倒立摆状态空间极点配置控制实验实验报告
固高科技《倒立摆与自动控制原理实验》

固高科技《倒立摆与自动控制原理实验》《倒立摆与自动控制原理实验》是一个固高科技开展的实验项目,旨在培养学生对自动控制原理的理解和应用能力。
该实验通过搭建倒立摆的物理模型,利用自动控制原理来实现倒立摆的平衡控制。
以下是对该实验项目的介绍,包括实验目的、原理以及实验步骤。
实验目的:1.理解自动控制原理的基本概念和应用。
2.掌握使用固高科技控制系统进行实验的方法。
3.了解倒立摆的特性和控制方法。
4.通过实验,提高学生的动手实践能力和创新思维。
实验原理:倒立摆是一个经典的自动控制系统,由一个摆杆和一个旋转关节组成。
摆杆可以沿着旋转关节旋转,目标是使摆杆保持直立状态。
倒立摆系统可以看作是一个负反馈控制系统,输入为倒立摆的角度和角速度,输出为控制摆杆旋转的力矩。
通过调节输入和输出之间的关系,可以实现倒立摆的平衡控制。
实验步骤:1.准备实验所需的材料和仪器,包括固高科技控制系统、倒立摆模型、电源等。
2.搭建倒立摆的物理模型,将摆杆固定在旋转关节上,并与驱动电机相连。
3.将摆杆的角度和角速度传感器与固高科技控制系统相连。
4.将固高科技控制系统通过USB接口连接到计算机上,并打开控制系统控制软件。
5.运行控制软件,配置摆杆的初始角度和目标角度,并设置控制参数。
6.开始实验,观察摆杆的运动状态,尝试调节控制参数以实现倒立摆的平衡控制。
7.记录实验结果,分析控制参数对倒立摆平衡控制的影响。
通过以上步骤,可以实现对倒立摆的平衡控制。
学生通过实际操作和观察,加深对自动控制原理的理解和应用。
此外,他们还可以探索倒立摆系统的多种控制方法和策略,提高自己的创新能力。
总结:《倒立摆与自动控制原理实验》是一个很有意义的实验项目,旨在培养学生对自动控制原理的理解和应用能力。
通过实际操作和观察,学生可以深入了解倒立摆的特性和控制方法,并通过调节控制参数实现倒立摆的平衡控制。
通过这个实验,学生不仅可以提高动手实践能力,还可以培养创新思维,为将来的研究和工作打下坚实的基础。
倒立摆实验报告

专 业 实 验 报 告 实验名称倒立摆实验 实验时间 姓名 学号一、实验内容1、直线一级倒立摆建模1.1 受力分析针对直线一级倒立摆,在实际的模型建立过程中,可忽略空气流动阻力和其它次要的摩擦阻力,则倒立摆系统抽象成小车和匀质刚性杆组成的系统,如图所示。
图1 小车系统各参数定义:M :小车质量m :摆杆质量β:小车摩擦系数l: 摆杆转动轴心到杆质心的长度I :摆杆惯量F :加在小车上的力X :小车位置Ф:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角摆杆受力和力矩分析图2 摆杆系统摆杆水平方向受力为:H摆杆竖直方向受力为:V由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩&&&&&& (1) 代入V 、H ,得到摆杆运动方程。
当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG sml I s mgl=+-(2)倒立摆系统参数值:M=1.096 % 小车质量,kgm=0.109 % 摆杆质量,kg0.1β=% 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,mI= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G ss=-(3)1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x xθθ=&&(4)由2()I ml mgl mlxθθ+-=&&&&得出状态空间模型01001000000013300044xxxxxgglμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦&&&&&&&&(5)μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11&&xxxy(6)由倒立摆的参数计算出其状态空间模型表达式:(7)111()()n n n n f s sI A BK s a s a s a --=--=++++L (11)设期望特征根为***12,,,n λλλL ,则期望特征多项式为:***1111()()()n n n n n f x s s s b s b s b λλ--=--=++++L L (12)由*()()f s f s =求得矩阵K 。
倒立摆实验报告

《线性系统理论》课程——倒立摆实验报告基本情况实验完成了基本要求,通过pid、极点配置、根轨迹、和ldr方法调试运行一级倒立摆,设计新的pid参数,调试运行状态,逐渐使一级倒立摆稳定,完成了实验的基本要求。
