matlab多元线性回归模型
第15讲 MATLAB 多元线性回归分析

变量 Y 线性依赖于某个变量 X i ;若检验的结果是 接受 H 0 ,则说明所有变量 X 1 , X 2 ,..., X p 对变量的线性 关系是不重要的。
本章目录
16
回 归 分析
2 线性回归
—多元线性回归
2.3 回归方程的假设检验—模型的检验
x i (1, xi1 ,...,xip )
例
本章目录
22
i 1,2,...,n
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
自变量的选择
本章目录
23
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
提
选择自变量的准则 选择自变量进入回归模型的方法
纲
(SAS实例)
本章目录
24
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法
1. 引言
因变量
y 自变量为 x , x ,, x
1 2
p
满足线性关系
p
y x x e
0 1 1 p
(I)
对 x1 , x2 ,, x p y 进行 n 次观测, 所得的 n 组数据为
xi1 , xi 2 ,, xip, (i 1,2,, n)
它们均满足(I)式
25
本章目录
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法
第八讲MATLAB中多元线性回归

b=regress(y,X) [b,bint,r,rint,s]=regress(y,X,alpha) 输入: 因变量 列向量), 因变量(列向量 与自变量组成的矩阵, 输入 y~因变量 列向量 X~1与自变量组成的矩阵, 与自变量组成的矩阵 Alpha~显著性水平α(缺省时设定为 缺省时设定为0.05) 显著性水平 ) 输出:b=( β 0 , β1 , ( ), ),bint: b的置信区间, 输出 的置信区间, r:残差 列向量 ,rint: r的置信区间 残差(列向量 残差 列向量), 的 s: 3个统计量:决定系数 2,F值, F(1,n-2)分布大于 个统计量: 个统计量 决定系数R 值 F值的概率 ,p<α时回归模型有效 值的概率p, 回归模型有效 值的概率 rcoplot(r,rint) 残差及其置信区间作图 残差及其置信区间作图 及其
回归 模型
序 号 1 2 3 … 10 血 压 144 215 138 … 154
血压与年龄、体重指数、 例3: 血压与年龄、体重指数、吸烟习惯
年 龄 39 47 45 … 56 体重 指数 24.2 31.1 22.6 … 19.3 吸烟 习惯 0 1 0 … 0 序 号 21 22 23 … 30 血 压 136 142 120 … 175 年 龄 36 50 39 … 69 体重 指数 25.0 26.2 23.5 … 27.4 吸烟 习惯 0 1 0 … 1
β0 β1 β2 β3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点, 统计量增大 统计量增大, 这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到 增大到0.8462 ,我们得到回归模型为: 我们得到回归模型为: 数从 增大到
Matlab 多元线性回归

/输出结果如图所示:/
因 此 我 们 可 得 bˆ0 = −16.0730, , bˆ1 = 0.7194.
bˆ0 的置信区间 ( − 33.7071, 1.5612) ,
bˆ1 的置信区间 (0.6047, 0.834). r2 = 0.9282, F = 180.9531, p = 0.0000.
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
在 Matlab 图示所示:
/输出结果如图所示:/
bˆ0 = 62.4054, bˆ0 的置信区间 ( − 99.1786, 223.9893) , bˆ1 = 1.5511, bˆ1 的置信区间 (−0.1663, 3.2685) , 因此我们可得 bˆ2 = 0.5102, , bˆ2 的置信区间 (−1.1589, 2.1792) , bˆ3 = 0.1019, bˆ3 的置信区间 (−1.6385, 1.8423) , bˆ4 = −1441. bˆ4 的置信区间 (−1.7791, 1.4910). r2 = 0.9824, F = 111.4792, p = 0.0000. p < 0.05,回归模型 y = −62.4054 +1.5511x1 + 0.5102x2 +0.1019x3 -0.1441x4成立.
Matlab_多元的线性回归

