九年级下册数学二次函数的图象和性质教学计划
二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
《二次函数的图像和性质》教学设计

05
二次函数的应用举例
最值问题
引入最值概念
通过实际问题的例子,如最大利 润、最小成本等,引入最值的概 念,并说明最值与二次函数的关
系。
求解最值
通过配方或公式法将二次函数化为 顶点式,从而找到函数的最大值或 最小值。同时,也可以通过观察函 数的图像来确定最值。
顶点
抛物线的顶点位于对称轴上,对于一般形式的二次函数,顶点坐标可以通过公式 $(-frac{b}{2a},c-frac{b^2}{4a})$求得。对于顶点式的二次函数,顶点坐标直接 为$(h,k)$。
抛物线与坐标轴的交点
与$x$轴的交点
令$y=0$,解一元二次方程$ax^2+bx+c=0$,得到抛物线与$x$轴的交点横坐标。若方程有两个实数根,则抛 物线与$x$轴有两个交点;若方程有一个重根,则抛物线与$x$轴有一个交点;若方程无实数根,则抛物线与$x$ 轴无交点。
宽度
由二次项系数的绝对值 $|a|$决定,$|a|$越大,抛 物线越窄;$|a|$越小,抛 物线越宽。
顶点位置
由顶点式$y=a(xh)^2+k$中的$h$和$k$决 定,顶点坐标为$(h,k)$。
抛物线的对称轴和顶点
对称轴
对于一般形式的二次函数$y=ax^2+bx+c$,其对称轴为直线$x=-frac{b}{2a}$ 。对于顶点式的二次函数$y=a(x-h)^2+k$,其对称轴为直线$x=h$。
02
二次函数是一种非线性函数,其 图像是一个抛物线。
二次函数的一般形式
二次函数的一般形式为 $f(x) = ax^2 + bx + c$,其中 $a, b, c$ 是 常数,且 $a neq 0$。
湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1一. 教材分析湘教版数学九年级下册1.2《二次函数的图象与性质》是本册的重点章节,主要让学生掌握二次函数的图象与性质,为后续学习打下基础。
本节内容主要包括:二次函数的图象、顶点坐标、开口大小、对称轴等概念,以及二次函数的性质。
通过本节内容的学习,学生能更好地理解二次函数的本质,提高解决问题的能力。
二. 学情分析学生在学习本节内容前,已掌握了二次函数的定义、标准式、配方法等基本知识。
但对学生来说,二次函数的图象与性质较为抽象,不易理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,掌握二次函数的图象与性质。
三. 教学目标1.知识与技能:让学生掌握二次函数的图象与性质,能够运用二次函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:二次函数的图象与性质。
2.难点:二次函数的图象与性质的灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识二次函数的图象与性质。
2.启发式教学法:引导学生观察、操作、思考,发现二次函数的图象与性质。
3.小组合作学习:培养学生团队协作精神,提高解决问题的能力。
六. 教学准备1.教学课件:制作生动、形象的课件,帮助学生理解二次函数的图象与性质。
2.教学素材:准备相关的生活实例,便于引导学生运用二次函数解决实际问题。
3.练习题:设计具有一定难度的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动、几何图形的面积等,引导学生回顾二次函数的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)展示二次函数的图象与性质的课件,让学生直观地了解二次函数的图象与性质。
同时,引导学生观察、思考,发现二次函数的图象与性质之间的关系。
3.操练(10分钟)让学生分组讨论,运用二次函数的图象与性质解决实际问题。
北师大版数学九年级下册2.2《二次函数图象与性质》教学设计4

北师大版数学九年级下册2.2《二次函数图象与性质》教学设计4一. 教材分析《二次函数图象与性质》是北师大版数学九年级下册第2.2节的内容。
本节主要让学生掌握二次函数的图象特征,了解二次函数的顶点、开口方向等性质,并能够运用这些性质解决实际问题。
教材通过实例引入二次函数的图象与性质,让学生在探究中掌握知识,培养学生的动手操作能力和解决问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识。
但是,二次函数的图象与性质较为抽象,学生可能难以理解。
因此,在教学过程中,需要结合学生的实际水平,循序渐进地引导他们探究二次函数的图象与性质,提高他们的学习兴趣和主动性。
三. 教学目标1.知识与技能:使学生掌握二次函数的图象特征,了解二次函数的顶点、开口方向等性质,并能运用这些性质解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极向上的精神风貌。
四. 教学重难点1.重点:二次函数的图象特征,二次函数的顶点、开口方向等性质。
2.难点:如何运用二次函数的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引入二次函数的图象与性质,激发学生的学习兴趣。
2.自主探究法:引导学生动手操作,自主发现二次函数的图象与性质。
3.小组合作法:鼓励学生相互讨论,共同解决问题。
4.讲解法:教师针对学生的疑问进行讲解,引导学生深入理解二次函数的图象与性质。
