状态空间极点配置设计汇总

合集下载

自动控制原理状态空间法

自动控制原理状态空间法
自动控制原理状态空间法
目录
• 引言 • 状态空间法基础 • 线性系统的状态空间表示 • 状态反馈与极点配置 • 最优控制理论 • 离散系Biblioteka 的状态空间表示01引言
状态空间法的定义
状态空间法是一种基于状态变量描述线性时不变系统的方法,通过建立系 统的状态方程和输出方程来描述系统的动态行为。
状态变量是能够完全描述系统内部状态的变量,可以是系统的物理量或抽 象的数学变量。
最优控制问题
在满足一定约束条件下,寻找一个控制输入, 使得被控系统的某个性能指标达到最优。
性能指标
通常为系统状态或输出函数的积分,如时间加 权或能量加权等。
约束条件
包括系统动态方程、初始状态、控制输入和终端状态等。
线性二次调节器问题
线性二次调节器问题是最优控制问题的一个特例, 其性能指标为系统状态向量的二次范数。
THANKS
状态方程描述了系统内部状态变量之间的动态关系,而输出方程则描述了 系统输出与状态变量之间的关系。
状态空间法的重要性
1
状态空间法提供了系统分析和设计的统一框架, 可以用于线性时不变系统的各种分析和设计问题。
2
通过状态空间法,可以方便地实现系统的状态反 馈控制、最优控制、鲁棒控制等控制策略。
3
状态空间法具有直观性和易于实现的特点,能够 直接反映系统的动态行为,便于理解和分析。
02
状态空间法基础
状态与状态变量
状态
系统在某一时刻的状态是由系统 的所有内部变量共同决定的。
状态变量
描述系统状态的变量,通常选择 系统的输入、输出和内部变量作 为状态变量。
状态方程的建立
根据系统的物理或数学模型,通过适 当的方法建立状态方程。

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇

设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)
y(t) 2 1x(t)
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
解: 0
B 1
0 1 0 1 AB 6 51 5
rankS


rankB

AB

0 1
1 5

2
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节

7.4 状态反馈和极点配置

7.4 状态反馈和极点配置
3
可配置条件_极点配置定理
考虑线性定常系统
x Ax Bu
假设控制输入u的幅值是无约束的。如果选取控制规律为
u r Kx
式中K为线性状态反馈矩阵。
定理 (极点配置定理) 线性定常系统可通过线性状态反馈任意地 配置其全部极点的充要条件是,此被控系统状态完全可控。
该定理对多变量系统也成立。
证明 (对单输入单输出系统) 1、充分性 2、必要性
kn 1 ]
由于 u r Kx r KPx ,此时该系统的状态方程为 x ( Ac Bc K ) x Bcr
相应的特征方程为 sI Ac BcK 0
因为非奇异线性变换不改变系统的特征值,当利用 u=r-Kx作为控制输 入时,相应的特征方程与上式相同,均有如下结果。
s
1
0
0
s
0
sI Ac BcK
◆确定将系统状态方程变换为可控标准形的变换矩阵P。若给定的状态方程已是 可控标准形,则P = I。此时无需再写出系统的可控标准形状态方程。非奇异线 性变换矩阵P=QW。
◆利用给定的期望闭环极点,可写出期望的特征多项式为
(s 1() s 2 ) (s n ) sn an1sn1 a1s a0
从而确定出a1* , a2 *,… an *的值。
◆最后得到状态反馈增益矩阵K为
K [ a0 a0 a1 a1
a n1
an1
]
P 1
10
极点配置 例1
【例】 考虑如下线性定常系统
0
1
0
0
x Ax Bu A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制,希望该系统的闭环极点为s = -2±j4和s = -10。试确定状

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节
自动化工程学院自动控制原理课程组制 2015年11月
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)


rankB

AB

0 1
1 5

2
系统能控。
举例求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
1x(t)
F 7 1

倒立摆系统的状态空间极点配置控制设计

倒立摆系统的状态空间极点配置控制设计
力 学理 论 建立 系统 的动 力学 方 程 。
1 1 微分 方程 的 推导 .
在 忽 略 了空 气 阻 力 , 种 摩 擦 之 后 , 各 可将 直 线

级倒 立摆 系统 抽 象成 小 车 和匀 质杆 组 成 的系 统 ,
如下图 1 示。 所
图 3 摆杆隔离受力 图
分 析小 车水 平 方 向所受 的合 力 , 以得 到 以下 可 方程 : 一 F一 ~N () 1 由摆杆 水 平 方 向的 受 力 进 行 分 析 可 以 得 到下 面 等式 :

