倒立摆实验报告

合集下载

倒立摆实验报告

倒立摆实验报告

目录1 系统设计任务及技术指标 (2)1.1 倒立摆系统设计任务 (2)1.2 技术指标 (2)2 系统的组成和工作原理 (3)2.1 单级倒立摆系统的组成 (3)2.2 工作原理 (3)3 建立数学模型 (4)3.1 单级倒立摆系统物理模型的建立 (4)3.2 传递函数 (6)3.3 状态空间方程 (7)4 系统设计与仿真 (8)4.1 系统静态设计 (8)4.2 系统动态设计 (9)4.3 系统仿真 (10)4.3 分析与结论 (17)5 计算机控制系统设计与实现 (18)5.1 计算机控制系统的设计方案(硬件、软件) (18)5.2 实时控制软件框图 (18)5.3数据采集与模拟量输出 (19)5.4 采样周期的实现 (19)6 系统的组装与调试 (29)6.1 倒立摆实现电路 (29)6.2 反馈极性判别 (29)6.4 系统性能分析与结论 (30)6.4.1系统性能分析 (30)6.4.2 结论 (32)7 获得与体会 (33)8 参考文献 (34)1 系统设计任务及技术指标倒立摆被公认为是现代控制理论中的典型问题,是不可多得的典型物理模型。

是一个多变量、欠驱动、强耦合、高阶次、自然不稳定、非线性的快速系统。

通过对倒立摆系统的研究可以解决控制理论和实践中的诸多问题,如火箭姿态稳定问题、自然不稳定系统的控制问题等。

因此进行倒立摆实验具有重要的意义。

1.1 倒立摆系统设计任务1.了解倒立摆系统的组成和工作原理2.掌握模拟摆的调节方法3.任选一种或多种控制理论设计控制系统(静态设计、动态设计)4.仿真验证动态系统性能5.数字控制系统电路设计6.数字控制器软件设计7.闭环系统实验和调试8.编写实验报告1.2 技术指标1.摆角稳定时间小于3秒2.有一定的抗干扰能力且在5分钟内保持不倒3.小车控制在±45厘米内运动2 系统的组成和工作原理2.1 单级倒立摆系统的组成图1 计算机控制倒立摆系统结构框图电器部分由检测电路、调零电路、计算机、A/D 、D/A 变换器、功率放大器和伺服电机组成。

倒立摆实验报告建筑结构抗震研究

倒立摆实验报告建筑结构抗震研究

倒立摆实验报告:建筑结构抗震研究一、引言随着我国经济的快速发展,高层建筑日益增多,建筑结构的抗震性能成为社会关注的焦点。

为了提高建筑物的抗震能力,保障人民生命财产安全,我国政府及相关部门对建筑结构抗震研究给予了高度重视。

本实验报告针对倒立摆实验在建筑结构抗震研究中的应用,分析了倒立摆实验的基本原理、实验方法、实验结果及其在建筑结构抗震研究中的应用前景。

二、倒立摆实验原理倒立摆实验是一种研究建筑结构抗震性能的有效方法。

它利用倒立摆的稳定性原理,模拟地震作用下的建筑物振动响应,从而评估建筑结构的抗震能力。

倒立摆实验系统由摆杆、质量块、基础和支撑装置组成。

当摆杆在一定角度范围内摆动时,质量块产生的惯性力使摆杆保持倒立状态。

通过调整摆杆长度、质量块质量和基础刚度等参数,可以模拟不同建筑结构的抗震性能。

三、实验方法本实验采用数值模拟与实验相结合的方法,研究倒立摆实验在建筑结构抗震研究中的应用。

首先,建立倒立摆实验的数值模型,分析摆杆长度、质量块质量和基础刚度等参数对建筑结构抗震性能的影响。

然后,设计并实施倒立摆实验,验证数值模型的准确性。

最后,根据实验结果,提出提高建筑结构抗震能力的措施。

四、实验结果与分析1.数值模拟结果通过数值模拟,得到了不同参数下建筑结构的抗震性能。

结果表明,摆杆长度、质量块质量和基础刚度对建筑结构的抗震性能有显著影响。

摆杆长度越长,建筑结构的抗震能力越强;质量块质量越大,建筑结构的抗震能力越弱;基础刚度越大,建筑结构的抗震能力越强。

2.实验结果根据实验方案,进行了倒立摆实验。

实验结果表明,倒立摆实验可以有效地模拟建筑结构在地震作用下的振动响应。

通过对比实验结果与数值模拟结果,验证了数值模型的准确性。

同时,实验结果也表明,倒立摆实验可以评估建筑结构的抗震能力,为建筑结构设计提供依据。

五、建筑结构抗震研究展望倒立摆实验作为一种有效的建筑结构抗震研究方法,具有广泛的应用前景。

未来研究方向主要包括:1.进一步优化倒立摆实验系统,提高实验精度和可靠性。

倒立摆实验报告(现代控制理论)

