倒立摆实验报告

合集下载

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告本次实验旨在研究一阶倒立摆系统的模糊控制方法,通过对系统进行建模、设计控制器并进行仿真,最终评估控制效果。

实验过程主要包括系统建模、控制器设计、模糊控制器参数调节和性能评价四个步骤。

首先,我们对一阶倒立摆系统进行建模。

一阶倒立摆系统是一种具有非线性特性的控制系统,主要由电机、倒立摆、支撑杆等组成。

我们需要建立数学模型描述系统的动力学特性,包括倒立角度、倒立角速度、杆角度等状态变量,并考虑控制输入电压对系统的影响。

接着,我们设计模糊控制器。

模糊控制是一种基于模糊逻辑的控制方法,适用于非线性系统和模糊系统。

我们根据系统模型,设计模糊控制器的模糊规则、隶属函数等参数,以实现系统的稳定控制。

在设计过程中,我们需要考虑系统的性能指标,如超调量、稳态误差等。

第三步是模糊控制器参数调节。

通过仿真实验,我们可以对模糊控制器的参数进行调节,以使系统的性能达到最佳状态。

调节参数的过程需要考虑系统的稳定性、鲁棒性和响应速度,以达到控制效果的要求。

最后,我们对模糊控制系统进行性能评价。

通过对系统的响应曲线、稳定性、控制精度等指标进行分析,评价模糊控制器的控制效果。

我们可以比较模糊控制系统和传统控制系统的性能,探讨模糊控制在一阶倒立摆系统中的优势和局限性。

总的来说,本次实验通过研究一阶倒立摆系统的模糊控制方法,探讨了模糊控制在非线性系统中的应用。

通过实验,我们对模糊控制的基本原理和设计方法有了更深入的理解,同时也对一阶倒立摆系统的控制特性有了更清晰的认识。

希望通过实验的研究,能够为控制系统的设计和应用提供一定的参考和借鉴。

倒立摆实验报告建筑结构抗震研究

倒立摆实验报告建筑结构抗震研究

倒立摆实验报告:建筑结构抗震研究一、引言随着我国经济的快速发展,高层建筑日益增多,建筑结构的抗震性能成为社会关注的焦点。

为了提高建筑物的抗震能力,保障人民生命财产安全,我国政府及相关部门对建筑结构抗震研究给予了高度重视。

本实验报告针对倒立摆实验在建筑结构抗震研究中的应用,分析了倒立摆实验的基本原理、实验方法、实验结果及其在建筑结构抗震研究中的应用前景。

二、倒立摆实验原理倒立摆实验是一种研究建筑结构抗震性能的有效方法。

它利用倒立摆的稳定性原理,模拟地震作用下的建筑物振动响应,从而评估建筑结构的抗震能力。

倒立摆实验系统由摆杆、质量块、基础和支撑装置组成。

当摆杆在一定角度范围内摆动时,质量块产生的惯性力使摆杆保持倒立状态。

通过调整摆杆长度、质量块质量和基础刚度等参数,可以模拟不同建筑结构的抗震性能。

三、实验方法本实验采用数值模拟与实验相结合的方法,研究倒立摆实验在建筑结构抗震研究中的应用。

首先,建立倒立摆实验的数值模型,分析摆杆长度、质量块质量和基础刚度等参数对建筑结构抗震性能的影响。

然后,设计并实施倒立摆实验,验证数值模型的准确性。

最后,根据实验结果,提出提高建筑结构抗震能力的措施。

四、实验结果与分析1.数值模拟结果通过数值模拟,得到了不同参数下建筑结构的抗震性能。

结果表明,摆杆长度、质量块质量和基础刚度对建筑结构的抗震性能有显著影响。

摆杆长度越长,建筑结构的抗震能力越强;质量块质量越大,建筑结构的抗震能力越弱;基础刚度越大,建筑结构的抗震能力越强。

2.实验结果根据实验方案,进行了倒立摆实验。

实验结果表明,倒立摆实验可以有效地模拟建筑结构在地震作用下的振动响应。

通过对比实验结果与数值模拟结果,验证了数值模型的准确性。

同时,实验结果也表明,倒立摆实验可以评估建筑结构的抗震能力,为建筑结构设计提供依据。

五、建筑结构抗震研究展望倒立摆实验作为一种有效的建筑结构抗震研究方法,具有广泛的应用前景。

未来研究方向主要包括:1.进一步优化倒立摆实验系统,提高实验精度和可靠性。

线性系统倒立摆实验(5篇材料)

