离散数学(1-4章)自测题(答案)

合集下载

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

离散数学古天龙-1-4章答案

离散数学古天龙-1-4章答案

离散数学古天龙-1-4章答案P201.用枚举法写出下列集合。

○2大于5小于13的所有偶数。

A={6,8,10,12}○520的所有因数A={1,2,4,5,10,20}○6小于20的6的正倍数A={6,12,18}2.用描述法写出下列集合○3能被5整除的整数集合A{5x|x是整数}○4平面直角坐标系中单位圆内的点集A{<x,y>|x2+y2≤1}4.求下列集合的基数○19○3 1○7 3○8 210 1○6.求下列集合的幂集○6{1,{2}}解:{空集,{1},{{2}},{1,{2}}}○7解:{空集,{空集},{a},{空集,a}}○9解:{空集,{{1,2}},{{2}},{{1,2},{2}}} 15.设全集U={1,2,3,4,5},集合A={1,4},B={1,2,5},C={2,4},确定下列集合。

○2{1,3,5}○3{1,4,}○8{5}○9{空集,{1},{2},{4},{1,4},{2,4}} 18.对任意集合A,B和C,证明下列各式○2(A-(BUC))=((A-B)-C)证:(A-(BUC))=A∩~(BUC)=A∩(~B∩~C) ((A-B)-C)=(A∩~B)∩~C=A∩~B∩~C所以(A-(BUC))=((A-B)-C)○3(A-(BUC))=((A-C)-B证:(A-(BUC))=A∩~(BUC)=A∩~B∩~C ((A-C)-B)=(A∩~C)∩~B所以(A-(BUC))=((A-C)-B○5P(A)UP(B)≤P(A UB) 原题有错(注这里○5○6中的“≤”代表包含于符号)证:任取C∈P(A)U P(B)由定义C∈P(A)或C∈P(B)若C∈P(A),则C≤A,则C≤A UB若C∈P(B),则C≤B,则C≤A UB故C≤A UB,即C∈P(A U B) 证毕○6P(A)∩P(B)=P(A∩B)证:先证P(A)∩P(B)≤P(A∩B)任取C∈P(A)∩P(B),且C∈P(A), C∈P(B) 由定义C≤A且C≤B,得C≤A∩B,即C∈P(A∩B) 所以P(A)∩P(B)≤P(A∩B)再证P(A∩B)≤P(A)∩P(B)任取C∈P(A∩B),即C=A∩BC≤A,且C≤B,C∈P(A)且C∈P(B)所以C∈P(A)∩P(B) 得证21.用集合表示图1.7中各阴影部分。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

离散数学第一学期习题及答案

离散数学第一学期习题及答案
结论:s r 9.在自然推理系统 P 中用归谬法证明下面各推理:
前提:p q, r q,r s 结论: p
参考答案:
1.
(1)p∨(q∧r) 0∨(0∧1) 0
(2)(p↔r)∧(﹁q∨s) (0↔1)∧(1∨1) 0∧1 0
(3)( p∧ q∧r)↔(p∧q∧﹁r) (1∧1∧1) ↔ (0∧0∧0) 0
6. 判断下列各式的类型:
(1)
(2)
yF(x,y).
7. 给定下列各公式一个成真的解释,一个成假的解释。
(1) (F(x)
(2) x(F(x) G(x) H(x)) 8.给定解释I如下:
(a)个体域 D={3,4};
(b) f (x) 为 f (3) 4, f (4) 3
(c) F (x, y)为F (3,3) F (4,4) 0, F (3,4) F (4,3) 1.
后件为存在实数 x 对任意实数 y 都有 x+y=5,后件假,]
此时为假命题
再取解释 I 个体域为自然数 N,
F(x,y)::x+y=5
所以,前件为任意自然数 x 存在自然数 y 使 x+y=5,前件假。此时为假命题。 此公式为非永真式的可满足式。
7.解:(1)个体域:本班同学
F(x):x 会吃饭, G(x):x 会睡觉.成真解释
所以公式类型为永真式
(3) P
q
r
00
0
p∨q 0
p∧r
(p∨q)→(p∧r)
0
1
00
1
0
0
1
01
0
1
0
0
01
1
1
0
0
1
00

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学自测题

离散数学自测题

离散数学第一部分 数理逻辑自测题一、单选题1.下列句子中,( )是命题。

A .2是常数。

B .这朵花多好看呀!C .请把门关上!D .下午有会吗?2.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( )。

A. p q r ∧→ B. p q r ∨→ C. p q r ∧∧ D. p q r ∨↔3.令:p 今天下雪了,:q 路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )。

A. p q ∧⌝ B. p q ∧ C. p q ∨⌝D. p q →⌝4.设()P x :x 是鸟,()Q x :x 会飞,命题“有的鸟不会飞”可符号化为( )。

A. ()(()())x P x Q x ⌝∀→B. ()(()x P x ⌝∀∧())Q xC. ()(()())x P x Q x ⌝∃→D. ()(()x P x ⌝∃∧())Q x 5.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→ 6.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为( )。

A .(()())x F x G x ∀∧ B . (()())x F x G x ⌝∃→⌝ C .(()())x F x G x ⌝∃∧ D . (()())x F x G x ⌝∃∧⌝ 7.下列命题公式不是永真式的是( )。

A. ()p q p →→B. ()p q p →→C. ()p q p ⌝∨→D. ()p q p →∨8.设()R x :x 为有理数;()Q x :x 为实数。

《离散数学》试题含答案

《离散数学》试题含答案

《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。

答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。

若命题P和Q等价,则记作P⇔Q。

蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。

若命题P蕴含Q,则记作P→Q。

2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。

答案:设x属于A∩B,即x同时属于A和B。

根据并集的定义,若元素属于A或B,则它属于A∪B。

因此,x属于A∪B。

由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。

3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。

在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。

4. 描述有限自动机的组成部分及其功能。

答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。

输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。

5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。

在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。

确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。

从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。

重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》题库答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q5.答:(1)6.答:2不是偶数且-3不是负数。