六. 教学准备1.准备相关的教学课件和图片,以便在课堂上展示。
2.准备一些实际问题,用于巩固学生对二次函数性质的应用。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线跳跃游戏,引导学生回顾一次函数的图象与性质,为新课的学习做好铺垫。
2.呈现(10分钟)展示二次函数的图象,让学生观察并描述二次函数的图象特征。
二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
冀教版数学九年级下册30.2《二次函数的图象和性质》教学设计

冀教版数学九年级下册30.2《二次函数的图象和性质》教学设计一. 教材分析冀教版数学九年级下册30.2《二次函数的图象和性质》这一节主要让学生了解二次函数的图象特征,掌握二次函数的性质,包括顶点坐标、开口方向、对称轴等。
通过学习,学生能运用二次函数的性质解决实际问题。
二. 学情分析九年级的学生已经学习了函数的概念、一次函数和二次函数的解析式,对函数有一定的认识。
但是,对于二次函数的图象和性质,学生可能还比较陌生,需要通过具体的实例和活动,让学生深化对二次函数图象和性质的理解。
三. 教学目标1.知识与技能:了解二次函数的图象特征,掌握二次函数的性质,能运用二次函数的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流,培养学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:二次函数的图象特征,二次函数的性质。
2.难点:二次函数性质的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,让学生在实践中学习,提高学生的动手能力和思维能力。
六. 教学准备1.教师准备:二次函数图象和性质的相关教学材料,如PPT、案例、习题等。
2.学生准备:九年级下册数学课本,一次和二次函数的相关知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次函数的图象和性质,激发学生的学习兴趣。
例如:一个抛物线形的水池,已知水池的深度和底面半径,如何求出水池的体积?2.呈现(10分钟)用PPT展示二次函数的图象,引导学生观察图象,发现二次函数的性质。
如:顶点坐标、开口方向、对称轴等。
3.操练(10分钟)让学生通过实际操作,绘制二次函数的图象,并标注出其性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)让学生运用二次函数的性质解决实际问题。
如:已知一个二次函数的顶点坐标和对称轴,求该二次函数的解析式。
5.拓展(10分钟)引导学生思考:二次函数的性质在实际生活中有哪些应用?教师举例说明,并与学生互动交流。
二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。
二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。
三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。
四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。
五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。
七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。
八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册数学二次函数的图象和性质教学计划
教学目标
【知识与技能】
使学生理解并掌握函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标。
【过程与方法】
让学生经历函数y=a(x—h)2+k性质的探索过程,理解并掌握函数y=a (x—h)2+k的性质,培养学生观察、分析、猜测、归纳并解决问题的能力。
【情感、态度与价值观】
渗透数形结合的数学思想,培养学生良好的学习习惯。
重点难点
【重点】
确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a (x—h)2+k的性质。
【难点】
正确理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x—h)2+k的性质。
教学过程
一、问题引入
1。
函数y=x2+1的图象与函数y=x2的图象有什么关系?
(函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的。
)
2。
函数y=—(x+1)2的图象与函数y=—x2的图象有什么关系?
(函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移一个单位得到的。
)
3。
函数y=—(x+1)2—1的图象与函数y=—x2的图象有什么关系?函数
y=—(x+1)2—1有哪些性质?
(函数y=—(x+1)2—1的图象可以看作是将函数y=—x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=—1,顶
点坐标是(—1,—1)。
)
二、新课教授
问题1:你能画出函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象吗?
