1.2.1有理数教案
人教版数学七年级上册1.2.1《有理数》教学设计

人教版数学七年级上册1.2.1《有理数》教学设计一. 教材分析人教版数学七年级上册1.2.1《有理数》是学生在小学阶段学习数的概念的基础上,进一步深入研究数的一种分类。
本节内容主要包括有理数的定义、分类及运算规则。
通过本节内容的学习,使学生了解有理数的概念,掌握有理数的分类,会进行有理数的运算。
二. 学情分析七年级的学生已经具备了初步的数学逻辑思维能力,对数的概念有一定的了解。
但学生在学习有理数时,容易与小学阶段的数的概念混淆,对有理数的分类和运算规则的理解和运用有一定的困难。
因此,在教学过程中,需要引导学生从实际问题出发,理解和掌握有理数的概念和运算规则。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够进行简单的有理数运算。
3.培养学生的数学逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中理解和掌握有理数的概念和运算规则。
2.运用案例分析法,通过具体案例使学生理解和掌握有理数的分类和运算规则。
3.采用小组合作学习法,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生学习和思考。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,如:“小明有3个苹果,小华有2个苹果,小明比小华多几个苹果?”引导学生思考和讨论,引出有理数的概念。
2.呈现(10分钟)呈现有理数的定义和分类,通过PPT展示有理数的图像和特点,让学生直观地理解和掌握有理数的分类。
3.操练(10分钟)让学生进行有理数的运算练习,如加、减、乘、除等,引导学生理解和掌握有理数的运算规则。
4.巩固(10分钟)通过一些实际问题,让学生运用所学的有理数知识和运算规则进行解答,巩固所学知识。
人教版(2024版)初中数学七年级上册 第一章有理数 1.2.1 有理数的概念 教学设计

课堂教学设计1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;复习巩固话题迅速将学生的注意力吸引到课堂上来。
使学生生认知冲突,渴艺望了解其中的奥秘从而调动了学生学习的积极性。
2、精讲新课在小学阶段和上一节中,我们认识了很多数。
回想一下,到目前为止,我们认识了哪些数? 你能举几个例子吗?写在黑板上。
观察黑板上的这些数,能否将所写的数按如下类型进行归类呢?有限小数:0.5 0.25 0.125 1.3 -0.5进一步地,正整数可以写成正分数的形式,可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数辨析学生自己尝试分类时,可能会很大略,教师赐予引导和鼓励,划分数的种类要从文字所表示的意义上去引导,这样学生易于理角军有限小数或无限循环小数都可以化成分数,为下-问题做好铺垫,通过将三者进行比较,归纳得出有理数是一个整数和-个非零整数的比的本质特征,让学生深入理解有理数的概念在多媒体上展示有理数的分类表,分分类的标准要引导学生去体会2、精讲新课小故事:有理数其实并不比别的数更“有道理”,事实上是一个翻译失误。
有理数(rational number)一词从西方传来,rational通常的意义是“理性的”,所以被误译为有理数。
但这个词实际上来源于古希腊,在古希腊语中是比率的意思。
所以意义也很明显,就是整数的“比”。
毕达哥拉斯学派认为,世界上一切对象都是由整数或整数之间的商组成,这就是“万物皆数”理论,也是人类对有理数最早的认识和总结。
《1.2.1有理数》学历案-初中数学人教版12七年级上册

《1.2.1 有理数》学历案(第一课时)一、学习主题本课主题为“有理数”,是初中数学课程的重要一环。
通过本课的学习,学生将掌握有理数的概念、性质及运算,为后续学习奠定基础。
二、学习目标1. 理解有理数的概念,能正确区分有理数和无理数。
2. 掌握有理数的表示方法,能运用正负号表示相反意义的量。
3. 学会进行有理数的加、减法运算,并能够利用有理数解决一些简单的实际问题。
三、评价任务1. 通过课堂问答及课后小测,评价学生对有理数概念的掌握程度。
2. 通过学生的作业和课堂表现,评价其运算能力及解决问题的能力。
3. 观察学生对于概念及知识点的理解及运用,以及学习过程中的积极性及态度表现,并进行形成性评价。
四、学习过程1. 导入新课:通过回顾实数概念,引出有理数的定义及特点,激发学生兴趣。
2. 新课讲解:(1)定义与分类:讲解有理数的定义及分类,通过实例加深学生对概念的理解。
(2)表示方法:介绍有理数的表示方法,包括正负号的使用等。
(3)加法与减法:通过具体实例,讲解有理数的加法与减法运算规则,并强调运算的注意事项。
3. 学生活动:(1)小组讨论:学生分组讨论有理数的实际应用,如温度的表示、财务的收支等。
(2)互动问答:教师提出问题,学生回答,检验学生对新知识的掌握情况。
(3)练习巩固:学生独立完成课后习题,加深对知识的理解与运用。
4. 课堂总结:回顾本课重点内容,强调有理数的重要性及实际应用。
五、检测与作业1. 课堂小测:进行简单的有理数加法、减法运算测试,检验学生的运算能力。
2. 课后作业:布置相关习题,包括有理数的加法、减法运算及实际问题的解决等,要求学生独立完成并思考解题方法。
3. 学习反思:学生课后进行学习反思,总结本课学习的收获与不足。
六、学后反思学生应在学习完本课后进行反思,包括对知识的理解程度、学习方法的运用及学习态度的调整等。
教师也可根据学生的反思情况,调整教学方法及策略,以更好地帮助学生掌握知识。
1.2.1有理数(教案)

