{高中试卷}高一上数学各知识点梳理:映射与函数[仅供参考]

合集下载

高一数学上册全单元知识点

高一数学上册全单元知识点

高一数学上册全单元知识点一、函数与导数1. 函数与映射- 函数的定义与性质- 映射的概念与表示2. 函数的表示与性质- 函数的图像与坐标系- 奇偶函数与周期函数- 函数的单调性与最值3. 函数的运算- 函数的四则运算与复合运算- 函数的反函数与恒等函数- 函数的映射关系与可逆性4. 导数与函数的变化率- 函数的导数定义与几何意义- 导数的性质与计算方法- 函数的单调区间与极值点5. 初等函数与导数- 幂函数与指数函数的导数- 三角函数与反三角函数的导数- 对数函数与常数函数的导数二、二次函数与一元二次方程1. 二次函数的图像特征- 二次函数的标准形式与顶点形式- 二次函数图像的平移与伸缩- 二次函数图像的对称性与特殊情况2. 二次函数与一元二次方程- 二次函数与一元二次方程的关系- 一元二次方程的根与因式分解- 一元二次方程的解的判别式与求解方法3. 二次函数与一元二次不等式- 二次函数与一元二次不等式的关系- 一元二次不等式的解与解集表示- 一元二次不等式的图像与应用三、平面向量与解析几何1. 平面向量的概念与运算- 平面向量的定义与性质- 平面向量的数量积与向量投影- 平面向量的线性运算与共线性判定2. 解析几何的基本概念- 点、直线和平面的坐标表示- 直线和平面的位置关系与垂直判定- 点到直线的距离与角平分线的性质3. 直线与圆的方程- 直线的斜截式、截距式与一般式- 圆的标准方程与一般方程- 直线与圆的位置关系与交点计算4. 空间向量与空间解析几何- 空间向量的概念与坐标表示- 空间向量的数量积与向量投影- 空间点、直线和平面的方程与位置关系四、三角函数与解三角形1. 三角函数的基本概念与性质- 弧度制与角度制的换算- 三角函数的定义与性质- 三角恒等式的推导与应用2. 三角函数的图像与变换- 三角函数图像的周期与轴对称性- 三角函数的平移、挤压与反转变换- 三角函数图像的合成与拆分3. 三角函数的应用- 幅角的求解与解的表示- 三角函数在周期内的性质与应用- 三角函数与三角方程的关系4. 解三角形的基本原理与方法- 根据已知条件解三角形- 利用解三角形求解实际问题- 解三角形的特殊情况与应用五、概率统计与排列组合1. 概率与事件- 概率的基本概念与性质- 事件的概念与运算- 事件的概率计算与应用2. 随机变量与概率分布- 随机变量的概念与分类- 概率分布的概念与性质- 随机变量的数学期望与方差3. 排列与组合的基本概念- 排列与组合的定义与计算公式- 二项式定理的推导与应用- 排列组合在实际问题中的应用4. 统计与抽样调查- 统计数据的搜集与整理- 抽样调查的基本方法与误差分析- 统计图表的制作与分析。

(完整版)高一数学函数全章知识点整理,推荐文档

(完整版)高一数学函数全章知识点整理,推荐文档
ቤተ መጻሕፍቲ ባይዱ
x 1 x 1
8.(图象法) y 3 2x x2 (1 x 2)
四.函数的奇偶性 1.定义: 设 y=f(x),x∈A,如果对于任意 x ∈A,都有 f (x) f (x) ,则称 y=f(x)为偶函数。
如果对于任意 x ∈A,都有 f (x) f (x) ,则称 y=f(x)为奇函数。
2 求函数定义域的两个难点问题
(1) 已知f (x)的定义域是[ - 2, 5] , 求f ( 2x+3) 的定义域。
(2) 已知f (2x-1的) 定义域是[ - 1, 3] , 求f ( x) 的定义域
三、函数的值域
1
1 求函数值域的方法
①直接法:从自变量 x 的范围出发,推出 y=f(x)的取值范围,适合于简单的复合函数;
b ,顶点坐标 (
b
4ac b 2
,
)
2a
2a 4a
2.二次函数与一元二次方程关系
一元二次方程 ax 2 bx c 0(a 0) 的根为二次函数 f(x)=ax2+bx+c(a≠0) y 0 的 x 的取值。
一元二次不等式 ax 2 bx c 0( 0) 的解集(a>0)
二次函数 Y=ax2+bx+c (a>0)
△情况 △=b2-4ac
一元二次不等式解集
ax2+bx+c>0
ax2+bx+c<0
(a>0)
(a>0)