师生活动:
教师引导学生作图,巡视,指导。
学生在直角坐标系中画出图形。
教师对学生的作图情况作出评价,指正其错误,出示正确图形。
解:(1)列表:
xy=—x2y=—(x+1)2y=—(x+1)2—1
…………
—3——2—3
—2—2——
—1—0—1
00——
1——2—3
2—2——
3——8—9
…………
(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;
(3)连线:用光滑曲线顺次连接各点,得到函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的.图象。
问题2:观察图象,回答下列问题。
函数开口方向对称轴顶点坐标
y=—x2向下x=0(0,0)
y=—(x+1)2向下x=—1(—1,0)
y=—(x+1)2—1向下x=—1(—1,—1)
问题3:从上表中,你能分别找到函数y=—(x+1)2—1,y=—(x+1)2与函数y=—x2的图象之间的关系吗?
师生活动:
教师引导学生认真观察上述图象。
学生分组讨论,互相交流,让各组代表发言,达成共识。
教师对学生回答错误的地方进行纠正,补充。
函数y=—(x+1)2—1的图象可以看成是将函数y=—(x+1)2的图象向下平移1个单位得到的。
函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移1个单位得到的。
故抛物线y=—(x+1)2—1是由抛物线y=—x2沿x轴向左平移1个单位长度得到抛物线y=—(x+1)2,再将抛物线y=—(x+1)2向下平移1个单位得到的。
除了上述平移方法外,你还有其他的平移方法吗?
师生活动:
教师引导学生积极思考,并适当提示。
学生分组讨论,互相交流,让各组代表发言,达成共识。
教师对学生回答错误的地方进行纠正,补充。
抛物线y=—(x+1)2—1是由抛物线y=—x2向下平移1个单位长度得到抛物线y=—x2—1,再将抛物线y=—x2—1向左平移1个单位得到的。
问题4:你能发现函数y=—(x+1)2—1有哪些性质吗?
师生活动:
教师组织学生讨论,互相交流。
学生分组讨论,互相交流,让各组代表发言,达成共识。
教师对学生回答错误的地方进行纠正,补充。
当x—1时,函数值y随x的增大而增大;当x—1时,函数值y随x的增大而减小;当x=—1时,函数取得最大值,最大值y=—1。
三、典型例题
【例】要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处
达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?
师生活动:
教师组织学生讨论、交流,如何将文字语言转化为数学语言。
学生积极思考、解答。
指名板演,教师讲评。
解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x—1)2+3(0≤x≤3)。
由这段抛物线经过点(3,0)可得0=a(3—1)2+3,
解得a=—,
因此y=—(x—1)2+3(0≤x≤3),
当x=0时,y=2。
25,也就是说,水管的长应为2。
25 m。
四、巩固练习
1。
画出函数y=2(x—1)2—2的图象,并将它与函数y=2(x—1)2的图
象作比较。
【答案】函数y=2(x—1)2的图象可以看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x—1)2的图象向下平移两个单位长度即得函数
y=2(x—1)2—2的图象。
2。
说出函数y=—(x—1)2+2的图象与函数y=—x2的图象的关系,由此
进一步说出这个函数图象的开口方向、对称轴和顶点坐标。
【答案】函数y=—(x—1)2+2的图象可以看成是将函数y=—x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线
x=1,顶点坐标是(1,2)。
五、课堂小结
本节知识点如下:
一般地,抛物线y=a(x—h)2+k与y=ax2的形状相同,位置不同,把抛物线y=ax2向上(或下)向左(或右)平移,可以得到抛物线y=a(x—h)2+k。
平移的方向和距离要根据h、k的值来确定。
抛物线y=a(x—h)2+k有如下特点:
(1)当a0时,开口向上;当a0时,开口向下;
(2)对称轴是x=h;
(3)顶点坐标是(h,k)。
教学反思
本节内容主要研究二次函数y=a(x—h)2+k的图象及其性质。
在前两节课的基础上我们清楚地认识到y=a(x—h)2+k与y=ax2有密切的联系,我们只需对y=ax2的图象做适当的平移就可以得到y=a(x—h)2+k的图象。
由y=ax2得到y=a(x—h)2+k有两种平移方法:
方法一:
y=ax2
y=a(x—h)2
y=a(x—h)2+k
方法二:
y=ax2
y=ax2+k
y=a(x—h)2+k
在课堂上演示平移的过程,让学生切身体会到两种平移方法的区别和联系,这里利用几何画板软件效果会更好。