离散数学第1章答案(刘玉珍 刘永梅)

合集下载

离散数学第一章部分课后习题参考答案

离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)0∨(0∧1) 0(2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10.(3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0(4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 117.判断下面一段论述是否为真:“是无理数。

并且,如果3是无理数,则也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: 是无理数 1q: 3是无理数0r: 是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(q→p)(5)(p∧r) (p∧q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q q p q→p (p→q)→(q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) (p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)(p→(q∧r))(4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q)证明(2)(p→q)∧(p→r)(p∨q)∧(p∨r)p∨(q∧r))p→(q∧r)(4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q)(p∨p)∧(p∨q)∧(q∨p) ∧(q∨q)1∧(p∨q)∧(p∧q)∧1(p∨q)∧(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(p→q)→(q∨p)(2)(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(p→q)→(q p)(p q)(q p)(p q)(q p)(p q)(q p)(q p)(p q)(p q)(p q)(p q)(p q)∑(0,2,3)主合取范式:(p→q)→(q p)(p q)(q p)(p q)(q p)(p(q p))(q(q p))1(p q)(p q) M1∏(1)(2) 主合取范式为:(p→q)q r(p q)q r(p q)q r0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p(q r))→(p q r)(p(q r))→(p q r)(p(q r))(p q r)(p(p q r))((q r))(p q r))1 11所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p q,(q r),r结论:p(4)前提:q p,q s,s t,t r结论:p q证明:(2)①(q r) 前提引入②q r ①置换③q r ②蕴含等值式④r 前提引入⑤q ③④拒取式⑥p q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③q s 前提引入④s t 前提引入⑤q t ③④等价三段论⑥(q t)(t q) ⑤置换⑦(q t)⑥化简⑧q ②⑥假言推理⑨q p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p(q r),s p,q结论:s r证明①s 附加前提引入②s p 前提引入③p ①②假言推理④p(q r) 前提引入⑤q r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p q,r q,r s结论:p证明:①p 结论的否定引入②p﹁q 前提引入③﹁q ①②假言推理④¬r q 前提引入⑤¬r ④化简律⑥r¬s 前提引入⑦r ⑥化简律⑧r﹁r ⑤⑦合取由于最后一步r﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为,在(a)中为假命题,在(b)中为真命题。

离散数学第5版答案

离散数学第5版答案

⇔0↔q
(矛盾律)
⇔ ( p → q) ∧ (q → 0)
(等价等值式)
⇔ (¬0 ∨ q) ∧ (¬q ∨ 0)
(蕴含等值式)
⇔ (1∨ q) ∧ ¬q
(同一律)
⇔ 1∧ ¬q
(零律)
⇔ ¬q
(同一律)
到最后一步已将公式化得很简单。由此可知,无论 p 取 0 或 1 值,只要 q 取 0 值,原公式取值为 1,即 00 或 10 都为原公式的成真赋值,而 01,11 为成假赋 值,于是公式为非重言式的可满足式。
(蕴含等值式)
⇔ p ∨ ¬q ∧ q
(德·摩根律)
⇔ p ∨ (¬q ∧ q)
(结合律)
⇔ p∧0
(矛盾律)
⇔0
(零律)
由最后一步可知,(3)为矛盾式。
(5)用两种方法判(5)为非重言式的可满足式。
真值表法
p
q
¬p
¬p → q q → ¬p (¬p → q) → (q → ¬p)
0
0
1
0
1
1
0
1
1
(10)p:小李在宿舍里. p 的真值则具体情况而定,是确定的。 (12) p ∨ q ,其中, p : 4 是偶数,q : 4 是奇数。由于 q 是假命题,所以,q 为假命题, p ∨ q 为真命题。 (13)p ∨ q ,其中,p : 4 是偶数,q : 4 是奇数,由于 q 是假命题,所以,p ∨ q 为假命题。 (14) p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15) p:蓝色和黄色可以调配成绿色。这是真命题。 分析 命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不 能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令 p : 2 + 2 = 4, q : 3 + 3 = 6, 则以下命题分别符号化为 (1) p → q (2) p → ¬q (3) ¬p → q (4) ¬p → ¬q (5) p ↔ q (6) p ↔ ¬q (7) ¬p → q (8) ¬p ↔ ¬q 以上命题中,(1),(3),(4),(5),(8)为真命题,其余均为假命题。 分析 本题要求读者记住 p → q 及 p ↔ q 的真值情况。p → q 为假当且仅当 p 为真,q 为假,而 p ↔ q 为真当且仅当 p 与 q 真值相同.由于 p 与 q 都是真命题, 在 4 个蕴含式中,只有(2) p → r ,其中,p 同(1),r:明天为 3 号。 在这里,当 p 为真时,r 一定为假, p → r 为假,当 p 为假时,无论 r 为真 还是为假, p → r 为真。