象 与
△>0
x x x1或x x2
x x1 x x2

3
△=0
x x x0
△<0

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

高一函数知识点汇总

高一函数知识点汇总

高 一 函 数一。

函数的概念1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B 。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射二。

求函数定义域的方法1、已知解析式求定义域 1)、分母不为零;2)、偶数次的开方数大于或等于零; 3)、真数大于零;4)、底数大于零且不等于1。

5)x 0中的x 不为零例题1.2143)(2-+--=x x x x f2.x x x x f -+=)1()(3、g(x)=211+-++x x2、抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。

1)设)(x f 的定义域是[-3,求函数)2(-x f 的定义域。

2)已知y=f(2x+1)的定义域为[-1,1],求f(x)的定义域; 3)已知y=f(x+3)的定义域为[1,3],求f(x-1)的定义域. 4)若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y +)41(-x f 定义域三、求函数值域的方法1)观察法 2)图象法 3)分式分离常数法 4)换元法 5)判别式法 6)配方法 7)函数单调性法 8)反函数法 例题 (1)335-+=x x y (2)22++-=x x y(3)132222++++=x x x x y (4)xx y 314--=(5)1212-+=x x y (6) 21414()log (2)log ,,82f x x x x ⎡⎤=⋅∈⎢⎥⎣⎦例求函数的值域(7)四、求函数解析式(1)配凑法;(2)换元法; (3)待定系数法;(4)方程组法. 例题(1)已知3311()f x x x x+=+,求()f x ;(2)已知2(1)lg f xx+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .五、函数的单调性1、证明函数的单调性要利用定义来证明2、没有告诉函数的单调性,而我们要利用这一性质时,应该先证明(在解答题中应用较多)3、判断单调性的方法:①定义; ②导数; ③复合函数单调性:同增则增,异增则减; 用定义证明函数的单调性的步骤:(1)设x 1<x 2, 并是某个区间上任意二值; (2)作差 f(x 1)-f(x 2) (3)判断 f(x 1)-f(x 2) 的符号:①分解因式, 得出因式x1-x2 ②配成非负实数和. (4)作结论. 4、常用结论:①两个增(减)函数的和为_______;一个增(减)函数与一个减(增)函数的差是_______; ②奇函数在对称的两个区间上有_______的单调性;偶函数在对称的两个区间上有_________的单调性;1)、如果对于属于定义域内某个区间的任意两个自变量的值x1 , x2 ,当x1 < x2 时,都有f (x1)<f (x2) ,那么就说f (x)在这个区间上是增函数[]1:()422,1,1.x x f x x +=-+∈-练习求的值域2)、如果对于属于定义域内某个区间的任意两个自变量的值x1 , x2 ,当x1 < x2 时,都有f (x1)>f (x2) ,那么就说f (x)在这个区间上是减函数。

大一高数知识点映射与函数

大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。

在这篇文章中,我们将重点讨论高数中的映射与函数。

一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。

在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。

映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。

映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。

即不同的元素在映射中有不同的对应元素。

2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。

即每一个元素都有对应的映射元素。

3. 一一映射:即又是单射又是满射的映射。

二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。

函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。

函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。

2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。

3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。

4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。

5. 对称性:函数是否具有关于某个轴的对称性。

三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。

下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。

2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。

3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。

4. 三角函数:包括正弦函数、余弦函数和正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。

【精】高中数学知识点总结-映射与函数概念

【精】高中数学知识点总结-映射与函数概念

映射与函数的概念1.映射的概念设A ,B 为非空集合,在某种对应关系f 的作用下,使集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么称f:A →B 为从集合A 到集合B 的一个映射。