此外,在实践活动和小组讨论中,学生们表现出较高的积极性。他们能够将所,我也发现部分学生在讨论中过于依赖同伴,缺乏独立思考。在未来的教学中,我将鼓励学生更多地进行独立思考,培养他们的自主学习能力。
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
5.培养学生的合作意识,通过小组讨论、互助学习,提高学生团队协作能力和沟通能力,培养集体荣誉感。
三、教学难点与重点
1.教学重点
(1)有理数的定义:理解整数和分数统称为有理数,这是学习有理数运算的基础。
举例:强调0、正整数、负整数、正分数、负分数都属于有理数,让学生明确有理数的范围。
(2)有理数的性质:掌握有理数的加减乘除运算规律,特别是同号相加减、异号相加减、同号得正异号得负等。
举例:讲解正数加正数、负数加负数、正数加负数等运算规律,并强调乘除运算的符号规律。
(3)有理数的运算顺序:理解并掌握先乘除后加减的运算顺序,能够正确进行混合运算。
举例:给出混合运算题目,如3 + 2 × (-4) ÷ 2,让学生明确运算顺序并解答。
【 七年级数学 上册】1.2.1 《有理数》教案2

【七年级数学上册】1.2.1 《有理数》教案2一. 教材分析《有理数》是七年级数学上册的第一章第二节的内容,主要介绍了有理数的概念、分类及运算。
本节课的内容是学生学习更复杂数学知识的基础,对于培养学生逻辑思维能力、抽象思维能力具有重要意义。
教材通过丰富的例题和练习题,帮助学生掌握有理数的基本概念和运算方法,为学生后续学习数学知识奠定基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对数学运算有一定的了解。
但部分学生可能对负数和分数的概念理解不深,对有理数的分类和运算方法掌握不牢固。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.了解有理数的概念,掌握有理数的分类。
2.掌握有理数的运算方法,能够进行简单的有理数运算。
3.培养学生的逻辑思维能力、抽象思维能力。
4.培养学生合作学习、积极探究的学习态度。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
3.学生对负数和分数的理解。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,共同探究有理数的分类和运算方法。
3.练习法:通过大量练习,巩固学生对有理数的理解和运算能力。
4.启发式教学:教师提问,引导学生思考,提高学生的逻辑思维能力。
六. 教学准备1.教学PPT:制作含有丰富图片、例题和练习题的PPT,辅助教学。
2.练习题:准备适量有针对性的练习题,巩固学生对有理数的掌握。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引出有理数的概念。
引导学生思考:这些实例中的数属于哪种类型?从而引出有理数的概念。
2.呈现(10分钟)通过PPT展示有理数的分类,包括整数、分数、正数、负数等。
同时,介绍有理数的运算方法,如加、减、乘、除等。
3.操练(10分钟)学生分组进行练习,教师巡回指导。
人教新版(2024)七年级数学上册-1.2.1 有理数(教案)