离散数学自考第一章(课后习题和答案)

离散数学自考第一章(课后习题和答案)
P F F T T Q F T F T P↔Q T F F T
每当P和Q的真值相同时,则(P↔Q)的真值 为“T”,否则(P↔Q)的真值为“F”。
(3)举例:
▪ 春天来了当且仅当燕子飞回来了。 ▪平面上二直线平行,当且仅当这二直线不相交。 ▪2+2=4当且仅当雪是白色的。 (两者没有关系,但是确实命题)
举例: (a)P:王华的成绩很好 Q:王华的品德很好。 则PΛQ:王华的成绩很好并且品德很好。 (b P:我们去种树 Q:房间里有一台电视机 则PΛQ:我们去种树与房间里有一台电视机。 (c) P:今天下大雨 Q:3+3=6 则PΛQ:今天下大雨和3+3=6
3.析取词(或运算) (1)符号“∨” 设P、Q为二个命题,则 (P∨Q)称作P与Q的“析取”,读作: “P或Q”。
(a)P:我拿起一本书 Q:我一口气读完了这本书 P→Q:如果我拿起一本书,则我一口气读完了这本书。 (b)P:月亮出来了 Q:3×3=9 P→Q:如果月亮出来了,则 3×3=9。(善意推定)
5.双条件联结词(“等价”词、“同”联结词、 “等同”词) (1)符号“↔”设P、Q为二个命题,则P↔ Q读作:“P当且仅当Q”,“P等价 Q”,“P是Q的充分必要条件”。 (2)定义(见真值表):
(4)P,Q中,P、Q的地位是平等的,P、Q 交换位置不会改变真值表中的值。
6.命题联结词在使用中的优先级 (1)先括号内,后括号外 (2)运算时联结词的优先次序为: ¬ Λ → ↔ (由高到低) (3)联结词按从左到右的次序进行运算

¬P∨(Q∨R)可省去括号,因为“V”运算是可结合的。 ( ¬P∨Q)∨R可省去括号,因为符合上述规定 而P→(Q→R)中的括号不能省去,因为“→”不满足结合律。

离散数学第一章 第一节答案

离散数学第一章  第一节答案

第一章 第一节 P16 、P17
4、将下列命题符号化,并指出真值。

(1)、2与5都是素数;
(2)、不但π是无理数,而且自然对数的底e 也是无理数。

解:(1)、p :2与5都是素数;其真值为1.
则符号化为p ;其真值为1.
(2)、p :π是无理数;其真值为1.
q :自然对数的底e 是无理数;其真值为1. 则符号化为p ∧q ;其真值为1。

5、将下列命题符号化,并指出真值。

(4)、3不是偶数或4不是偶数。

解:p :3不是偶数;其真值为1。

q :4不是偶数;其真值为0。

则符号化为p ∨q ;其真值为1.
11、将下列命题符号化,并给出各命题的真值:
(1)、若2+2=4,则地球是静止不动的。

解:p :2+2=4;其真值为1.
q :地球是静止不动的;其真值为0.
则符号化为p →q ;其真值为0.
12、将下列命题符号化,并给出各命题的真值:
(3)、2+2≠4与3+3=6互为充要条件。