2.函数的概念从非空数集A 到非空数集B 的映射叫做函数,其中A 是定义域,C 是值域(C ⊆B )。

函数的三要素:定义域,对应关系,值域。

定义域和对应关系确定,则值域确定,函数确定。

(1)求定义域①分式:分母不能为0。

②根式:偶次根式的被开方数大于等于0。

③指数:底数大于0且不等于1。

④对数:底数大于0且不等于1,真数大于0。

⑤x 0中x ≠0。

⑥tanx 中的x ≠k π+π/2。

(2)求值域①观察法:求函数y =x+1+1的值域。

解:该函数的定义域为[﹣1,+∞].∵√x +1≥0,∴√x +1+1≥1,∴0<√x+1+1≤1. 该原函数的值域为(0,1].②换元法:求函数y =x +√x −1的值域。

解:该函数的定义域为[﹣1,+∞). 令√x −1=t (t ≥0),则x =t ²-1.∴y=t ²+t +1.(t ≥0)求得y=t ²+t +1值域为[1,﹢∞),即原函数的值域.③分离常数法:求函数y =﹣x²x²+1的值域。

解:该函数的定义域为R.该函数=﹣(x 2+1)−1x²+1=﹣1+1x²+1.∵x ²+1≥1,∴0<1x²+1.≤1,∴﹣1<﹣1+1x²+1≤0.该函数的值域为(﹣1,0]. 归纳:形如y =Cx+D Ax+B (A,B,C,D 为常数且A ≠0)或y =Cx²+DAx²+B (A,B,C,D 为常数且A ≠0)的函数可以采用分离常数法,分离到y =c ax+b +d (a,b,c,d 为常数且a ≠0)或y =c ax²+b +d (a,b,c,d 为常数且a ≠0),前者的值域为y ≠d ,求后者的值域是y =c ax²+b 的值域加上d 。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高一上数学各知识点梳理:映射与函数