倒立摆实验报告(现代控制理论)

现代控制理论实验报告——倒立摆小组成员:指导老师:2013.5实验一建立一级倒立摆的数学模型一、实验目的学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。

二、实验内容写出系统传递函数和状态空间方程,用Matlab进行仿真。

三、Matlab源程序及程序运行的结果(1)Matlab源程序见附页(2)给出系统的传递函数和状态方程(a)传递函数gs为摆杆的角度:>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013(b)传递函数gspo为小车的位移传递函数:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s(c)状态矩阵A,B,C,D:>> sysa =x1 x2 x3 x4x1 0 1 0 0x2 0 -0.07391 0.7175 0x3 0 0 0 1x4 0 -0.2054 29.23 0b =u1x1 0x2 0.7391x3 0x4 2.054c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0Continuous-time model.(3)给出传递函数极点和系统状态矩阵A的特征值(a)传递函数gs的极点>> PP =5.4042-5.4093-0.0689(b)传递函数gspo的极点>> PoPo =5.4042-5.4093-0.0689(c)状态矩阵A的特征值>> EE =-0.06895.4042-5.4093(4)给出系统开环脉冲响应和阶跃响应的曲线(a)开环脉冲响应曲线(b)阶跃响应曲线四、思考题(1)由状态空间方程转化为传递函数,是否与直接计算传递函数相等?答:由状态空间方程转化为传递函数:>> gso=tf(sys)Transfer function from input to output...0.7391 s^2 - 6.565e-016 s - 20.13#1: ---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s2.054 s + 4.587e-016#2: -----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013#1为gspo传递函数,#2为gs的传递函数而直接得到的传递函数为:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013通过比较可以看到,gspo由状态空间方程转化的传递函数比直接得到的传递函数多了s的一次项,而6.565e-016非常小几乎可以忽略不计,因此可以认为两种方法得到的传递函数式相同的,同理传递函数gs也可以认为是相同的。

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

倒立摆实验报告

倒立摆实验报告

倒立摆控制实验实验名称:便携式一级直线倒立摆姓名:李昌泽班级:交通设备1302 班学号:1104130317指导老师:韩锟倒立摆控制实验目录一、倒立摆系统介绍 (2)1.1倒立摆系统简皆 (2)1.2倒立摆组成及其原理 (2)1.3倒立摆特性 (3)二、一级倒立摆 (4)2.1 一级倒立摆建模 (4)2.2一级倒立摆控制法 (11)2.3 PID 控制参数设定 (18)三、总结 (22)一、倒立摆系统介绍1.1倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