7.答:(2)8.答:⌝P ,Q→P9.答:P(x)∨∃yR(y)10.答:⌝∀x(R(x)→Q(x))11、a、(P→Q)∧R解:(P→Q)∧R⇔(⌝P∨Q )∧R⇔(⌝P∧R)∨(Q∧R) (析取范式)⇔(⌝P∧(Q∨⌝Q)∧R)∨((⌝P∨P)∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧R)∨(P∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(P∧Q∧R)⇔m3∨ m1∨m7 (主析取范式)⇔m1∨ m3∨m7⇔M0∧M2∧M4∧M5∧M6 (主合取范式)b、Q→(P∨⌝R)解:Q→(P∨⌝R)⇔⌝Q∨P∨⌝R⇔M5(主合取范式)⇔ m0∨ m1∨ m2∨m3∨ m4∨m6 ∨m7 (主析取范式)c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式)12、a、P→Q,⌝Q∨R,⌝R,⌝S∨P=>⌝S证明:(1) ⌝R 前提(2) ⌝Q∨R 前提(3)⌝Q (1),(2)析取三段论(4) P→Q 前提(5)⌝P (3),(4)拒取式(6)⌝S∨P 前提(7) ⌝S (5),(6)析取三段论b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理c、A,A→B, A→C, B→(D→⌝C) => ⌝D证明:(1) A 前提(2) A→B 前提(3) B (1),(2) 假言推理(4) A→C 前提(5) C (1),(4) 假言推理(6) B→(D→⌝C) 前提(7) D→⌝C (3),(6) 假言推理(8)⌝D (5),(7) 拒取式d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确13.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。

解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x) ⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4.答:A1=A2=A3=A6, A4=A55. 答:(4)6.答:(1)7.答:(2),(4)8、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)c、A⋃B=A⋃(B-A)证明:A⋃(B-A)=A⋃(B⋂~A)=(A⋃B)⋂(A⋃~A)=(A⋃B)⋂E= A⋃B9、P(A)⋃P(B)⊆P(A⋃B) (P(S)表示S的幂集)证明:∀S∈P(A)⋃P(B),有S∈P(A)或S∈P(B),所以S⊆A或S⊆B。

从而S⊆A⋃B,故S∈P(A⋃B)。

即P(A)⋃P(B)⊆P(A⋃B)10、P(A)⋂P(B)=P(A⋂B) (P(S)表示S的幂集)证明:∀S∈P(A)⋂P(B),有S∈P(A)且S∈P(B),所以S⊆A且S⊆B。

从而S⊆A⋂B,故S∈P(A⋂B)。

即P(A)⋂P(B)⊆P(A⋂B)。

∀S∈P(A⋂B),有S⊆A⋂B,所以S⊆A且S⊆B。

从而S∈P(A)且S∈P(B),故S∈P(A)⋂P(B)。

即P(A⋂B)⊆P(A)⋂P(B)。

故P(A⋂B)=P(A)⋂P(B)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R 1-={<1,1>,<2,4>} 2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉} R -1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015.若R 和S 都是非空集A 上的等价关系,则R ⋂S 是A 上的等价关系。

证明:∀a ∈A ,因为R 和S 都是A 上的等价关系,所以xRx 且xSx 。

故xR ⋂Sx 。

从而R ⋂S 是自反的。

∀a,b ∈A ,aR ⋂Sb ,即aRb 且aSb 。

因为R 和S 都是A 上的等价关系,所以bRa 且bSa 。

故bR ⋂Sa 。

从而R ⋂S 是对称的。

∀a,b,c ∈A ,aR ⋂Sb 且bR ⋂Sc ,即aRb ,aSb,bRc 且bSc 。

因为R和S 都是A 上的等价关系,所以aRc 且aSc 。

故aR ⋂Sc 。

从而R ⋂S 是传递的。

故R ⋂S 是A 上的等价关系。

6、设R ⊆A ×A ,则R 自反 ⇔I A ⊆R 。

证明:⇒∀x ∈A , R 是自反的,∴xRx 。

即<x,x>∈R ,故I A ⊆R 。

⇐∀x ∈A , I A ⊆R ,∴<x,x>∈R 。

即xRx ,故R 是自反的。

7、设A 是集合,R ⊆A ×A ,则R 是对称的⇔R =R -1。

证明:⇒∀<x,y>∈R , R 是对称的,∴yRx 。

即<y,x>∈R ,故<x,y>∈R _1。

从而R ⊆R -1。

反之∀<y,x>∈R -1,即<x,y>∈R 。

R 是对称的,∴yRx 。

即<y,x>∈R ,R _1⊆R 。

故R=R -1。

⇐∀x ,y ∈A ,若<x,y>∈R ,即<y,x>∈R -1。

R=R -1,∴<y,x>∈R 。

即yRx ,故R 是对称的。

8、设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。

9、R 是A={1,2,3,4,5,6}上的等价关系,R=I A ⋃{<1,5>,<5,1>,<2,4>,<4,2>,<3,6>,<6,3>}求R诱导的划分。

解:R诱导的划分为{{1,5},{2,4},{3,6}}。

10.画出下列集合关于整除关系的哈斯图.(1){1, 2, 3, 4, 6, 8, 12, 24}.(2){1,2,…..,9}.并指出它的极小元,最小元,极大元,最大元。

在图(2)中极小元,最小元是1,极大元是5,6,7,8,9,没有最大元。

相关文档
最新文档