高一上数学各知识点梳理:映射与函数

5、映射与函数一、选择题〔每题5分,共60分,请将所选答案填在括号内〕 1.以下对应是从集合A 到集合B 的映射的是〔 〕A .A =R ,B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N +,x ∈A ,f :x →|x -1|C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2D .A =Q ,B =Q ,f :x →x12.映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的象,且对任意的a ∈A ,在B 中和它对应的元素是|a|,那么集合B 中的元素的个数是 〔 〕A .4B .5C .6D .73.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,那么在映射f 下,象20的原象是〔 〕A .2B .3C .4D .54.在x 克a %的盐水中,参加y 克b %的盐水,浓度变成c %(a ,b >0,a ≠b ),那么x 与y 的函数关系式是〔 〕A .y =b c ac --x B .y =c b ac --xC .y =c b ca --xD .y =ac c b --x5.函数y=3232+-x x 的值域是〔 〕A .(-∞,-1 )∪(-1,+∞)B .(-∞,1)∪(1,+∞)C .(-∞,0 )∪(0,+∞)D .(-∞,0)∪(1,+∞)6.以下各组中,函数f (x )和g(x )的图象一样的是〔 〕A .f (x )=x ,g(x )=(x )2B .f (x )=1,g(x )=x 0C .f (x )=|x |,g(x )=2xD .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x7.函数y =1122---x x 的定义域为〔 〕A .{x |-1≤x ≤1}B .{x |x ≤-1或x ≥1}C .{x |0≤x ≤1}D .{-1,1}8.函数f (x )的定义域为[0,1],那么f (x 2)的定义域为〔 〕A .(-1,0)B .[-1,1]C .(0,1)D .[0,1]9.设函数f (x )对任意x 、y 满足f (x +y )=f (x )+f (y ),且f (2)=4,那么f (-1)的值为〔 〕A .-2B .±21C .±1D .210.函数y=2-x x 42+-的值域是 〔 〕A .[-2,2]B .[1,2]C .[0,2]D .[-2,2]11.假设函数y=x 2—x —4的定义域为[0,m ],值域为[254-,-4],那么m 的取值范围是 〔 〕 A .(]4,0 B .[23,4] C .[23 ,3] D .[23,+∞]12.函数f (x +1)=x +1,那么函数f (x )的解析式为〔 〕A .f (x )=x 2B .f (x )=x 2+1(x ≥1)D .f (x )=x 2-2x +2(x ≥1) C .f (x )=x 2-2x (x ≥1)二、填空题〔每题4分,共16分,请将答案填在横线上〕13.己知集合A ={1,2,3,k } ,B = {4,7,a 4,a 2+3a },且a ∈N*,x ∈A ,y ∈B ,使B中元素y =3x +1和A 中的元素x 对应,那么a =__ _, k =__ . 14.假设集合M={-1,0,1} ,N={-2,-1,0,1,2},从M 到N 的映射满足:对每个x ∈M ,恒使x +f (x) 是偶数, 那么映射f 有__ __个. 15.设f (x -1)=3x -1,那么f (x )=__ _______.16.函数f (x )=x 2-2x +2,那么f (1),f (-1),f (3)之间的大小关系为 .三、解答题〔本大题共74分,17—21题每题12分,22题14分〕 17.〔1〕假设函数y = f (2x +1)的定义域为[ 1,2 ],求f (x )的定义域.〔2〕函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x)的定义域. 18.〔1〕已f (x 1)=xx-1,求f (x )的解析式. 〔2〕y =f (x )是一次函数,且有f [f (x )]=9x +8,求此一次函数的解析式. 19.求以下函数的值域:〔1〕y =-x 2+x ,x ∈[1,3 ] 〔2〕y =11-+x x〔3〕y x =20.函数ϕ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(31)=16,ϕ(1)=8. 〔1〕求ϕ(x )的解析式,并指出定义域; 〔2〕求ϕ(x )的值域.21.如图,动点P 从单位正方形ABCD 顶点A 开场,顺次经B 、C 、D 绕边界一周,当x 表示点P 的行程,y 表示PA 之长时,求y 关于x 的解析式,并求f (25)的值.22.季节性服装当季节即将降临时,价格呈上升趋势,设某服装开场时定价为10元,并且每周(7天)涨价2元,5周后开场保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售. 〔1〕试建立价格P 与周次t 之间的函数关系式.〔2〕假设此服装每件进价Q 与周次t 之间的关系为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N *,试问该服装第几周每件销售利润L 最大?参考答案一、选择题: CACBB CDBAC CC 二、填空题:x +2,16.f (1)<f (3)<f (-1) 三、解答题:17.解析:〔1〕f (2x +1)的定义域为[1,2]是指x 的取值范围是[1,2],)(,5123,422,21x f x x x ∴≤+≤∴≤≤∴≤≤的定义域为[3,5]〔2〕∵f (x )定义域是[-21,23]∴g (x )中的x 须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-2332123321x x2161 29232161≤≤-∴⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-x x x 即 ∴g (x )的定义域为[-21,61].18.