要: 为实现多输入 多输 出、 高度非线性 、 不稳定 的倒立摆 系统 平衡稳 定控制 , 倒立摆 系统 的非线性 模型进 将
行 近似线性化处理 , 获得系统在平衡点 附近的线性化模 型。利用牛顿一欧拉方法建立 直线 型一 级倒立摆 系统 的
数学模型 。在分析 的基础上 , 基于状态反馈控制 中极点配置法对 直线 型一级倒立 摆系统设 计控制器 。由 MAT -
屯 幽试
EL CTR E 0NJ 汀 C TE£
维普资讯
20 . 0 88
De i & Re e r h s gn s ac
忽略 掉一 些次 要 的 因素后 , 立摆 系统 就 是一 个 典 倒 型 的运 动 刚体 系统 , 以在 惯 性 坐标 系 内应 用 经 典 可
变量 、 非线性和强耦合 特性 , 许多现代控制理论的
研 究人 员一 直将 它视 为典 型 的研 究对 象 , 断从 中 不 发 掘 出新 的控 制 策 略 和控 制 方 法 。控制 器 的设 计
1 数学模型 的建立
对 于倒 立摆 系统 , 由于其 本 身 是 自不 稳 定 的系 统, 实验 建模 存在 一定 的 困难 。但是 经 过 小 心 假 设

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a)FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

系统的能控性与能观性分析及状态反馈极点配置要点

系统的能控性与能观性分析及状态反馈极点配置要点

实 验 报 告课程 自动控制原理 实验日期 12 月26 日 专业班级 姓名 学号实验名称 系统的能控性与能观性分析及状态反馈极点配置 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念,掌握状态反馈极点配置方法,掌握如何使用MATLAB 进行以下分析和实现。

1、系统的能观测性、能控性分析;2、系统的最小实现;3、进行状态反馈系统的极点配置;4、研究不同配置对系统动态特性的影响。

二、实验内容1.能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, mineral ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s as s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。

2.实验内容原系统如图1-2所示。

图中,X 1和X 2是可以测量的状态变量。

图1-2 系统结构图试设计状态反馈矩阵,使系统加入状态反馈后其动态性能指标满足给定的要求:(1) 已知:K=10,T=1秒,要求加入状态反馈后系统的动态性能指标为:σ%≤20%,ts≤1秒。