1.2倒立摆组成及其原理倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。

对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。

倒立摆实验报告自动化仓库货物搬运

倒立摆实验报告自动化仓库货物搬运

倒立摆实验报告:自动化仓库货物搬运()一、引言随着我国经济的快速发展,物流行业日益繁荣,自动化仓库成为现代物流体系的重要组成部分。

自动化仓库货物搬运系统作为仓库管理的核心环节,其效率和稳定性直接影响到整个物流系统的运行。

倒立摆作为一种先进的自动化搬运技术,具有结构简单、响应速度快、控制精度高等优点,逐渐成为自动化仓库货物搬运领域的研究热点。

本实验报告以倒立摆实验为研究对象,探讨其在自动化仓库货物搬运中的应用前景。

二、实验目的1.研究倒立摆系统在自动化仓库货物搬运中的运动特性及稳定性。

2.分析倒立摆系统在不同工况下的控制策略及性能。

3.探讨倒立摆系统在实际应用中的可行性及优化方向。

三、实验原理倒立摆系统是一种典型的非线性、强耦合、不稳定系统,其基本原理如图1所示。

倒立摆由摆杆、质量块和驱动电机组成,通过控制电机的旋转速度,使摆杆在垂直平面内做往复运动,实现质量块的搬运。

图1倒立摆系统原理图四、实验方案1.实验设备:倒立摆实验平台、驱动电机、编码器、数据采集卡、计算机等。

2.实验步骤:a.搭建倒立摆实验平台,确保设备正常运行。

b.编写倒立摆系统控制程序,实现摆杆的运动控制。

c.采集倒立摆系统运动过程中的数据,包括摆杆角度、角速度、电机电流等。

d.分析倒立摆系统在不同工况下的运动特性及稳定性。

e.根据实验结果,优化控制策略,提高倒立摆系统的性能。

五、实验结果与分析1.倒立摆系统运动特性分析:通过实验观察到,倒立摆系统在运动过程中存在明显的非线性现象,如摆杆角度和角速度的周期性波动。

在初始阶段,摆杆角度波动较大,随着控制策略的优化,摆杆角度逐渐稳定在平衡位置附近。

此外,倒立摆系统在不同工况下的运动特性也存在差异,如在负载变化、外界干扰等因素影响下,摆杆角度波动幅度增大,稳定性降低。

2.倒立摆系统稳定性分析:实验结果表明,倒立摆系统的稳定性受到多种因素的影响,如控制参数、外界干扰等。

在控制参数合适的情况下,倒立摆系统可以保持较好的稳定性。

倒立摆创新实践报告

倒立摆创新实践报告

一、倒立摆系统介绍1、倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

GIP 系列倒立摆系统是固高科技有限公司,为全方位满足各类电机拖动和自动控制课程的教学需要,而研制、开发的实验教学平台。

GIP 系列的主导产品由直线运动型、旋转运动型和平面运动型三个子系列组成。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性: 倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。

不确定性: 主要是模型误差以及机械传动间隙,各种阻力等,实际控制中,一般通过减少各种误差,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

耦合性:主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,倒立摆控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