解析:〔1〕设11)(11111)(,1,1,-=∴-=-===x x f t tt t f t x x t 得代入则(x ≠0且x ≠1)〔2〕设f (x )=ax +b ,那么f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =9x +843)(23)()(,4233892--=+=∴⎩⎨⎧-=-=⇒⎩⎨⎧=+=∴x x f x x f x f b a b ab a 或的解析式为或或 19.解析:〔1〕由y=-x 2+x ⇒2)21(41--=x y ,∵410,31≤≤∴≤≤y x .〔2〕可采用别离变量法. 12111-+=-+=x x x y ,∵1,012≠∴≠-y x∴值域为{y|y ≠1且y ∈R.}(此题也可利用反函数来法) 〔3〕令12u x =- (0u ≥),那么21122x u =-+, 22111(1)1222y u u u =--+=-++, 当0u ≥时,12y ≤,∴函数12y x x =--的值域为1(,]2-∞.20.解析: (1)设f (x )=ax ,g (x )=x b ,a 、b 为比例常数,那么ϕ(x )=f (x )+g (x )=ax +xb 由⎪⎩⎪⎨⎧=+=+⎪⎩⎪⎨⎧==8163318)1(,16)31(b a b a 得ϕϕ,解得⎩⎨⎧==53b a∴ϕ(x )=3x +x 5,其定义域为(-∞,0)∪(0,+∞) (2)由y =3x +x5,得3x 2-yx +5=0(x ≠0)∵x ∈R 且x ≠0,∴Δ=y 2-60≥0,∴y ≥215或y ≤-215 ∴ϕ(x ) 的值域为(-∞,-215]∪[215,+∞) 21.解析:当P 在AB 上运动时,y =x ,0≤x ≤1,当P 在BC 上运动时,y =2)1(1-+x ,1<x ≤2 当P 在CD 上运动时,y =2)3(1x -+,2<x ≤3 当P 在DA 上运动时,y =4-x ,3<x ≤4∴y =()()()()⎪⎪⎩⎪⎪⎨⎧≤<-≤<-+≤<-+≤≤43432)3(121 )1(11022x x x x x x x x ∴f (25)=2522.解析:(1)P = ⎪⎩⎪⎨⎧∈∈-∈∈∈∈+*]16,10[ 240*]10,5[20*[0,5)210N N N t t t t t t t t 且且且 (2)因每件销售利润=售价-进价,即L =P -Q故有:当t ∈[0,5)且t ∈N *时,L =10+2t +0.125(t -8)2-12=81t 2+6 即,当t =5时,L max当t ∈[5,10)时t ∈N *时,Lt 2-2t +16 即t =5时,L max当t ∈[10,16]时,Lt 2-4t +36 即t =10时,L max由以上得,该服装第5周每件销售利润L 最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:5、映射与函数一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.下列对应是从集合A 到集合B 的映射的是 ( )A .A =R ,B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N +,x ∈A ,f :x →|x -1|C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2D .A =Q ,B =Q ,f :x →x1 2.已知映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的象,且对任意的a ∈A ,在B 中和它对应的元素是|a|,则集合B 中的元素的个数是 ( ) A .4B .5C .6D .73.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是( ) A .2B .3C .4D .54.在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %(a ,b >0,a ≠b ),则x 与y 的函数关系式是( )A .y =b c ac --x B .y =c b ac --x C .y =c b ca --xD .y =ac c b --x5.函数y=3232+-x x 的值域是( )A .(-∞,-1 )∪(-1,+∞)B .(-∞,1)∪(1,+∞)C .(-∞,0 )∪(0,+∞)D .(-∞,0)∪(1,+∞)6.下列各组中,函数f (x )和g(x )的图象相同的是( )A .f (x )=x ,g(x )=(x )2B .f (x )=1,g(x )=x 0C .f (x )=|x |,g(x )=2xD .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x7.函数y =1122---x x 的定义域为( )A .{x |-1≤x ≤1}B .{x |x ≤-1或x ≥1}C .{x |0≤x ≤1}D .{-1,1}8.已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为( )A .(-1,0)B .[-1,1]C .(0,1)D .[0,1]9.设函数f (x )对任意x 、y 满足f (x +y )=f (x )+f (y ),且f (2)=4,则f (-1)的值为( )A .-2B .±21C .±1D .210.函数y=2-x x 42+-的值域是 ( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2]11.若函数y=x 2—x —4的定义域为[0,m ],值域为[254-,-4],则m 的取值范围是( ) A .(]4,0 B .[23,4] C .[23 ,3] D .[23,+∞]12.