1.2.1有理数【教学目标】1.使学生理解整数、分数、有理数的概念,并会判断一个给定的数是整数、分数或有理数.2.经历对有理数进行分类的过程,明确有理数分为整数和分数,同时也可以分为正数、0和负数,培养学生观察、比较和概括的能力.体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求做到不重不漏.【教学重点难点】重点:整数、分数、有理数的概念.难点:有理数的分类及其标准.【教学过程】一、创设情境复习引入:在巴黎奥运会网球女子单打金牌赛中,中国选手郑钦文大比分2:0战胜克罗地亚选手维基奇,夺得金牌,实现了中国女子网球单打金牌0的突破.在女子柔道52公斤的冠军争夺战中,中国选手冼东妹仅用1.1分钟,就为中国柔道队夺得首枚金牌.女力士唐功红在女子+75公斤级举重比赛中,不负众望,以抓举122.5公斤,挺举182.5公斤,总成绩305公斤夺得第18枚金牌,与获银牌的韩国选手相比,她的抓举重量-7.5公斤,挺举重量+10公斤.探究:1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?2.在小学里学过的数中,有没有哪类数没有出现?请举例说明.3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?4.由前面的结论,小学里学的数可以分为哪几类?5.引入负数后,整数除了小学学的整数外,还包含其他的整数吗?分数除了小学学的分数外,还包含其他的分数吗?二、探究归纳探究点1:有理数的概念1.正整数可以写成正分数的形式吗?负整数可以写成分数的形式吗?如何写?2.0如何写成分数的形式?3.由探究中的第3问,你能得到什么结论?所有的整数都可以写成分数的形式,如2=21,-3=-31,0=01. 有限小数及无限循环小数都可以化为分数,因此也可以看成是分数.特别提示:既不是正数,也不是负数!要点归纳:正整数、零和负整数统称数.正分数和负分数都是数.可以写成形式的数称为有理数.注意:目前我们所学的小数都可以化成数,所以把小数划分到数一类.【设计意图】在讨论交流中将学过的数进行归类和统一,同时让学生明确有理数的表示形式.探究点2:有理数的分类问题:统一了有理数表示形式及引入了负数之后,有理数可以分成正有理数和负有理数两类吗?为什么?要让学生明确:①0既不是正数也不是负数,0是有理数,是整数.②还存在一些正数和负数是我们没有学习的,但它们不是有理数.(如圆周率π)③我们把有理数中的正数部分叫作正有理数,负数部分叫作负有理数.有理数零{说明:1.①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,但零既不是正数,也不是负数.2.把一些数放在一起,就组成一个数的集合,简称数集(set of number).所有正数组成的集合,叫作正数集合;所有负数组成的集合叫作负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫作自然数集合.【设计意图】分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类(即要不重不漏).【典例剖析】例1:教材P7【例1】.例2:把下列各数填入相应集合的括号内:29,-5.5,2 002,67,-1,90%,3.14,0,-213,-0.01,-2,1 (1)整数集合:{ }(2)分数集合: { }(3)正整数集合:{ }(4)负整数集合:{ }(5)正有理数集合: { }(6)负有理数集合: { }【方法技巧】要正确判断一个数属于哪一类,首先要弄清分类的标准.要特别注意“0”不是正数,但是整数.在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.三、检测反馈1.下列说法中,正确的是 ( )A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数2.下列各数:-2,5,-13,0.63,0,7,-0.05,-6,9,115,54,其中正数有 个,负数有 个,自然数有 个,整数有 个.3.判断:(1)0是整数. ( )(2)自然数一定是整数. ( )(3)0一定是正整数. ( )(4)整数一定是自然数. ( )4.填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是分数的是 .(2)零是 ,还是 ,但不是 ,也不是 .5.把下列各数填入相应的集合内:127,-3.141 6,0,2025,-85,-0.234,10%,10.1,0.67,-89四、本课小结同学们,请你回想一下,这节课你有什么收获?【学生对本节课进行知识梳理,巩固教学目标.培养学生的归纳能力,让学生的认知结构在反思中得到内化和升华.】五、布置作业课堂作业:P8练习课后作业:P16T1六、板书设计七、教学反思1.本节课的重要思想是转化思想、分类思想.统一有理数的表示形式,并根据数的正负进行分类.有理数表示为分数形式比较重要,在以后的学习中,学生将会逐渐体会到它在数学中的价值.集合的观点比较抽象,学生真正接受需要长期的过程.教学中还要关注小数、百分数等可以化为分数的交待与说明.2.《数学课程标准》提出:数学学习应使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重渗透分类的方法和集合思想,为后继学习奠定了良好的基础.。
新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
最新2024人教版七年级数学上册1.2.1 有理数--教案