线性系统倒立摆实验(5篇材料)

线性系统倒立摆实验(5篇材料)第一篇:线性系统倒立摆实验直线倒立摆控制及一级正摆位移和角度控制一、实验目的(1)在Matlab Simulink环境下实现控制伺服电机;(2)完成直线倒立摆建模、仿真与分析;(3)通过控制器设计使倒立摆系统稳定运行(摆角保持零度附近):二、实验内容及要求(1)状态空间极点配置控制实验(一组极点为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的期望极点组。

(2)线性二次最优控制LQR 控制实验(R,Q选择为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的R,Q取值。

(3)一级正摆位移和角度控制借助于正摆实验平台,构思、设计控制策略和控制算法,并编程实现,通过实验设备将物体快速、准确地运输到指定的位置,且在吊运的整个过程(起吊,运输,到达目的地)保持较小的摆动角。

要求:系统启动后,在当前位置给正摆施加一角度扰动,当平衡(摆角为零)后,让小车直线运行30厘米,并快速保证平衡(摆角为零)。

三、实验过程1.实验方法(1)Matlab Simulink仿真环境下精确控制电机在MATLAB Simulink仿真环境中,建立模型,然后进行仿真并分析结果。

(2)直线倒立摆建模、仿真与分析利用牛顿力学进行受力分析,然后建立直线一级倒立摆系统的数学模型;进行仿真分析。

(3)状态空间极点配置控制实验进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted PendulumLinear Inverted PendulumLinear 1-Stage IP Experiment PolesExperiments”中的“Poles Control M File1”。

倒立摆实验报告

倒立摆实验报告

专 业 实 验 报 告 实验名称倒立摆实验 实验时间 姓名 学号一、实验内容1、直线一级倒立摆建模1.1 受力分析针对直线一级倒立摆,在实际的模型建立过程中,可忽略空气流动阻力和其它次要的摩擦阻力,则倒立摆系统抽象成小车和匀质刚性杆组成的系统,如图所示。

图1 小车系统各参数定义:M :小车质量m :摆杆质量β:小车摩擦系数l: 摆杆转动轴心到杆质心的长度I :摆杆惯量F :加在小车上的力X :小车位置Ф:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角摆杆受力和力矩分析图2 摆杆系统摆杆水平方向受力为:H摆杆竖直方向受力为:V由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩&&&&&& (1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG sml I s mgl=+-(2)倒立摆系统参数值:M=1.096 % 小车质量,kgm=0.109 % 摆杆质量,kg0.1β=% 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,mI= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G ss=-(3)1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x xθθ=&&(4)由2()I ml mgl mlxθθ+-=&&&&得出状态空间模型01001000000013300044xxxxxgglμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦&&&&&&&&(5)μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11&&xxxy(6)由倒立摆的参数计算出其状态空间模型表达式:(7)111()()n n n n f s sI A BK s a s a s a --=--=++++L (11)设期望特征根为***12,,,n λλλL ,则期望特征多项式为:***1111()()()n n n n n f x s s s b s b s b λλ--=--=++++L L (12)由*()()f s f s =求得矩阵K 。

倒立摆实验报告

倒立摆实验报告

倒立摆实验报告机自 82组员:李宗泽李航刘凯付荣倒立摆与自动控制原理实验一.实验目的 :1.运用经典控制理论控制直线一级倒立摆, 包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容.2. 运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆3.学习运用模糊控制理论控制倒立摆系统4.学习 MATLAB工具软件在控制工程中的应用5.掌握对实际系统进行建模的方法,熟悉利用 MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。

二.实验设备计算机及 MATLAB.VC等相关软件固高倒立摆系统的软件固高一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三.倒立摆系统介绍倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。

倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性 : 1) 非线性 2) 不确定性 3) 耦合性 4) 开环不稳定性 5) 约束限制倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、 LQR控制、模糊 PID控制、纯模糊控制四.直线一级倒立摆的物理模型:系统建模可以分为两种:机理建模和实验建模。