在对一级倒立摆完成实验的基础上,进一步对二级倒立摆进行了分析研究。
这其中的工作主要包括针对LDR方法运行demo,观察系统稳定性,快速性,调整系统参数,查看有什么问题,并且针对问题提出修改意见。
在多次试验后,对系统有了进一步的了解,便开始着手二级倒立摆极点配置方法的实现问题。
这部分继续学习了极点配置的方法,通过编写m文件,计算K,仿真运行系统,查看系统图像,查看调节时间,超调量等。
逐渐调试参数,使系统指标顺利达到。
最后是进行试验,进一步调整系统参数。
在这一个过程中,经验很重要,同时偶然因素也起到了重要的作用。
所以调试一个系统真的不容易。
这一部分的内容在第六节中进行了较为详细的介绍收获对倒立摆的系统原理有了更深层次的了解掌握了pid、极点配置、根轨迹、ldr方法设计系统学会了一些调试运行系统的经验加强了和同学之间的交流,锻炼了软件实现编程能力改进意见这里我有一个小小的建议,这是我在做实验的时候遇到了问题总结。
系统参数含义还不是很清楚。
在这个方面尤其是参数对应着系统的具体实际含义不明确,只能在尝试凑参数,有时出现了一个问题,不知道是哪个参数引起的,所以影响了效率,结果也不是很明显。
改进意见:共有四次实验,第一次实验安排不变但是试验后,负责人要收集问题,主要是要老师来解决的,在第二次实验前针对上一次的问题进行集体讲解一下,尤其是与物理的联系,不要仅仅是自己做实验吧,第三次和第一次相同,第四次与第二次相同。
在这个完成后,如果课堂有时间,可以进行了一个小小的试验心得介绍,和大家交流心得体会。
或者是老师统一解决一下这个总体过程中的问题,我觉得这样结果会更好一点。
下面是具体的详细报告一、倒立摆系统介绍倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
固高科技《倒立摆与自动控制原理实验》

固高科技《倒立摆与自动控制原理实验》《倒立摆与自动控制原理实验》是固高科技中一门重要的实验课程。
倒立摆是一种常见的动力学系统模型,可以应用于机器人控制、姿态稳定控制、飞行器控制等领域。
自动控制原理是掌握电路、机器、仪器等系统控制的基础,对于机械、电子、自动化等专业的学生来说都是必学的课程。
此实验旨在通过实践操作,帮助学生理解倒立摆的原理和自动控制原理,并培养他们的实验操作能力和问题解决能力。
下面将简要介绍实验的目的、原理和步骤。
实验目的:1.理解倒立摆的原理和动力学方程;2.学习掌握自动控制原理;3.掌握实验操作技巧;4.提高问题解决能力和团队合作意识。
实验原理:倒立摆是一个不稳定的系统,需要通过控制来保持平衡。
实验中,用电机驱动倒立摆杆旋转,通过两个位置传感器检测倒立摆杆的角度和角速度,并将这些信号经过控制器进行处理后控制电机。
通过调整电机输出的力矩,使倒立摆保持在垂直位置。
自动控制原理是实现倒立摆控制的基础。
对于这个系统来讲,可以采用经典的PID控制算法。
PID控制器根据当前倒立摆的角度误差、角速度误差和积分误差来计算控制信号,实时调整电机输出的力矩,使倒立摆保持在稳定的位置。
实验步骤:1.搭建倒立摆实验平台:根据实验材料提供的装配手册,按图纸要求完成倒立摆的搭建。
注意调整杆件位置,使倒立摆保持平衡。
2.连接传感器和控制器:将位置传感器和角速度传感器连接到控制器,确保信号传输的可靠性。
3.设置控制参数:在控制器上设置PID控制器的参数,包括比例系数Kp、积分系数Ki和微分系数Kd。
根据实验要求,调整参数值。
4.进行控制实验:启动电机,观察倒立摆的运动情况。
根据实际情况,调整控制器的参数,使倒立摆保持在平衡位置。
5.实验数据处理:记录实验过程中的数据,包括控制器的输出信号、倒立摆的角度和角速度等数据。
通过数据分析,评估控制效果和控制器参数的优化方法。
总结:《倒立摆与自动控制原理实验》是一门理论与实践相结合的课程,通过实验操作,学生能够深入理解倒立摆和自动控制原理,并培养他们的实验操作能力和问题解决能力。
倒立摆系统__实验设计报告

倒立摆系统__实验设计报告一、实验目的本实验旨在通过对倒立摆系统的研究与实验,探讨倒立摆的运动规律,并分析其特点和影响因素。
二、实验原理与方法1.实验原理倒立摆是指在重力作用下,轴心静止在上方的直立摆。
倒立摆具有自然的稳定性,能够保持在平衡位置附近,且对微小干扰具有一定的抵抗能力。
其本质是控制系统的一个重要研究对象,在自动控制、机器人控制等领域有广泛的应用。
2.实验方法(1)搭建倒立摆系统:倒立摆由摆杆、轴心和电机组成,摆杆在轴心上下运动,电机用于控制倒立摆的运动。
(2)调节电机控制参数:根据实验需要,调节电机的参数,如转速、力矩等,控制倒立摆的运动状态。
(3)记录数据:通过相机或传感器等手段,记录倒立摆的位置、速度、加速度等相关数据,用于后续分析。
(4)分析数据:根据记录的数据,分析倒立摆的运动规律、特点和影响因素,在此基础上进行讨论和总结。