1.2 有理数1.2.1 有理数主要师生活动一、创设情境,导入新知回想一下,我们认识了哪些数?师生活动:学生根据所学内容,回忆所学过的数,同时举出相应的例子,既可以让学生复习旧的知识,又可以在所提问题中发现新的知识.二、小组合作,探究概念和性质知识点一:有理数探究一请给下面的数找到家.师生活动:学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
对于剩下的不能分类的,老师可以追问:分组探究小数和分数之间能否互化,所有的小数都能化成分数吗?5.32 = -150.25 =157 = -23 =师生活动:让学生尝试解答,并互相交流,教师结合学生的具体活动,加以指导,得出结论 可以化成分数的小数可以看成分数. 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数, 它们分别是“正整数,零,负整数,正分数,负分数”.探究二 请给下面的家找到家族.师生活动:教师引导学生与同桌分析、交流、归纳,理解有理数以及有理数的分类,按照书本的说法, 得出“整数”“分数”和“有理数”的概念:正整数,零和负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.看书了解有理数名称的由来. 师强调:“统称”是指“合起来总的名称”的意思.合作探究:请类比定义分类,有理数按照符号该怎么分类呢?师说明:把一些数放在一起,就组成一个数的集合,简称数集. 所有的有理数组成的数集叫做有理数 集,所有整数组成的数集叫做整数集.三、当堂练习,巩固所学1.下列关于0的说法,不正确的是( )A. 既不是正数,也不是负数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是负数,是有理数2.把下列各数填入相应的集合内:1.任意写出5个数(不能重复),同时满足下列三个条件:①其中3个数是非正数;②其中3个数是非负数;③5个数都是有理数.有理数教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1有理数教案
教材来源:初中年级《数学(上册)》教科书/人民教育出版社
内容来源:初中七年级《数学(上册)》第一章
教学内容:有理数
课时安排:1课时
授课对象:七年级学生
目标确定的依据:
1.课程标准相关要求:
理解有理数的意义。
2.教材分析:
有理数是学习初中数学的基础,不仅在数学理论体系中有重要的地位,其本身也有重要的实际应用价值。
3.学情分析:
七年级学生已经有了整数、分数的概念,并在前一节课中刚刚学习完正数和负数。
学生希望对这些数进行归纳和分类,在此基础上学习本节内容就顺理成章了。
学生在有理数按照正负分类时可能对0忽略。
目标:
1.能说出有理数的概念。
2.能将有理数进行正确分类。
评价任务:
1.通过自主探究完成目标1.
2.通过应用新知相关习题和达标检测 9 ,检测学生是否能完成目标2。
学法指导:
学生通过做前置作业,归纳我们所学过的数可以按一定的标准来分类。
这样学生就自然的将数的范围扩大到了有理数,也就明白了数的范围扩展的必要性。
再辅以必要的练习,相信学习者能够完成本节目标。
前置作业:预习课本第6页,并完成下列任务:
1.按要求对数字进行分类 0负数
-1 -2 -3 -3.541-21-…正数+1 +2 +3 +3.54
1+21+…正整数正分数0
负整数负分数
整数分数-1 -2 -3 0 +1 +2 +3
41+21++3.5…21--3.541-
2. _____________是整数,___________是分数。
_________和________统称为有理数。
3.做第6页习题1.2
教学过程:
一. 知识链接:什么是正数?什么是负数?0既不是_____也不是____
二. 情景引入
我们所在班级很容易分成两个集合,你是按什么分的?我们所学习的数也能进行分类和汇总,同学们想知道吗?
三.展示前置作业
四.应用新知
1.将下列各数写在相应的集合里。
-5,10,-4.5,0,325
+,-2.15,0.01,+66,35-,15%,227,2014,-16
正整数:负整数:
正分数:负分数:
整数:分数:
正数:负数:
有理数:
2.有理数按定义分类有理数按正负分类
3.正数和0我们称为非负数,那么负数和0就称为___________。
五.交流研讨展示成果
六.归纳提升
什么是有理数?怎样对有理数进行分类?
七.拓展延伸:
1.下列说法错误的是()
A .负整数和负分数统称负有理数 B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数 D.3.14是小数,也是分数
2.下列说法正确的是()
A.0既不是正数,也不是负数,也不是整数 B.正整数与负整数统称为整数C.-3.14既是分数,也是负数,也是有理数 D.0是最小的有理数
八.达标测评:等级__________ 1.下列说法中正确的个数有()
①-33
5
是负分数;②2.4不是整数;③非负有理数不包括零;④正整数、负整
数统称为整数;⑤0是最小的有理数。
A.1个 B.2个 C.3个 D.4个2.下面说法正确的是()
A.整数又叫自然数 B.0是整数但不是正数
C.正数和负数统称为有理数 D.0是最小的数
3.-99不是( )
A.有理数 B.自然数 C.负有理数 D.整数
4.下列说法中,不正确的是()
A.-3.14既是负数,分数,也是有理数 B.0既不是正数,也不是负数,但是整数
C.-2004既是负数,也是整数,但不是有理数 D.0是非正数
5.下列说法正确的个数为()
① 0是整数②负分数一定是负有理数③一个数不是正数就是负数A.0个 B.2个 C.3个 D.1个
6.把下列各数分别填入相应的大括号里.
-1
3
,0.618,一3.14,260,-2002,
6
7
,一0.3,一5%,0
(1)整数:{ } (2)分数:{ } (3)正有理数:{ } (4)负有理数:{ } (5)有理数:{ } 九.教师反思。