自动化实验倒立摆实验附仿真结果图

自动化实验倒立摆实验附仿真结果图

一、直线一级倒立摆的仿真(一)直线一级倒立摆的数学建模对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。

但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用其中的牛顿-欧拉方法和拉格朗日方法分别建立直线型一级倒立摆系统的数学模型。

图2 直线一级倒立摆模型φ摆杆与垂直向上方向的夹角;θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。

图3 小车及摆杆受力分析分析小车水平方向所受的合力,可以得到以下方程:由摆杆水平方向的受力进行分析可以得到下面等式:把这个等式代入式1中,就得到系统的第一个运动方程:为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:力矩平衡方程如下:注意:此方程中力矩的方向,由于θ=π+φ,cosφ= −cosθ,sinφ= −sin θ,故等式前面有负号。

合并这两个方程,约去P 和N,得到第二个运动方程:设θ=π+φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理:。

用u 来代表被控对象的输入力F,线性化后两个运动方程如下:对式9进行拉普拉斯变换,得到注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组的第一个方程,可以得到:或如果令v = x,则有:把上式代入方程组的第二个方程,得到:整理后得到传递函数:其中设系统状态空间方程为:方程组对解代数方程,得到解如下:整理后得到系统状态空间方程:设则有:实际系统的模型参数如下:M 小车质量1.096 Kgm 摆杆质量0.109 Kgb 小车摩擦系数0 .1N/m/secl 摆杆转动轴心到杆质心的长度0.2 5mI 摆杆惯量0.0034 kg*m*m把上述参数代入,可以得到系统的实际模型。

摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数为:摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:(二)倒立摆的PID调节:经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。

倒立摆创新实践报告

倒立摆创新实践报告

一、倒立摆系统介绍1、倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

GIP 系列倒立摆系统是固高科技有限公司,为全方位满足各类电机拖动和自动控制课程的教学需要,而研制、开发的实验教学平台。

GIP 系列的主导产品由直线运动型、旋转运动型和平面运动型三个子系列组成。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性: 倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。

不确定性: 主要是模型误差以及机械传动间隙,各种阻力等,实际控制中,一般通过减少各种误差,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

耦合性:主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,倒立摆控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

开环不稳定性: 倒立摆的稳定状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

约束限制:由于机构的限制,如运动模块行程限制,电机力矩限制等。

为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立摆的摆起尤为突出,容易出现小车的撞边现象。

倒立摆作为典型的快速、多变量,高阶非线形不稳定系统,一直是控制领域研究的热点。

它不但是验证现代控制理论方法的典型实验装置,而且其控制方法在一般工业过程中亦有着广泛的应用。

对倒立摆控制系统的研究可归结为非线形多变量绝对不稳定系统的研究。

早期的倒立摆控制律大多采用状态反馈,近年来,随着智能控制理论的发展,有人开始将模糊控制算法,神经网络用于倒立摆的控制。

直线一级倒立摆系统实验报告

直线一级倒立摆系统实验报告

直线一级倒立摆系统实验报告1. 实验目的:通过对直线一级倒立摆系统进行分析,掌握系统的基本原理、参数设置和控制策略;提高学生实际动手能力和科学实验能力。

2. 实验内容:(1)搭建直线一级倒立摆系统实验平台;(2)设置系统的动力学模型,采集系统的状态变量;(3)根据系统的特性设计控制策略,实现系统的稳定控制;(4)记录实验数据,并进行数据处理和分析。