1、 多元线性回归Matlab 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。
事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
(multivariable linear regression model)多元线性回归模型的一般形式为:Y i =0+1 X 1i +2X 2i + …+k X ki +i ,i=1,2,…n(1)其中 k 为解释变量的数目, βj j( j = 1,2,…k )称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为:Y i =0+1 X 1i +2X 2i + …+k X ki , i=1,2, …n kj j也被称为偏回归系数(partial regression coefficient)。
,2、 多元线性回归计算模型Y=0+1 X 1+2X 2+ …+k X k +,~N(0,2) (3)(2)多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe) 为最小的前提下,用最小二乘法或最大似然估计法求解参数。
设( x 11,x 12,…,x 1p ,y 1),…,(x n1,x n2,…,x np ,y n ) 是一个样本,用最大似然估计法估计参数:取,…,,当b 0=,b 1=,…,b p=时,Q=达到最小。
(4)化简可得:ββββμ βββββββββεεδ,ˆ0b 1ˆb p b ˆ0ˆb1ˆb p b ˆ21101)...(ip p i ni i x b x b b y ----∑=⎪⎪⎩⎪⎪⎨⎧-----=∂∂=-----=∂∂∑∑===ni ij ip p i i j n i ip p i i x x b x b b y b Q x b x b b y b Q 1011011100)(20)(2 ⎪⎪⎩⎪⎪⎨⎧-----=∂∂=-----=∂∂∑∑===n i ij ip p i i jn i ip p i i x x b x b b y b Q x b x b b y b Q1011011100)(20)(2引入矩阵: y方程组(5)可以化简得:X X X 可得最大似然估计值:BX ’Y⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫=++++=++++=+++∑∑∑∑∑∑∑∑∑∑∑∑∑∑============n i n i n i n i ni i ip ip p i ip i ip ip n i n i n i i i i ip i p i i i i ni ni ni i ip p i i y x x b x x b x x b x b y x x x b x x b x b x b y x b x b x b n b 111112221101111112122111011122110,,,⎪⎪⎪⎪⎪⎭⎫⎝⎛np n n p p x x xx x x x x x 212222111211111X X X b b b B p ')'(ˆˆˆˆ110-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=(8)的估计是:公式(8)为P 元经验线性回归方程。
Matlab实现多元的回归实例

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。
如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。
进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。
在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。
回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。
在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。
⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。
matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。
matlab 多元与非线性回归即拟合问题regress、nlinfit