解:p :2+2≠4;其真值为0。

q :3+3=6;其真值为1.
则符号化为p ↔q ;其真值为0.
14、将下列命题符号化:
(5)、李辛与李末是兄弟。

(9)、只有天下大雨,他才乘班车上班。

(10)、除非天下大雨,否则他不乘班车上班。

解:(5)、p :李辛与李末是兄弟;
则符号化为p.
(9)、p :天下大雨。

q :他乘班车上班。

则符号化为p →q.
(10)、p :天下大雨。

q :他乘班车上班。

则符号化为q p ⌝
→.。

离散数学课后答案详细

离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

离散数学第1章习题解答

离散数学第1章习题解答

习题 1.11. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。

⑴ 中国有四大发明。

⑵ 计算机有空吗?⑶ 不存在最大素数。

⑷ 21+3 < 5。

⑸ 老王是山东人或河北人。

⑹ 2 与 3 都是偶数。

⑺ 小李在宿舍里。

⑻ 这朵玫瑰花多美丽呀!⑼ 请勿随地吐痰!⑽ 圆的面积等于半径的平方乘以p。

⑾只有 6 是偶数, 3 才能是 2 的倍数。

⑿雪是黑色的当且仅当太阳从东方升起。

⒀如果天下大雨,他就乘班车上班。

解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺ ⒀的真值目前无法确定;⑵⑻⑼不是命题。

2. 将下列复合命题分成若干原子命题。

⑴ 李辛与李末是兄弟。

⑵ 因为天气冷,所以我穿了羽绒服。

⑶ 天正在下雨或湿度很高。

⑷ 刘英与李进上山。

⑸ 王强与刘威都学过法语。

⑹ 如果你不看电影,那么我也不看电影。

⑺我既不看电视也不外出,我在睡觉。

⑻ 除非天下大雨,否则他不乘班车上班。

解:⑴本命题为原子命题;⑵ p:天气冷;q:我穿羽绒服;⑶ p:天在下雨;q:湿度很高;⑷ p:刘英上山;q:李进上山;⑸ p:王强学过法语;q:刘威学过法语;⑹ p:你看电影;q:我看电影;⑺ p:我看电视;q:我外出;r :我睡觉;⑻ p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。

⑴ 他一面吃饭,一面听音乐。

⑵ 3 是素数或 2 是素数。

⑶ 若地球上没有树木,则人类不能生存。

⑷ 8 是偶数的充分必要条件是 8能被 3 整除 ⑸ 停机的原因在于语法错误或程序错误。

⑹ 四边形 ABCD 是平行四边形当且仅当 它的对边平行 ⑺ 如果 a 和 b 是偶数,则 a +b 是偶数。

解:⑴ p :他吃饭; q :他听音乐;原命题符号化为: p ∧ q ⑵ p :3 是素数; q : 2是素数;原命题符号化为: p ∨q ⑶ p :地球上有树木; q :人类能生存;原命题符号化为: p → q⑷ p :8 是偶数; q :8能被 3整除;原命题符号化为: p ?q⑸ p :停机; q :语法错误; r :程序错误;原命题符号化为: q ∨r →p⑹ p :四边形 ABCD 是平行四边形; q :四边形 ABCD 的对边平行;原命题符号化为: p ?q 。

离散数学第一章命题逻辑习题答案

离散数学第一章命题逻辑习题答案

习题一 5.证明下列各等价式
(4)(P Q) (Q R) (R P) (P Q) (Q R) (R P) 证明 : (P Q) (Q R) (R P) (Q (P R) ) (R P) (分配律) (Q (R P) ) (P R (R P) ) (Q R) (P Q) (R P) (分配律、吸 收律、交换律)
P1 P4 ~ P1
~P4
~P4 ~P3
~P3
P2
P2 P3 P2 J
J
习题一 23(3) 利用消解法证明蕴含式:
P (Q R), Q (R S) P (Q S) 证明: 首先把结论否定加入前提得公式集: P (Q R), Q (R S), ~(P (Q S)) 构造子句集:{~P ~Q R, ~Q ~R S, P, Q, ~S} 消解过程如下: (1) P 引入子句 (2) ~P ~Q R 引入子句 (3) ~Q R 由(1)(2)消解 (4) Q 引入子句 (5) R 由(3)(4)消解 (6) ~Q ~R S 引入子句 (7) ~Q S 由(5)(6)消解 (8) ~S 引入子句 (9) ~Q 由(7)(8)消解 (10) 由(9)(4)消解
P (R (Q P)) 1 1 1 1 0 1
1 1 0
0
0
1
1 1 1 1 解法一 (真值表法) 由对应于公式取值为0的全部解释得主合取范式: (~P Q R) (~P ~ Q R) 由对应于公式取值为1的全部解释得主析取范式:
(~P ~ Q ~ R) (~P ~ Q R) (~P Q ~ R) (~P Q R) (P ~ Q R) (P Q R)