已知函数f (x +1)=x +1,则函数f (x )的解析式为( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) D .f (x )=x 2-2x +2(x ≥1)C .f (x )=x 2-2x (x ≥1)二、填空题(每小题4分,共16分,请将答案填在横线上)13.己知集合A ={1,2,3,k } ,B = {4,7,a 4,a 2+3a },且a ∈N*,x ∈A ,y ∈B ,使B中元素y =3x +1和A 中的元素x 对应,则a =___,k =__.14.若集合M={-1,0,1} ,N={-2,-1,0,1,2},从M 到N 的映射满足:对每个x ∈M ,恒使x +f (x) 是偶数, 则映射f 有____个. 15.设f (x -1)=3x -1,则f (x )=_________.16.已知函数f (x )=x 2-2x +2,那么f (1),f (-1),f (3)之间的大小关系为.三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.(1)若函数y = f (2x +1)的定义域为[ 1,2 ],求f (x )的定义域.(2)已知函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x)的定义域. 18.(1)已f (x 1)=xx-1,求f (x )的解析式. (2)已知y =f (x )是一次函数,且有f [f (x )]=9x +8,求此一次函数的解析式. 19.求下列函数的值域:(1)y =-x 2+x ,x ∈[1,3 ] (2)y =11-+x x(3)y x =20.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且ϕ(31)=16,ϕ(1)=8.(1)求ϕ(x)的解析式,并指出定义域;(2)求ϕ(x)的值域.21.如图,动点P从单位正方形ABCD顶点A开始,顺次经B、C、D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f(25)的值.22.季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式.(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该服装第几周每件销售利润L最大?参考答案一、选择题:CACBB CDBAC CC二、填空题:13.a=2,k=5,14.12 ,15.3x+2,16.f(1)<f(3)<f(-1)三、解答题:17.解析:(1)f(2x+1)的定义域为[1,2]是指x的取值范围是[1,2],)(,5123,422,21xfxxx∴≤+≤∴≤≤∴≤≤的定义域为[3,5](2)∵f(x)定义域是[-21,23]∴g(x)中的x须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-2332123321xx2161 29232161≤≤-∴⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-x x x 即∴g (x )的定义域为[-21,61].18.解析:(1)设11)(11111)(,1,1,-=∴-=-===x x f t tt t f t x x t 得代入则(x ≠0且x ≠1)(2)设f (x )=ax +b ,则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =9x +843)(23)()(,4233892--=+=∴⎩⎨⎧-=-=⇒⎩⎨⎧=+=∴x x f x x f x f b a b ab a 或的解析式为或或 19.解析:(1)由y=-x 2+x ⇒2)21(41--=x y ,∵410,31≤≤∴≤≤y x .(2)可采用分离变量法. 12111-+=-+=x x x y ,∵1,012≠∴≠-y x∴值域为{y|y ≠1且y ∈R.}(此题也可利用反函数来法) (3)令12u x =- (0u ≥),则21122x u =-+, 22111(1)1222y u u u =--+=-++,当0u ≥时,12y ≤,∴函数12y x x =--的值域为1(,]2-∞.20.解析: (1)设f (x )=ax ,g (x )=x b ,a 、b 为比例常数,则ϕ(x )=f (x )+g (x )=ax +xb由⎪⎩⎪⎨⎧=+=+⎪⎩⎪⎨⎧==8163318)1(,16)31(b a b a 得ϕϕ,解得⎩⎨⎧==53b a∴ϕ(x )=3x +x 5,其定义域为(-∞,0)∪(0,+∞) (2)由y =3x +x5,得3x 2-yx +5=0(x ≠0)∵x ∈R 且x ≠0,∴Δ=y 2-60≥0,∴y ≥215或y ≤-215 ∴ϕ(x ) 的值域为(-∞,-215]∪[215,+∞) 21.解析:当P 在AB 上运动时,y =x ,0≤x ≤1,当P 在BC 上运动时,y =2)1(1-+x ,1<x ≤2 当P 在CD 上运动时,y =2)3(1x -+,2<x ≤3 当P 在DA 上运动时,y =4-x ,3<x ≤4∴y =()()()()⎪⎪⎩⎪⎪⎨⎧≤<-≤<-+≤<-+≤≤43432)3(121 )1(11022x x x x x x x x ∴f (25)=2522.解析:(1)P = ⎪⎩⎪⎨⎧∈∈-∈∈∈∈+*]16,10[ 240*]10,5[20*[0,5)210N N N t t t t t t t t 且且且 (2)因每件销售利润=售价-进价,即L =P -Q故有:当t ∈[0,5)且t ∈N *时,L =10+2t +0.125(t -8)2-12=81t 2+6 即,当t =5时,L max =9.125当t ∈[5,10)时t ∈N *时,L =0.125t 2-2t +16 即t =5时,L max =9.125当t ∈[10,16]时,L =0.125t 2-4t +36 即t =10时,L max =8.5由以上得,该服装第5周每件销售利润L 最大.。

相关文档
最新文档