3. 实验原理:直线一级倒立摆系统是一种经典的非线性控制系统,其原理和稳定性分析可以使用动力学建模方法来描述。

系统由直线弹簧、质量块、直线导轨和质量块的摆杆组成。

当摆杆处于垂直状态时,系统处于平衡状态;当摆杆被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。

在实验中,我们选取了单摆系统作为直线一级倒立摆系统的原形。

单摆系统由一个质点和一个线性弹簧组成,其状态变量为质点的位置和速度。

当质点处于平衡位置时,系统拥有稳定状态;当质点被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。

因此,我们可以使用单摆系统来研究直线一级倒立摆系统的控制策略。

4. 实验步骤:(1)搭建实验平台:搭建直线一级倒立摆系统实验平台,包括直线导轨、摆杆、质点、力传感器、位移传感器和控制电路等。

将质点放置在导轨上,并用摆杆将其固定在弹簧上。

使用力传感器和位移传感器来测量系统的状态变量。

(2)设置系统模型:对实验平台的动力学模型进行建模,将系统的状态变量与控制策略联系起来。

(3)设计控制策略:根据系统的特性设计相应的控制策略,使系统保持稳定状态。

常用的控制策略包括模型预测控制、PID控制、滑模控制等。

(4)记录实验数据:实验过程中需要记录系统的状态变量和控制参数,并进行数据处理和分析,得到实验结论。

5. 实验结果分析:通过对直线一级倒立摆系统的实验研究,我们发现系统的稳定控制需要根据其特性和实际情况来确定相应的控制策略。

在实验中,我们采用了模型预测控制策略,通过对系统的状态变量进行预测和调节,成功实现了系统的稳定控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆实验报告机自82组员:李宗泽李航刘凯付荣倒立摆与自动控制原理实验一.实验目的:1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容.2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆3.学习运用模糊控制理论控制倒立摆系统4.学习MATLAB工具软件在控制工程中的应用5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。

二. 实验设备计算机及等相关软件固高倒立摆系统的软件固高一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三.倒立摆系统介绍倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。

倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制四.直线一级倒立摆的物理模型:系统建模可以分为两种:机理建模和实验建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

,由于倒立摆本身是自不稳定的系统,实验建模存在一定的困难。

但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型:在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示:我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

分析小车水平方向所受的合力,可以得到以下方程:(3-1)由摆杆水平方向的受力进行分析可以得到下面等式:(3-2)即:(3-3)把这个等式代入式(3-1)中,就得到系统的第一个运动方程:(3-4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:(3-5)(3-6)力矩平衡方程如下:(3-7)注意:此方程中力矩的方向,由l,故等式前面有负号。

合并这两个方程,约去P 和N,得到第二个运动方程:(3-8)设θ=φ+π(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理:用u 来代表被控对象的输入力F,线性化后两个运动方程如下:(3-9)对式(3-9)进行拉普拉斯变换,得到(3-10)注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组的第一个方程,可以得到:或如果令则有:把上式代入方程组的第二个方程,得到:整理后得到传递函数:其中设系统状态空间方程为:方程组对, 解代数方程,得到解如下:整理后得到系统状态空间方程:由(3-9)的第一个方程为:对于质量均匀分布的摆杆有:于是可以得到:化简得到:设则有:另外,也可以利用MATLAB 中tf2ss 命令对(3-13)式进行转化,求得上述状态方程。

实际系统的模型参数如下:M 小车质量 1.096 Kgm 摆杆质量 0.109 Kgb 小车摩擦系数 0 .1N/m/secl 摆杆转动轴心到杆质心的长度 5mI 摆杆惯量 0.0034 kg*m*m把上述参数代入,可以得到系统的实际模型。

摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数为:摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:以小车加速度作为输入的系统状态方程:注意事项:在固高科技所有提供的控制器设计和程序中,采用的都是以小车的加速度作为系统的输入,如果用户需要采用力矩控制的方法,可以参考以上把外界作用力作为输入的各式。

五.系统的阶越响应分析根据已经得到系统的状态方程,先对其进行阶跃响应分析,在MATLAB 中键入以下命令:clear;A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 0];B=[ 0 1 0 3]';C=[ 1 0 0 0;0 1 0 0];D=[ 0 0 ]';step(A, B ,C ,D)可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发散的。

六.频率响应分析(系统稳定性分析)前面我们已经得到了直线一级倒立摆的物理模型,实际系统的开环传递函数为:其中输入为小车的加速度V (s) ,输出为摆杆的角度Φ(s) 。

在MATLAB 下绘制系统的Bode 图和奈奎斯特图。

在MATLAB 中键入以下命令:clear;num=[];den=[ 0 ];z=roots(num);p=roots(den);subplot(2,1,1)bode(num,den)subplot(2,1,2)nyquist(num,den)得到如下图所示的结果:z =Empty matrix: 0-by-1 p =可以得到,系统没有零点,但存在两个极点,其中一个极点位于右半s 平面,根据奈奎斯特稳定判据,闭环系统稳定的充分必要条件是:当ω从−∞到+ ∞变化时,开环传递函数G( jω ) 沿逆时针方向包围-1 点p 圈,其中p 为开环传递函数在右半S 平面内的极点数。