开环不稳定性: 倒立摆的稳定状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

约束限制:由于机构的限制,如运动模块行程限制,电机力矩限制等。

为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立摆的摆起尤为突出,容易出现小车的撞边现象。

倒立摆作为典型的快速、多变量,高阶非线形不稳定系统,一直是控制领域研究的热点。

它不但是验证现代控制理论方法的典型实验装置,而且其控制方法在一般工业过程中亦有着广泛的应用。

对倒立摆控制系统的研究可归结为非线形多变量绝对不稳定系统的研究。

早期的倒立摆控制律大多采用状态反馈,近年来,随着智能控制理论的发展,有人开始将模糊控制算法,神经网络用于倒立摆的控制。

倒立摆系统__实验设计报告

倒立摆系统__实验设计报告

倒立摆系统__实验设计报告一、实验目的本实验旨在通过对倒立摆系统的研究与实验,探讨倒立摆的运动规律,并分析其特点和影响因素。

二、实验原理与方法1.实验原理倒立摆是指在重力作用下,轴心静止在上方的直立摆。

倒立摆具有自然的稳定性,能够保持在平衡位置附近,且对微小干扰具有一定的抵抗能力。

其本质是控制系统的一个重要研究对象,在自动控制、机器人控制等领域有广泛的应用。

2.实验方法(1)搭建倒立摆系统:倒立摆由摆杆、轴心和电机组成,摆杆在轴心上下运动,电机用于控制倒立摆的运动。

(2)调节电机控制参数:根据实验需要,调节电机的参数,如转速、力矩等,控制倒立摆的运动状态。

(3)记录数据:通过相机或传感器等手段,记录倒立摆的位置、速度、加速度等相关数据,用于后续分析。

(4)分析数据:根据记录的数据,分析倒立摆的运动规律、特点和影响因素,在此基础上进行讨论和总结。

三、实验步骤1.搭建倒立摆系统:根据实验需要,选取合适的材料和设备,搭建倒立摆系统。

2.调节电机参数:根据实验目的,调节电机的转速、力矩、控制信号等参数,使倒立摆能够在一定范围内保持平衡。

3.记录数据:利用相机或传感器等设备,记录倒立摆的位置、速度、加速度等相关数据。

4.分析数据:通过对记录的数据进行分析,研究倒立摆的运动规律和特点,并探讨影响因素。

5.总结讨论:根据实验结果,进行总结和讨论,对倒立摆的运动规律、特点和影响因素进行深入理解和探究。

四、实验设备与器材1.倒立摆系统搭建材料:包括摆杆、轴心、电机等。

2.记录数据设备:相机、传感器等。

五、实验结果与分析通过实验记录的数据,分析倒立摆的运动规律和特点,找出影响因素,并进行讨论和总结。

六、实验结论根据实验结果和分析,得出倒立摆的运动规律和特点,并总结影响因素。

倒立摆具有一定的稳定性和抵抗干扰的能力,在控制系统中具有重要的应用价值。

七、实验感想通过参与倒立摆系统的搭建和实验,深入了解了倒立摆的运动规律和特点,对控制系统有了更深刻的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性系统理论》课程——倒立摆实验报告基本情况实验完成了基本要求,通过pid、极点配置、根轨迹、和ldr方法调试运行一级倒立摆,设计新的pid参数,调试运行状态,逐渐使一级倒立摆稳定,完成了实验的基本要求。

在对一级倒立摆完成实验的基础上,进一步对二级倒立摆进行了分析研究。

这其中的工作主要包括针对LDR方法运行demo,观察系统稳定性,快速性,调整系统参数,查看有什么问题,并且针对问题提出修改意见。

在多次试验后,对系统有了进一步的了解,便开始着手二级倒立摆极点配置方法的实现问题。

这部分继续学习了极点配置的方法,通过编写m文件,计算K,仿真运行系统,查看系统图像,查看调节时间,超调量等。

逐渐调试参数,使系统指标顺利达到。

最后是进行试验,进一步调整系统参数。

在这一个过程中,经验很重要,同时偶然因素也起到了重要的作用。

所以调试一个系统真的不容易。

这一部分的内容在第六节中进行了较为详细的介绍收获对倒立摆的系统原理有了更深层次的了解掌握了pid、极点配置、根轨迹、ldr方法设计系统学会了一些调试运行系统的经验加强了和同学之间的交流,锻炼了软件实现编程能力改进意见这里我有一个小小的建议,这是我在做实验的时候遇到了问题总结。

系统参数含义还不是很清楚。

在这个方面尤其是参数对应着系统的具体实际含义不明确,只能在尝试凑参数,有时出现了一个问题,不知道是哪个参数引起的,所以影响了效率,结果也不是很明显。

改进意见:共有四次实验,第一次实验安排不变但是试验后,负责人要收集问题,主要是要老师来解决的,在第二次实验前针对上一次的问题进行集体讲解一下,尤其是与物理的联系,不要仅仅是自己做实验吧,第三次和第一次相同,第四次与第二次相同。

在这个完成后,如果课堂有时间,可以进行了一个小小的试验心得介绍,和大家交流心得体会。

或者是老师统一解决一下这个总体过程中的问题,我觉得这样结果会更好一点。

下面是具体的详细报告一、倒立摆系统介绍倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。

倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1)非线性:倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2)不确定性:主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3)耦合性:倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4)开环不稳定性:倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

5)约束限制: 由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本次实验采用LQR控制。

二.直线一级倒立摆的物理模型:系统建模可以分为两种:机理建模和实验建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律基础上通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

,由于倒立摆本身是自不稳定的系统,实验建模存在一定的困难。

但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型:在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示:我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

分析小车水平方向所受的合力,可以得到以下方程:由摆杆水平方向的受力进行分析可以得到下面等式:即:把这个等式代入式(4-1)中,就得到系统的第一个运动方程:为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:力矩平衡方程如下:注意:此方程中力矩的方向,由于,故等式前面有负号。

合并这两个方程,约去P 和N,得到第二个运动方程:设θ=φ+π(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理:用u 来代表被控对象的输入力F,线性化后两个运动方程如下:对式(3-9)进行拉普拉斯变换,得到注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组的第一个方程,可以得到:或如果令则有:把上式代入方程组的第二个方程,得到:整理后得到传递函数:其中设系统状态空间方程为:方程组对, 解代数方程,得到解如下:整理后得到系统状态空间方程:由(4-9)的第一个方程为:对于质量均匀分布的摆杆有:于是可以得到:化简得到:设则有:另外,也可以利用MATLAB 中tf2ss 命令对(4-20)式进行转化,求得上述状态方程。

