能力。

本章内容在初中数学体系中具有重要地位,为后续几何学习打下基础。

二. 学情分析七年级的学生已具备一定的基础知识和观察能力,但对于抽象的几何概念和证明过程尚需引导。

学生在学习本章内容时,需要充分调动已有的知识和经验,通过观察、操作、猜想、验证等过程,掌握相交线与平行线的性质。

此外,学生需要学会用几何语言描述和证明平行线与相交线的关系,提高逻辑推理能力。

三. 教学目标1.了解相交线与平行线的概念,掌握它们的基本性质。

2.学会用平行线与相交线的性质解决实际问题。

3.培养学生的观察能力、操作能力、推理能力和几何语言表达能力。

4.培养学生合作学习、积极探究的学习态度。

四. 教学重难点1.相交线与平行线的概念及性质。

2.用平行线与相交线的性质解决实际问题。

3.几何语言的运用和证明过程的推理。

五. 教学方法1.采用问题驱动法,引导学生观察、操作、猜想、验证,激发学生学习兴趣。

2.运用合作学习法,让学生在小组内讨论、交流,培养学生的团队协作能力。

3.采用几何画板等软件辅助教学,直观展示相交线与平行线的性质。

4.注重个体差异,针对不同学生给予适时引导和帮助。

六. 教学准备1.准备相关图片、实例和教学素材。

2.制作课件,运用几何画板展示相交线与平行线的性质。

3.准备练习题和拓展题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察相交线与平行线的特点,激发学生学习兴趣。