对于直线一级倒立摆,由奈奎斯特图我们可以看出,开环传递函数在S 右半平面有一个极点,因此G( jω ) 需要沿逆时针方向包围-1 点一圈。

可以看出,系统的奈奎斯特图并没有逆时针绕-1 点一圈,因此系统不稳定,需要设计控制器来镇定系统。

七.具体控制方法(一)双PID控制直线一级倒立摆双PID 控制实验1.PID 控制分析经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。

PID 控制器因其结构简单,容易调节,且不需要对系统建立精确的模型,在控制上应用较广。

对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。

系统控制结构框图如下:2.双PID实验控制参数设定及仿真。

在Simulinkzhong 建立直线一级倒立摆模型上下两个PID模块。

鼠标右键,选择“ Look under mask”打开模型内部结构分别为:双击第二个模块打开参数设置窗口令kp===0得到摆杆角度仿真结果可看出控制曲线不收敛。

因此增大控制量。

令kp===.得到如下仿真结果从上面摆杆角度仿真结果可看出,稳定比较好。

但稳定时间稍微有点长。

双击第一个模块打开参数设置窗经多次尝试在此参数即kp=-7,ki=0,kp= 情况下效果最好。

得到以下仿真结果黄线为小车位置输出曲线,红线为摆杆角度输出曲线。

从图中可以看出,系统可以比较好的稳定。

稳定时间在2-3秒之间。

稳定性不错。

3.双PID控制实验打开直线一级倒立摆爽PID实时控制模块双击doublePID控制模块进入参数设置把参数输入PID控制器。

编译程序,使计算机同倒立摆连接。

运行程序。

实验结果如下图所示从图中可以看出,倒立摆可以实现比较好的稳定性。

(二)线性最优二次控制LQR线性二次最优控制LQR 控制实验1线性二次最优控制LQR 基本原理及分析线性二次最优控制LQR 基本原理为,由系统方程:确定下列最佳控制向量的矩阵K:u(t)=-K*x(t) 使得性能指标达到最小值:式中 Q——正定(或正半定)厄米特或实对称阵R——为正定厄米特或实对称阵图 3-54 最优控制LQR 控制原理图方程右端第二项是考虑到控制能量的损耗而引进的,矩阵Q和R确定了误差和能量损耗的相对重要性。

并且假设控制向量u(t)是无约束的。

对线性系统:根据期望性能指标选取Q 和R,利用MATLAB 命令lqr 就可以得到反馈矩阵 K 的值。

K=lqr(A,B,Q,R)改变矩阵Q 的值,可以得到不同的响应效果,Q 的值越大(在一定的范围之内),系统抵抗干扰的能力越强,调整时间越短。

但是Q 不能过大2. LQR 控制参数调节及仿真前面我们已经得到了直线一级倒立摆系统的比较精确的动力学模型,下面我们针对直线型一级倒立摆系统应用 LQR 法设计与调节控制器,控制摆杆保持竖直向上平衡的同时,跟踪小车的位置。

前面我们已经得到了直线一级倒立摆系统的系统状态方程:应用线性反馈控制器,控制系统结构如下图。

图中R 是施加在小车上的阶跃输入,四个状态量x,x,φ,φ分别代表小车位移、小车速度、摆杆角度和摆杆角速度,输出y = [x,φ]’ 包括小车位置和摆杆角度。

设计控制器使得当给系统施加一个阶跃输入时,摆杆会摆动,然后仍然回到垂直位置,小车可以到达新的指定位置。

假设全状态反馈可以实现(四个状态量都可测),找出确定反馈控制规律的向量K 。

在 Matlab 中得到最优控制器对应的K 。

Lqr函数允许你选择两个参数——R 和Q,这两个参数用来平衡输入量和状态量的权重。

最简单的情况是假设R = 1,Q =C’ *C 。

当然,也可以通过改变Q 矩阵中的非零元素来调节控制器以得到期望的响应。

其中, Q1,1 代表小车位置的权重,而Q3,3 是摆杆角度的权重,输入的权重R 是 1。

相关文档
最新文档