实际系统的模型参数如下:M 小车质量1.096 Kgm 摆杆质量0.109 Kgb 小车摩擦系数0 .1N/m/secl 摆杆转动轴心到杆质心的长度0.2 5mI 摆杆惯量0.0034 kg*m*m把上述参数代入,可以得到系统的实际模型。

摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数为:摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:以小车加速度作为输入的系统状态方程:三.直线一级倒立摆的线性二次型最优控制1.线性二次最优控制LQR 基本原理及分析线性二次最优控制LQR 基本原理为,由系统方程:确定下列最佳控制向量的矩阵K:u(t)=-K*x(t)使得性能指标达到最小值:式中Q——正定(或正半定)厄米特或实对称阵R——为正定厄米特或实对称阵图3-1 最优控制LQR 控制原理图方程右端第二项是考虑到控制能量的损耗而引进的,矩阵Q和R 确定了误差和能量损耗的相对重要性。

并且假设控制向量u(t)是无约束的。

对线性系统:根据期望性能指标选取Q 和R,利用MATLAB 命令lqr 就可以得到反馈矩阵K 的值。

K=lqr(A,B,Q,R)改变矩阵Q 的值,可以得到不同的响应效果,Q 的值越大(在一定的范围之内),系统抵抗干扰的能力越强,调整时间越短。

但是Q不能过大2. LQR 控制参数调节及仿真前面我们已经得到了直线一级倒立摆系统的比较精确的动力学模型,下面我们针对直线型一级倒立摆系统应用LQR 法设计与调节控制器,控制摆杆保持竖直向上平衡的同时,跟踪小车的位置。

前面我们已经得到了直线一级倒立摆系统的系统状态方程:应用线性反馈控制器,控制系统结构如下图。

图中R 是施加在小车上的阶跃输入,四个状态量x,x,φ,φ分别代表小车位移、小车速度、摆杆角度和摆杆角速度,输出y = [x,φ]’ 包括小车位置和摆杆角度。

设计控制器使得当给系统施加一个阶跃输入时,摆杆会摆动,然后仍然回到垂直位置,小车可以到达新的指定位置。

假设全状态反馈可以实现(四个状态量都可测),找出确定反馈控制规律的向量K 。

在Matlab 中得到最优控制器对应的K 。

Lqr 函数允许你选择两个参数——R 和Q,这两个参数用来平衡输入量和状态量的权重。

最简单的情况是假设R = 1,Q =C’ *C 。

当然,也可以通过改变Q 矩阵中的非零元素来调节控制器以得到期望的响应其中,Q11 代表小车位置的权重,而Q33 是摆杆角度的权重,输入的权重R是1。

下面来求矩阵K,Matlab 语句为K = lqr(A,B,Q,R) 。

下面在MATLAB 中编程计算:A=[0 1 0 0 ; 0 0 0 0;0 0 0 1; 0 0 29.4 0];B=[0 1 0 3]';C=[1 0 0 0; 0 0 1 0];D=[0 0]';Q11=1500;Q33=300;Q=[Q11 0 0 0;0 0 0 0;0 0 Q33 0;0 0 0 0];R=1;K=lqr(A,B,Q,R);Ac=[(A-B*K)];Bc=[B];Cc=[C];Dc=[D];T=0:0.005:5;U=0.2*ones(size(T));Cn=[1 0 0 0];Nbar=rscale(A,B,Cn,0,K);Bcn=[Nbar*B];[Y,X]=lsim(Ac,Bc,Cc,Dc,U,T);plot(T,X(:,1),'-');hold on;plot(T,X(:,2),'-');hold on;plot(T,X(:,3),'.');hold on;plot(T,X(:,4),'-');legend('cartpls','cartspd','pendang','pendspd')令Q11= 1,Q33 =1求得K=[-1 -1.7855 25.422 4.6849]在Simulink 中建立直线一级倒立摆的模型如下图所示:“LQR Controller”为一封装好的模块,在其上单击鼠标右键,选择“Look undermask”打开LQR Controller 结构如下:双击“Matrix gain K”即可输入控制参数:点击执行仿真,得到如下仿真结果:LQR 控制的阶跃响应如上图所示,从图中可以看出,闭环控制系统响应的超调量很小,但稳定时间和上升时间偏大,我们可以通过增大控制量来缩短稳定时间和上升时间。

相关文档
最新文档