提出问题:“你们认为什么是相交线?什么是平行线?”让学生发表自己的想法。

2.呈现(10分钟)展示教材中的相关内容,介绍相交线与平行线的定义及基本性质。

七年级数学上册-第五章相交线与平行线5.2.1平行线课件(新版)华东师大版

七年级数学上册-第五章相交线与平行线5.2.1平行线课件(新版)华东师大版
3
独家教育资源为你2提供,thank y ou
生活中好多事物给我们线的感觉,那么下列这些线给我们什么印象呢?
如图,电梯的扶手给 我们什么印象?
电梯扶手所在直线会相交 吗?
4
独家教育资源为你2提供,thank y ou
那么铁轨给我们什 么印象?还有什么 地方给我们相同的 印象呢?
铁轨所在直线会相交吗?
①用符号表示下列两棱的位置关系: A1 B1
A1B1_∥___AB ,AA1_⊥___AB ,
D
C
A
B
A1D1⊥____C1D1 , AD∥____BC
14
独家教育资源为你2提供,thank y ou
(2)A1B1与BC所在的直线是两条不相交的直线,他们
_不__是_平行线(填“是”或“不是”)。由此可知,在 ___同__一___平__面_,内两条不相交的直线才能叫平行线. (3)在同一平面内,两条不重合的直线位置关系只有 ___2__种,即___相__交__和__平___行_.
巩固练习 下列说法正确的是( D ) A.在同一平面内,两条直线的位置关系有相交, 垂直,平行三种. B.在同一平面内,不垂直的两直线必平行. C.在同一平面内,不平行的两直线必垂直. D.在同一平面内,不相交的两直线一定不垂直.
12
独家教育资源为你2提供,thank y ou
D
做一做
A
B
一个长方体如图,和AA′平行的
课内练习
1、判断下列说法是否正确,并说明理由.
①不相交的两条直线是平行线.
(╳)
②在同一平面内,两条不相交的线段是平行线. (╳)
③过一点可以而且只可以画一条直线与已知直线平行. (╳)
2、用符号“∥”表示图中平行四 D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【综合运用】 17.(12分)(1)在图①中以P为顶点画∠P, 使∠P的两边分别和∠1的两边垂直; (2)量一量∠P和∠1的度数, 它们之间的数量关系是_∠__P_+__∠__1_=__1_8_0_°__; (3)同样在图②和图③中以P为顶点作∠P,使∠P的两边分别和∠1的两边 垂直,分别写出图②和图③中∠P和∠1之间的数量关系.(不要求写出理由) 图②:_∠__P__=__∠__1__, 图③:__∠__A_P__B_+__∠__1_=__1_8_0_°__或__∠__A_′_P_B_=__∠__1______;
15.(8分)如图,直线AB和CD相交于点O,OE⊥CD于O, OD平分∠BOF,∠BOE=50°,求∠AOC,∠EOF,∠AOF的度数.
解:∠AOC=40°,∠EOF=130°,∠AOF=100°
16.(12分)(孟津期末)如图所示,一辆汽车在直线形的公路AB上由A向B行 驶,C,D分别是位于公路AB两侧的村庄.
A.①②③ B.①②④ C.①③④ D.②③④
5.(4分)如图,AC⊥BC,AC=3,BC=4,AB=5, 则点B到AC的距离为__4__.
6.(4分)自来水公司为某小区A改造供水系统, 如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO), 路线最短,工程造价最低,根据是__垂__线__段__最__短___.
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置 时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村 庄D越来越近?(只叙述结论,不必说明理由)
解:(1)过点C作AB的垂线,垂足为C′,过点D作AB的垂线,垂足为D′ (2)在C′D′上距离村庄C越来越远,而离村庄D越来越近
9.如图,∠ACB=90°,CD⊥AB,垂足为D, 则下面的结论中,正确的有( A ) ①BC⊥AC; ②AC⊥CD; ③点A到BC的垂线段是线段BC;
10.(嵩县月考)如图,∠AOD=138°,OA⊥OB,OC⊥OD, 则∠BOC的度数为( A ) A.42° B.64° C.48° D.24°
11.已知点P在直线l外,点A,B,C均在直线l上,PA=4 cm, PB=5 cm,PC=2 cm,则P点到直线l的距离为( C) A.2 cm B.小于2 cm C.不大于2 cm D.以上答案均不对
12.如图,l1⊥l2,垂足为O,若∠1=∠2, 则∠3和∠4的关系是__相__等.
13.如图,工匠师傅为检查门框AB是否垂直于地面,在门框AB的上端A 用细线悬挂一铅锤,看铅锤线AE是否与AB重合,若门框AB垂直于地面, 则AE与AB重合,否则AE与AB不重合.工匠师傅这样测量的依据
7.(4分)如图,AD⊥BD,BC⊥CD,AB=5,BC=3. 若BD的长度是整数,则BD的长度是____.4
8.(8分)如图,某人在公路的左侧A处,要到公路的右侧,怎样走最近? 为什么?若他要到公路对面的B处,怎样走最近?为什么?
解:
某人在公路的左侧A处,要到公路的右侧,如图,沿垂线段AC的方向走最近, 根据是垂线段最短.若他要到公路对面的B处,如图,连结AB,沿线段AB 走最近,根据是两点之间线段最短
1.(4分)下列语句正确的个数是(D ) ①两条直线相交有一个角是直角,那么这两条直线垂直; ②若两条直线互相垂直,相交所成的四个角都是直角; ③互相垂直的两条直线的交点叫做垂足; ④同一平面内,两条互相垂直的线段不一定相交, 但它们所在的直线一定相交. A.1个 B.2个 C.3个 D.4个
2.(4分)如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是( )B
是___在__同__一__平__面__内__,__经__过__一__点__有__且__只__有__一__条__直__线__与__已__知__直__线__垂__直_.
三、解答题(共40分) 14.(8分)如图,已知点P,Q分别在∠AOB的边OA,OB上, 按下列要求画图: (1)过点P作射线OB的垂线段; (2)过点Q作垂直于射线OA的直线.
第五章 相交线与平行线
5.1 相交线
5.1.2 垂 线
1.若直线AB与CD相交于点O,且∠AOC=90°, 则AB_垂__直_CD,点O叫做_垂__足_. 2.在同一平面内,过一点有__且__只__有__一条直线与已知直线垂直. 3.直线外一点到直线上各点的线段中__垂__线__段___最短, __垂__线__段___的长度,叫做点到直线的距离.
A.两点确定一条直线 B.在同一平面内,经过一点有且只有一条直线与已知直线垂直 C.在同一平面内,过一点只能作一条垂线 D.垂线段最短
3.(8分)下列各图中,分别过点P作AB的垂线.
解:如图所示:
4.(4分)如图所示,P是直线l外一点,点A,B,C在直线l上,且PB⊥l, 下列说法:①PA,PB,PC这3条线段中,PB最短;②点P到直线l的距离是线 段PB的长;③线段AB的长是点A到PB的距离;④线段PA的长是点P到直线l 的距离.其中正确的是( A)
相关文档
最新文档