回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xba y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,px x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n= .记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 9698 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显著% fV:F分布值,越大越好,线性回归方程越显著% fH:0或1,0不显著;1显著(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显著线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显著的线性作用% tH:0或1,0不显著;1显著% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显著的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显著的=1),% 但是所有的回归系数却对Y的线性作用却不显著=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显著性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显著(好);H=0,回归不显著% 回归系数的显著性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显著tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显著的线性作用;H(i)=0,Xi 对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]) ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南大学数学与统计学实验教学中心
实验报告
一、实验目的
1.熟悉MATLAB的运行环境.
2.学会初步建立数学模型的方法
3.运用回归分析方法来解决问题
二、实验内容
实验一:某公司出口换回成本分析
对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。
试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本.
实验二:某建筑材料公司的销售量因素分析
下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品
竞争数和地区销售潜力分别是影响建筑材料销售量的因素。
1)试建立回归模型,且分析哪些是主要的影响因素。
2)建立最优回归模型。
提示:建立一个多元线性回归模型。
三、实验环境
Windows 操作系统; MATLAB 7.0.
四、实验过程
实验一:运用回归分析在MATLAB 里实现
输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x];
Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*');
[b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288
bint = 1.8873 3.4322
-0.3820 -0.0757
stats = 0.4958 10.8168 0.0072 0.0903
即==1,0ˆ6597.2ˆββ,-0.2288,0ˆβ的置信区间为[1.8873 3.4322],1,ˆβ的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立.
1
1.5
2
2.5
散点图
估计某家公司商品流转费用率是6.5%的出口换汇成本。
将x=6.5代入回归模型中,得到 >> x=6.5;
>> y=2.6597-0.2288*x y =
1.1725
实验二:在MATLAB 里实现, ①首先建立回归模型 输出:
x1=[5.5 2.5 8.0 3.0 3.0 2.9 8.0 9.0 4.0 6.5 5.5 5.0 6.0 5.0 3.5 8.0 6.0 4.0 7.5 7.0]'; x2=[31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 70 40 50 62 59]'; x3=[10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9]'; x4=[8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11]';
Y=[79.3 200.1 163.2 200.1 146.0 177.7 30.9 291.9 160.0 339.4 159.6 86.3 237.5 107.2 155.0 201.4 100.2 135.8 223.3 195.0]'; X=[ones(20,1) x1 x2 x3 x4];
[b,bint,r,rint,stats]=regress(Y,X,0.05); b,bint,stats 输出: b = 191.9158 -0.7719 3.1725 -19.6811 -0.4501 bint =
103.1071 280.7245 -7.1445 5.6007 2.0640 4.2809 -25.1651 -14.1972 -3.7284 2.8283 stats =
0.9034 35.0509 0.0000 644.6510
即0ˆβ= 191.9158 1,ˆβ=-0.7719 2ˆβ= 3.1725 3
ˆβ=-19.6811 4ˆβ=-0.4501; 0ˆβ的置信区间为[103.1071 280.7245];1,ˆβ的置信区间为[-7.1445 5.6007];2ˆβ的置信区间为[2.0640 4.2809];3
ˆβ的置信区间为[-25.1651 -14.1972];4ˆβ的置信区间为[-3.7284 2.8283]; 2r = 0.9034, F=35.0509, p=0.0000
因P<0.05, 可知回归模型 y=191.9158 -0.7719x1+3.1725*x2-19.6811*x3 -0.4501*x4成立. ②分析哪些是主要的影响因素
输入:x1=[5.5 2.5 8.0 3.0 3.0 2.9 8.0 9.0 4.0 6.5 5.5 5.0 6.0 5.0 3.5 8.0 6.0 4.0 7.5 7.0]'; x2=[31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 70 40 50 62 59]'; x3=[10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9]'; x4=[8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11]';
Y=[79.3 200.1 163.2 200.1 146.0 177.7 30.9 291.9 160.0 339.4 159.6 86.3 237.5 107.2 155.0
201.4 100.2 135.8 223.3 195.0]'; X=[x1 x2 x3 x4]; stepwise(X,Y);
X 1
X 2X 3X 4
Coefficients with Error Bars
1
Model History
R M S E
从表Stepwise Table 中分析得出变量x2和x3为主要的影响因素。
-25
-20
-15
-10
-5
5
X 1
X 2X 3X 4
Coefficients with Error Bars
1
2
3
Model History
R M S E
③移去非关键变量x1和x4后模型具有显著性.虽然剩余标准差(RMSE)都有了变化,统计量F的值明显增大,因此新的回归模型更好.就得到最优模型。
输入:
X1=[ones(20,1) x2 x3];
[b,bint,r,rint,stats]=regress(Y,X1);
b,bint,stats
输出:
b =
186.0484
3.0907
-19.5140
bint =
110.4254 261.6715
2.1657 4.0156
-24.5597 -14.4683
stats =
0.9024 78.6295 0.0000 574.1580
P=0.0000<0.05,说明回归模型的回归效果显著;
最优回归方程为:y=186.0484+3.0907*x2-19.5140*x3
五、实验总结
1.遇到的问题及解决过程
2.产生的错误及原因分析
3.体会和收获
六、参考文献
[1]数学实验,重庆大学数学系傅鹂、龚劬、刘琼荪、何中市编著,科学出版社,2000年9月.
七、教师评语。