三、实验步骤1.搭建倒立摆系统:根据实验需要,选取合适的材料和设备,搭建倒立摆系统。
2.调节电机参数:根据实验目的,调节电机的转速、力矩、控制信号等参数,使倒立摆能够在一定范围内保持平衡。
3.记录数据:利用相机或传感器等设备,记录倒立摆的位置、速度、加速度等相关数据。
4.分析数据:通过对记录的数据进行分析,研究倒立摆的运动规律和特点,并探讨影响因素。
5.总结讨论:根据实验结果,进行总结和讨论,对倒立摆的运动规律、特点和影响因素进行深入理解和探究。
四、实验设备与器材1.倒立摆系统搭建材料:包括摆杆、轴心、电机等。
2.记录数据设备:相机、传感器等。
五、实验结果与分析通过实验记录的数据,分析倒立摆的运动规律和特点,找出影响因素,并进行讨论和总结。
六、实验结论根据实验结果和分析,得出倒立摆的运动规律和特点,并总结影响因素。
倒立摆具有一定的稳定性和抵抗干扰的能力,在控制系统中具有重要的应用价值。
七、实验感想通过参与倒立摆系统的搭建和实验,深入了解了倒立摆的运动规律和特点,对控制系统有了更深刻的理解。
一级倒立摆实验报告

一级直线倒立摆极点配置控制实验一、实验目的1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、PID 控制分析等内容。
2.熟悉利用极点配置方法来进行倒立摆实验的原理方法。
3.学习MATLAB工具软件在控制工程中的应用。
3.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。
二、实验设备计算机及MATLAB相关软件元创兴倒立摆系统的软件元创兴一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三、倒立摆系统介绍倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。
学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。
倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。
由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。
四、倒立摆工作原理和物理模型以及数学模型(简述)1、工作原理:数据采集卡(也称运动控制卡,安装于计算机机箱的PCI插槽上)采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。
倒立摆实验报告

本次实验使用的倒立摆系统是固高公司生产的直线一级倒立摆实验系统。厂商已经将实际倒立摆系统与MATLAB之间进行了链接,这使得我们可以在MATLAB环境中进行控制器参数的设定,然后将MATLAB程序下载到硬件实时内核中进行实时控制。因此,实验的主要工作是在MATLAB的SIMULINK环境下进行的。由于倒立摆实验系统中的计算机已经安装固高公司的MATLAB工具箱,因此倒立摆实验室计算机中的SIMULINK环境比一般SIMULINK环境多了一个工具箱“Googol Education Products”,如下图所示
本实验LQR控制的SIMULINK模型如下:
通过选取不同的Q、R阵可得出以下仿真波形图:
1) 时,K=[-70.7107 -37.8344 105.5295 20.9238],阶跃响应波形如下
2) 时,K=[-100.000 -51.4535 136.0814 27.0435],阶跃响应波形如下
3) 时,K =[-89.4427 -46.5479 128.4999 23.6271],阶跃响应波形如下
step(A, B ,C ,D)
单位阶跃响应下,小车位置和摆杆角度均发散,因此需要加入控制环节来改善系统特性。
二、控制器设计改善系统性能
1.PID控制器设计
PID控制是最早发展起来的线性控制策略之一,至今已有半个多世纪的历史,在工程实践领域运用十分广泛。PID控制由比例(Proportional)环节、积分(Integral)环节和微分(Differential)环节组成,其典型结构图下图所示:
1)传递函数阶跃响应曲线、开环波特图、零极点
num=[2.356550];
den=[10.0883167-27.9169-2.30942];
倒立摆实验报告

倒立摆实验报告倒立摆实验报告引言:倒立摆是一种经典的力学实验,通过研究倒立摆的运动规律,可以深入理解物理学中的一些基本概念和原理。
本实验旨在通过搭建倒立摆模型并观察其运动过程,探究摆动周期与摆长、质量等因素之间的关系,并分析影响倒立摆稳定性的因素。
一、实验器材和原理实验器材:1. 木质支架2. 杆状物体(作为摆杆)3. 重物(作为摆锤)4. 弹簧5. 电子计时器实验原理:倒立摆实验基于牛顿第二定律和能量守恒定律。
当摆杆倾斜一定角度时,重力将产生一个力矩,使摆杆产生转动。