离散数学第1章答案

离散数学第1章答案

离散数学第1章答案习题1.11、(1)否(2)否(3)是,真值为0(4)否(5)是,真值为12、(1)P:天下⾬ Q:我去教室┐P → Q(2)P:你去教室 Q:我去图书馆 P → Q(3)P,Q同(2) Q → P(4)P:2是质数 Q:2是偶数 P∧Q3、(1)0(2)0(3)14、(1)如果明天是晴天,那么我去教室或图书馆。

(2)如果我去教室,那么明天不是晴天,我也不去图书馆。

(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。

习题1.21、(1)是(2)是(3)否(4)是(5)是(6)否2、(1)(P → Q) →R,P → Q,R,P,Q(2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P(3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P → Q,(Q → P),P → Q,P,Q,Q,P,P,Q 3、(1)((P → Q) → (Q → P)) → (P → Q)(2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R)) (3)(Q → P∧┐P) → (P∧┐P → Q)4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)习题1.31、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0(3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 = 1(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 13、(1)原式 <=> F→Q <=> T 原式为永真式(2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式(3)原式 <=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式(4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式(5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满⾜式(6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式(7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P<=> T∧┐P <=> ┐P 原式为可满⾜式(8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R)<=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R))<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式4、(1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右(2)左 <=> ┐(┐P∨Q) <=> 右(3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)<=> (P∨Q)∧┐(P∧Q) <=> 右(5)左?(?P∨Q)∧(?R∨Q)??(P∨Q)∨Q?右5.(1)左?Q??P∨Q?右(2)(P→(Q→R))→((P→Q)→(P→R))(?P∨?Q∨R)∨?(?P∨Q) ∨(?P∨R)(P∧Q∧?R)∨(P∧?Q)∨?P∨R(P∧Q∧?R)∨((P∨?P)∧(?Q∨?P))∨R(P∧Q∧?R)∨(?Q∨?P∨R)(P∧Q∧?R) ∨?(P∧Q∧?R)T故P→(Q→R)?(P→Q)→(P→R)(3).(P→Q)→(P→P∧Q)(?P∨Q)∨?P∨(P∧Q)(?P∨Q)∨(?P∨P)∧(?P∨Q)(?P∨Q)∨(?P∨Q)T故P→Q?P→P∧Q(4).((P→Q) →Q) →P∨Q(?(?P∨Q) ∨Q) ∨P∨Q((P∨Q)∧?Q)∨P∨Q(P∧?Q)∨(Q∧?Q) ∨P∨Q(P∨Q)∨(P∨Q)T故(P→Q) →Q?P∨Q(5).((P∨?P)→Q)∧((P∨?P)→R)→(Q→R)((?T∨Q)∧(?T∨R)) ∨?Q∨R(Q∧R)∨?Q∨RQ∨?R∨?Q∨RQ∨TT故((P∨?P) →Q)∧((P∨?P)→R)?Q→R(6)左?(Q→F)∧(R→F)(Q∨F)∧(?R∨F)Q∧?RRR∨Q?右6.(1)原式?(?P∧?Q∧R)(2)原式??P∨?Q∨P??(P∧Q∧?P)(3)原式?P∨(Q∨?R∨P)?P∨Q∨?R??(?P∧?Q∧R)7.(1)原式??(?P∨?Q∨P)(2)原式?(?P∨Q∨?R) ∧?P∧Q??(?(?P∨Q∨?R)∨P∨?Q)(3)原式??P∧?Q∧ (R∨P) ??(P∨Q∨?(R∨P))8. (1) (P∨Q)∧((?P∧ (?P∧Q))∨R)∧?P(2)(P∨Q∨R)∧(?P∧R)(3)(P∨F)∧(Q∨T)习题1.41.(1)原式??(?P∨?Q)∨((?P∨?Q)∧(Q∨P))(?P∨?Q)∨(Q∨P)(P∧Q) ∨Q∨PQ∨P,既是析取范式⼜是合取范式(2)原式?((?P∨Q)∨(?P∨?Q))∧(?(?P∨Q) ∨?(?P∨?Q)) ?(P∧Q)∨(P∧?Q) 析取范式P∧(Q∨?Q)合取范式(3)原式??P∨Q∨?S∨ (?P∧Q)析取范式(P∨(?P∧Q))∨Q∨?SP∨Q∨?S合取范式(4)原式?P∨P∨Q∨Q∨R既是析取范式⼜是合取范式2.