(2) 已知:K=1,T=0.05秒,要求加入状态反馈后系统的动态性能指标为:σ%≤5%,ts≤0.5秒。

状态反馈后的系统,如图1-3所示:图1-3 状态反馈后系统结构图分别观测状态反馈前后两个系统的阶跃响应曲线,并检验系统的动态性能指标是否满足设计要求。

三、实验环境 1、计算机1台;2、MATLAB6.5软件1套。

四、实验原理(或程序框图)及步骤 1、系统能控性、能观性分析设系统的状态空间表达式如下:p m n R y R u R x Du Cx y Bu Ax x∈∈∈⎩⎨⎧+=+=(1-1)其中A 为n ×n 维状态矩阵;B 为n ×m 维输入矩阵;C 为p ×n 维输出矩阵;D 为p ×m 维传递矩阵,一般情况下为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用上述近似方法时,可用下述s´直接代替G(s)中的自变量s
而得到脉冲传递函数G(z),其中:
从而
s z 1 T
s z 1 zT
s 2 z 1 T z 1
(前向差分法/欧拉法)(4.4) (后向差分法) ( 4.5 ) (双线性变换法) ( 4.6 )
G(z) G(s)
(4.4)式由s平面到z平面的映射
z esT 1 sT (前向差分法/欧拉法)(4.1)
z esT
1 esT
1 1 sT
(后向差分法)(4.2)
另一种与数值积分的梯形法相对应的近似法是:
z
esT
esT / 2 esT / 2
1 sT 1 sT
/2 /2
(4.3)
这种近似也常常叫做双线性变换,或者塔斯廷(Tustin)近似。
以改进闭环系统的性能。假定离散时间控制器L~x(kT)
(4.15)
可以采用离散状态空间的极点配置设计方法来实现上述
(4.5)式由s平面到z平面的映射
(4.6)式由s平面到z平面的映射
可以看出:
• 使用前向差分法有可能把一个稳定的连续时间系统映射为 一个不稳定的离散时间系统。
• 使用后向差分近似时,一个稳定的连续时间系统将总是给 出一个稳定的离散系统。但是一些不稳定连续时间系统也可 能被转换成稳定的离散时间系统。而且运用后向差分法时频 率被严重压缩了,不能保证频率特性不变。
在极点配置设计方法中,将反馈全部状态变量,使得全部 闭环极点均设置在各期望的位置上。然而,实际的控制系统中, 量测到全部状态变量是不可能的,不是全部状态变量都可以用 于反馈。为了实现状态反馈,估计这些未知的状态变量是很必 要的,这种估计可以用状态观测器进行。
状态反馈极点配置问题,可以分成为两个部分: 首先假定系统的全部状态都可能用于反馈,设计一个 全状态反馈的控制系统;然后,再设计一个状态观测 器,用来估计状态反馈要用的状态变量。设计中依据 的参数为期望的闭环极点的位置和采样周期T。
• 使用双线性变换(塔斯廷近似)将s平面的左半平面映射到 z平面的单位圆内。因此把连续时间系统的稳定性与离散时 间系统的稳定性不变。
4.2.1.2 频率畸变现象的预防
经过双线性近似变换后,模拟频率与离散频率之间存在着非
线性关系。设模拟频率为ω,变换后得到的离散频率为ω',
现在将s' = iω,z = eiω´T代入双线性变换式,得到:
第4章 极点配置设计:状态空间方法
• 主要内容
• (1) 状态反馈极点配置 • (2) 状态观测器 • (3) 带状态观测器的调节器设计 • (4) 输入系统的极点配置
4.1 引言
状态空间中的极点配置设计方法是基本的设计方法之一。 如果系统是完全状态可控的,那么,要求的z平面上闭环极点可 以选择,并且,以这些极点为闭环极点的系统可以设计。这种 在z平面设置期望的闭环极点的设计方法,称为极点配置设计法。
得到差分方程;
后向差分法用后向差分近似导数:
dx(t) x(t) x(t T ) q 1 x(t)
dt
T
qT
来得到差分方程。
在上述变换变量中,相当于用(z-l)/T或者(z-l)/(zT)代替s。前 面的章节已经表明,可把变量z和s用自然指数关联起来,即z =exp(sT)。这两个差分近似相应于级数展开:
4.2 状态反馈极点配置
假设系统的全部状态变量都可以量测,并且都能用 于反馈。如果系统是完全状态可控的,那么,用状态 反馈的方法,适当地选择状态反馈增益矩阵,可以将 闭环系统的极点配置在z平面的任何期望的位置。
首先必须指出,状态空间中,任意极点配置的充 分且必要的条件是,系统必须是完全状态可控的。
(4.13)
如果系统(4.12)是能控的,那么使用形式为:
u(t) Muc (t) Lx(t) 的控制器就可任意配置该闭环系统的极点。
(4.14)
对状态采样并在采样周期内保持控制信号恒定就可以实
现数字形式(4.14)的控制器。随着采样周期的增加,
离散闭环系统的特性开始恶化,不过,可以修改控制器
4.2.1 状态反馈
假设连续系统由方程:
dx Ax Bu dt
描述。只讨论单输入-单输出情况。对该系统按一定周期进行 零阶保持采样得到的离散系统为:
x(kT T ) x(kT) u(kT)
其中矩阵Ф和Г由:
e AT
T e AsdsB 0
给出。为简化起见,将系统写为:
x(k 1) x(k) u(k)
4.2.1.1 差分法和双线性变换法
连续控制器D(s)在时间域里用微分方程来表示,把微分运算用 等效差分来近似,就可得到逼近微分方程的差分方程。
等效差分有前向差分、后向差分等方法。前向差分法又称为 欧拉法,是用前向差分近似导数:
dx(t) x(t T ) x(t) q 1 x(t)
dt
T
T
i
2 T
eiT eiT
1 1
2 T
eiT eiT
/ /
2 2
eiT / 2 eiT / 2
2i T
tan(T )
2
则模拟频率ω与离散频率ω'之间有如下关系:
即:
2 tan(T )
T2
2 T
tan1(T
2
)
1
(T )2
12
(4.7)
ω与ω´的非线性关系
双线性变换造成的频率畸变
由(4.7)式可知,在ω=0处没有频率畸变,并且ωT小时畸
4.2.2 基于状态模型的近似法
在某些情况下,已知连续时间状态空间模型描述的控制器,
希望将它离散化成离散时间近似式。可以把状态反馈控制器
看作广义的P控制器。假设连续时间系统方程为:
dx Ax Bu dt y Cx
(4.12)
且所有的状态都是可量测的。对应的离散系统方程为:
x(kT T ) x(kT) u(kT) y(kT) Cx(kT)
变也小。如果系统要求变换后的某些特定频率不能畸变时,
可以采用预畸变方法来补偿。要在规定的频率ω1处没有畸变,
只要把(4.6)式的双线性变换修改为下列变换即可:
s
1 tan(1T
/ 2)
z z
1 1
(频率预畸变的双线性变换) (4.8)
根据(4.8)式,可以得出:
G(ei1T ) G(i1) 即该连续时间滤波器及其近似式在频率ω1处具有同样值。不 过,该方法仅仅能在规定的频率处保证不发生畸变,在其他 频率处仍会有畸变。
相关文档
最新文档