而弹簧的作用则是提供一个恢复力,使摆杆回到竖直位置。
通过调整摆杆长度、质量和弹簧的初始拉伸量,可以控制倒立摆的运动。
二、实验步骤1. 搭建实验装置:将木质支架固定在平稳的桌面上,将摆杆固定在支架上,并在摆杆的一端挂上重物。
2. 调整初始条件:调整摆杆的长度和重物的位置,使摆杆处于平衡位置。
同时,将弹簧的一端固定在摆杆上。
3. 测量实验数据:使用电子计时器记录倒立摆的摆动周期,重复多次测量,取平均值。
4. 改变实验参数:分别改变摆杆的长度、重物的质量和弹簧的初始拉伸量,再次进行测量和记录。
5. 数据分析:根据实验数据,绘制摆动周期与摆杆长度、重物质量、弹簧初始拉伸量之间的关系曲线,并进行分析和讨论。
三、实验结果与讨论根据实验数据,我们可以得出以下结论:1. 摆动周期与摆杆长度成正比:当摆杆长度增加时,摆动周期也随之增加。
这是因为较长的摆杆需要更多的时间来完成一次摆动。
2. 摆动周期与重物质量无直接关系:在一定范围内,重物质量的增加并不会显著影响摆动周期。
这是因为重物的质量只会影响倒立摆的稳定性,而不会改变其运动速度。
3. 弹簧初始拉伸量对摆动周期的影响:当弹簧的初始拉伸量增加时,摆动周期减小。
这是因为较大的初始拉伸量会提供更大的恢复力,使摆杆回到竖直位置的速度更快。
通过实验结果的分析,我们可以得出以下结论:1. 摆杆长度是影响倒立摆运动周期的主要因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代控制理论》实验报告状态空间极点配置控制实验一、实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。
极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。
1.状态空间分析对于控制系统X = AX + Bu选择控制信号为:u = −KX式中:X 为状态向量( n 维)u 控制向量(纯量)A n × n维常数矩阵B n ×1维常数矩阵求解上式,得到 x(t) = (A − BK)x(t)方程的解为: x(t) = e( A−BK )t x(0)状态反馈闭环控制原理图如下所示:从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。
2.极点配置的设计步骤1) 检验系统的可控性条件。
2) 从矩阵 A 的特征多项式来确定 a1, a2,……,an的值。
3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW其中 M 为可控性矩阵,4) 利用所期望的特征值,写出期望的多项式5) 需要的状态反馈增益矩阵 K 由以下方程确定:二、实验内容针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。
三、实验步骤及结果1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输入的系统状态方程为:可以取1l 。
则得到系统的状态方程为:于是有:直线一级倒立摆的极点配置转化为:对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比ς = 0.5)。
2.采用四种不同的方法计算反馈矩阵 K。
方法一:按极点配置步骤进行计算。
1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。
倒立摆极点配置原理图2) 计算特征值根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中:其中,μ3,μ4使一对具有的主导闭环极点,μ1,μ2位于主导闭环极点的左边,因此其影响较小,因此期望的特征方程为:因此可以得到:由系统的特征方程:因此有系统的反馈增益矩阵为:3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW式中:M =0 1.0000 0 01.0000 0 0 00 0.7500 0 5.51250.7500 0 5.5125 0W =0 -7.3500 -0.0000 1.0000-7.3500 -0.0000 1.0000 0-0.0000 1.0000 0 01.0000 0 0 0于是可以得到:T =-7.3500 -0.0000 1.0000 00 -7.3500 -0.0000 1.00000 -0.0000 0.7500 0-0.0000 0 -0.0000 0.7500T’=-7.3500 0 0 -0.0000-0.0000 -7.3500 -0.0000 01.0000 -0.0000 0.7500 -0.00000 1.0000 0 0.75004) 于是有状态反馈增益矩阵 K 为:K = -217.6871 -97.9592 561.3828 162.6122得到控制量为:以上计算可以采用 MATLAB 编程计算。