(1)原式?P∨?Q∨R为真的解释是:000,001,011,100,101,110,111故原式的主析取范式为:(?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧R)∨(P∧?Q∧?R)∨(P∧?∧QR)∨(P∧Q∧?R)∨(P∧Q∧R)(2)原式?(P∧?Q) ∨R(P∧?Q∧(R∨?R))∨((P∨?P)∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q)∨( ?P∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧(Q∨?Q)∧R)∨(?P∧(Q∨?Q)∧R) ?(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q∧R)∨(P∧?Q∧R)∨(? P∧Q∧R)∨(?P∧?Q∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q∧R) ∨(?P∧Q∧R)∨(?P∧?Q∧R)为真的解释是101,100,111,011,001(3)原式?(?P∨(Q∧R))∧(P∨(?Q∧?R))((P∨ (Q∧R)) ∧P)∨(( ?P∨ (Q∧R))∧( ?Q∧?R))(P∧P)∨(Q∧P∧R)∨( ?P∧?Q∧?R)∨(Q∧R∧?Q∧?R)(P∧Q∧R)∨(?P∧?Q∧?R)为真的解释是:000,111(4)原式?P∨P∨Q∨Q∨R?P∨Q∨R为真的解释是:001,010,011,100,101,110,111故原式的主析取范式为:(?P∧?Q∧R)∨(?P∧Q∧?R)∨(?P∧Q∧R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧?R)∨(P∧Q∧R)3.(1)原式??P∨Q∨?P∨?Q?T主合取范式,⽆为假的解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 1.4
1.(1)原式 ( P Q) (( P Q) (Q P)) ( P Q) (Q P) (P Q) Q P Q P,既是析取范式又是合取范式 (2)原式 (( P Q) ( P Q)) ( ( P Q) ( P Q)) (P Q) (P Q) 析取范式 P (Q Q)合取范式 (3)原式 P Q S ( P Q)析取范式 ( P ( P Q)) Q S
习题 1.1
1、 (1)否 (2)否 (3)是,真值为 0 (4)否 (5)是,真值为 1 2、 (1)P:天下雨 Q:我去教室 (2)P:你去教室 Q:我去图书馆 (3)P,Q 同(2) Q → P (4)P:2 是质数 Q:2 是偶数 3、 (1)0 (2)0 (3)1 4、 (1)如果明天是晴天,那么我去教室或图书馆。 (2)如果我去教室,那么明天不是晴天,我也不去图书馆。 (3)明天是晴天,并且我不去教室,当且仅当我去图书馆。 ┐P → Q P → Q P∧Q
习题 1.2
1、 (1)是 (2)是 (3)否 (4)是 (5)是 (6)否 2、 (1)(P → Q) →R,P → Q,R,P,Q (2)(┐P∨Q) ∨(R∧P) ,┐P ∨ Q,R∧P,┐P,Q,R,P (3)((P → Q) ∧ (Q → P)) ∨ ┐(P → Q)),(P → Q) ∧(Q → P), ┐(P → Q),P → Q,(Q → P),P → Q,P,Q,Q,P,P,Q 3、 (1)((P → Q) → (Q → P)) → (P → Q) (2) ((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R)) (3)(Q → P∧┐P) → (P∧┐P → Q) 4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)
P Q S 合取范式
(4)原式 P P Q Q R 既是析取范式又是合取范式 2.(1)原式 P Q R 为真的解释是:000,001,011,100,101,110, 111 故原式的主析取范式为: ( P Q R) ( P Q R) ( P Q R) (P Q R) (P QR) (P Q R) (P Q R) (2)原式 (P Q) R (P Q (R R)) ((P P) R) (P Q R) (P Q R) (P Q) ( P R) (P Q R) (P Q R) (P (Q Q) R) ( P (Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R)为真的解释是 101,100,111,011,001 (3)原式 ( P (Q R)) (P ( Q R)) (( P (Q R)) P) (( P (Q R)) ( Q R)) ( P P) (Q P R) ( P Q R) (Q R Q R) (P Q R) ( P Q R) 为真的解释是:000,111 (4)原式 P P Q Q R P Q R 为真的解释是:001,010,011,100, 101,110,111 故原式的主析取范式为: ( P Q R) ( P Q R) ( P Q R) (P Q R) (P Q R) (P Q R) (P Q R) 3.(1)原式 P Q P Q T 主合取范式,无为假的解释。 (2)原式 (P Q R) ( P Q R) ( P Q R) ( P Q R) 为真的解释为:111,011,001,000,故为假的解释为:010,100,101, 110 原式的主合取范式为: (P Q R) ( P Q R) ( P Q R) ( P Q R) (3)由 2.(2)知,原式为真的解释是:101,100,111,011,001,故为假的 解释是:000,010,110. 故原式的主合取范式为:(P Q R) (P Q R) ( P Q R) (4)由 2.(4)知,原式为假的解释是:000,故原式的主合取范式为:P Q