程序如下:clear;A=[ 0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 7.35 0];B=[ 0 1 0 0.75]';C=[ 1 0 0 0; 0 0 1 0];D=[ 0 0 ]';J=[ -10 0 0 0; 0 -10 0 0; 0 0 -2-2*sqrt(3)*i 0;0 0 0 -2+2*sqrt(3)*i];pa=poly(A);pj=poly(J);M=[B A*B A^2*B A^3*B];W=[ pa(4) pa(3) pa(2) 1; pa(3) pa(2) 1 0;pa(2) 1 0 0; 1 0 0 0];T=M*W;K=[pj(5)-pa(5) pj(4)-pa(4) pj(3)-pa(3) pj(2)-pa(2)]*inv(T)Ac = [(A-B*K)];Bc = [B]; Cc = [C]; Dc = [D];T=0:0.005:5;U=0.2*ones(size(T));Cn=[1 0 0 0];Nbar=rscale(A,B,Cn,0,K);Bcn=[Nbar*B];[Y,X]=lsim(Ac,Bcn,Cc,Dc,U,T);plot(T,X(:,1),'-')hold on;plot(T,X(:,2),'-.')hold on;plot(T,X(:,3),'.')hold on;plot(T,X(:,4),'-')legend('CartPos','CartSpd','PendAng','PendSpd')运行得到以下结果:可以看出,在给定系统干扰后,倒立摆可以在2 秒内很好的回到平衡位置,满足设计要求。
方法二:也可以通过下面的方法进行极点配置计算:矩阵(A-BK)的特征值是方程式|Is − (A − BK) |= 0的根:这是 s 的四次代数方程式,可表示为适当选择反馈系数 k1 , k2, k3, k4系统的特征根可以取得所希望的值。
把四个特征根λ1 ,λ2,λ3,λ4设为四次代数方程式的根,则有比较两式有下列联立方程式如果给出的λ1 ,λ2,λ3,λ4是实数或共轭复数,则联立方程式的右边全部为实数。
据此可求解出实数k1 , k2, k3, k4当将特征根指定为下列两组共轭复数时又a = 7.35,b=0.75利用方程式可列出关于k1 , k2, k3, k4的方程组:求解后得K = -217.6871 -97.9592 561.3828 162.6122即施加在小车水平方向的控制力 u:可以看出,和方法一的计算结果一样。
程序如下:clear;syms a s b k1 k2 k3 k4;A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 a 0];B=[ 0 1 0 b]';SS=[ s 0 0 0;0 s 0 0;0 0 s 0;0 0 0 s];K=[k1 k2 k3 k4];J=[ -10 0 0 0;0 -10 0 0;0 0 -2-2*sqrt(3)*i 0;0 0 0 -2+2*sqrt(3)*i];ans=A-B*K;P=poly(ans)PJ=poly(J)运行结果为:P =x^4+3/4*k4*x^3-147/20*x^2+3/4*x^2*k3+k2*x^3-147/20*x*k2+k1*x^2-14 7/20*k1PJ = 1 24 196 720 1600 方法三:利用爱克曼公式计算。
爱克曼方程所确定的反馈增益矩阵为:其中利用 MATLAB 可以方便的计算,程序如下:clear;A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 7.35 0];B=[ 0 1 0 0.75]';M=[B A*B A^2*B A^3*B];J=[ -10 0 0 0;0 -10 0 0;0 0 -2-2*sqrt(3)*i 0;0 0 0 -2+2*sqrt(3)*i];phi=polyvalm(poly(J),A);K=[ 0 0 0 1]*inv(M)*phi运行结果为:K = -217.6871 -97.9592 561.3828 162.6122方法四:可以直接利用 MATLAB 的极点配置函数[K,PREC,MESSAGE] = PLACE(A,B,P)来计算。
程序如下:clear;A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 7.35 0];B=[ 0 1 0 0.75]';P=[-10-0.0001*j,-10+0.0001*j,-2-2*sqrt(3)*j,-2+2*sqrt(3)*j];K=place(A,B,P);运行结果:K = -217.6871 -97.9592 561.3828 162.6122。