习题 1.3
1、 (1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1 (2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐ (0∨1)) = 0∨(0∧0) = 0 (3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0 (4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨ ┐1) = 1←→1 = 1 (5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1 ←→┐1)→(0∨┐1)) = 0∨1∨1 = 1 2、 (1) P 0 0 1 1 (2) P Q Q 0 1 0 1 R Q∧R P→Q 1 1 0 1 ┐ (P ∨ (Q ∧ R)) 1 1 1 0 0 0 0 0 Q∧(P→Q) 0 1 0 1 P∨Q P∨R Q ∧ (P → Q) → P 1 0 1 1 (P∨Q) ∧ (P∨ R) 0 0 0 1 1 1 1 1 P∧┐R 0 0 0 0 1 0 1 0
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1 P∨Q→ Q∧P 1 1 0 0 0 0 1 1
Q∧P 0 0 0 0 0 0 1 1
原式
0 0 1 1 1 1 1 0
3、 (1)原式 <=> F→Q <=> T 原式为永真式 (2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐ P)
<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式 (3)原式 <=> ┐(P∧Q) ←→ ┐(P∧Q) <=> T 原式为永真式 (4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式 (5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满足式 (6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为 永真式 (7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P <=> T∧┐P <=> ┐P 原式为可满足式 (8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐ R)∨(┐P∨R) <=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R) <=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R)) <=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式 4、 (1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右 (2)左 <=> ┐(┐P∨Q) <=> 右 (3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右 (4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中 <=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P) <=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P) <=> (P∨Q)∧┐(P∧Q) <=> 右 (5)左 ( P Q) ( R Q) (P Q) Q 右 5.(1)左 Q P Q 右 (2)(P (Q R)) ((P Q) (P R)) ( P Q R) ( P Q) ( P R) (P Q R) (P Q) P R (P Q R) ((P P) ( Q P)) R (P Q R) ( Q P R) (P Q R) (P Q R) T 故 P (Q R) (P Q) (P R) (3).(P Q) (P P Q) ( P Q) P (P Q) ( P Q) ( P P) ( P Q) ( P Q) ( P Q) T 故 PQPP Q (4).((P Q) Q) P Q ( ( P Q) Q) P Q (( P Q) Q) P Q
( P Q) (Q Q) P Q (P Q) (P Q) T 故(P Q) Q P Q
(5).((P P) Q) ((P P) R) (Q R) (( T Q) ( T R)) Q R (Q R) Q R Q R Q R QT T 故((P P) Q) ((P P) R) Q R (6)左 (Q F) (R F) ( Q F) ( R F) Q R R R Q 右 6.(1)原式 ( P Q R) (2)原式 P Q P (P Q P) (3)原式 P (Q R P) P Q R ( P Q R) 7.(1)原式 ( P Q P) (2)原式 ( P Q R) P Q ( ( P Q R) P Q) (3)原式 P Q (R P) (P Q (R P)) 8. (1) (P Q) (( P ( P Q)) R) P (2)(P Q R) ( P R) (3)(P F) (Q T)
相关文档
最新文档